Skip to main content
Log in

Management Flowering Ability to Increase Efficiency in the Sugarcane Breeding Program

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

Flowering abilities (panicles initiation period, flowering intensity and pollen fertility) at different altitudes (100, 400, 800 m above sea level) were evaluated in hundred sugarcane cultivars. Flowering data and meteorological records during a 20 year period were processed by principal components and discriminate analyses. In thirty contrasting cultivars, genetic variability was confirmed by ISTRs markers. A reliable approach based on the altitude management have been setting up increasing the number of flowering-induced genotypes and allowing a significant rise of the cross number. Results demonstrate a more efficient exploitation of the existing Saccharum gene pool and an extension of their breeding genetic basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Al-Janabi, S.M., M. McClelland, C. Petersen, and B.W.S. Sobral. 1994. Phylogenetic analysis of organellar DNA sequences in the Andropogoneae: Saccharinae. Theoretical and Applied Genetics 88: 933–944.

    Article  CAS  Google Scholar 

  • Alwala, S., A. Suman, J.A. Arro, J.C. Verenis, and C.A. Kimbeng. 2006. Target region amplification polymorphism (TRAP) for assessing genetic diversity in sugarcane germplasm collections. Crop Science 46: 448–455.

    Article  CAS  Google Scholar 

  • Andersen, J.R., and T. Lübberstedt. 2003. Functional markers in plants. Trends in Plant Science 8: 554–560.

    Article  PubMed  CAS  Google Scholar 

  • Arencibia, A., E. Carmona, G. Pérez, F. Vinagre, A. Hemerly, and I. Santana. 2005. Identification and characterization of hypervariable sequences withim the Saccharum complex. Plant Science 169(3): 478–486.

    Article  CAS  Google Scholar 

  • Berding, N., and A.P. Hurney. 2005. Flowering and lodging, physiological-based traits affecting cane and sugar yield: What do we know of their control mechanisms and how do we manage them? Field Crops Research 92: 261–275.

    Article  Google Scholar 

  • Berding, N. 2005. Poor and variable flowering in tropical sugarcane improvement program: Diagnosis and resolution of major breeding impediment. Proceedings of the International Society for Sugar Cane Technology 25: 493–503.

    Google Scholar 

  • Berding, N., and P.H. Moore. 2001. Advancing from opportunistic sexual recombination in sugarcane: Lessons from tropical photoperiodic research. Proceedings of the International Society for Sugar Cane Technology 24: 482–487.

    Google Scholar 

  • Berding, N., R.S. Pendrigh, and V. Dunne. 2007. Can flowering in sugarcane be optimised by use of differential declinations for the initiation and development phases? Proceedings of the International Society for Sugar Cane Technology 26: 699–711.

    Google Scholar 

  • Caraballoso, V., F. González, R. Rábagos, N. Bernal, and A. Tomeu. 2000. Fundamentación de la creación del Centro Nacional de Hibridación de la caña de azúcar en la provincia Sancti Spíritus. Cuba & Caña 8: 7–14.

    Google Scholar 

  • Cordeiro, G.M., R. Casu, C.L. McIntyre, J.M. Manners, and R.J. Henry. 2001. Microsatellite markers from sugarcane (Saccharum spp.): ESTs cross-transferable to erianthus and sorghum. Plant Science 160: 1115–1123.

    Article  PubMed  CAS  Google Scholar 

  • Creste, S., K. Accoroni, L.R. Pinto, R. Vencovsky, M.A. Gimenes, M.A. Xavier, and M.G. Landell. 2010. Genetic variability among sugarcane genotypes based on polymorphisms in sucrose metabolism and drought tolerance genes. Euphytica 172: 435–446.

    Article  CAS  Google Scholar 

  • Cruz, O. 2007. Sistema para el control de las campañas de hibridación de la caña de azúcar. Tesis en opción al Título Académico: Master en Computación Aplicada, 73. Cuba: Universidad Central “Martha Abreu” de Las Villas.

    Google Scholar 

  • D’Hont, A., Y.H. Lu, P. Feldmann, and J.C. Glaszmann. 1993. Cytoplasmic diversity in sugarcane revealed by heterologous probes. Sugar Cane 1: 12–15.

    Google Scholar 

  • D’Hont, A., Y.H. Lu, D.G.D. Le’on, L. Grivet, P. Feldmann, E. Panaud, and J.C. Glaszmann. 1994. A molecular approach to unravelling the genetics of sugarcane: A complex polyploid of Andropogonaea tribe. Genome 37: 222–230.

    Article  PubMed  Google Scholar 

  • Grivet, L., and P. Arruda. 2001. Sugarcane genomics: Depicting the complex genome of an important tropical crop. Current Opinion in Plant Biology 5: 122–127.

    Article  Google Scholar 

  • Jorge, H., R. González, M.A. Casas, and I. Jorge. 2002. Normas y procedimientos del programa de mejora genética de la Caña de. Azúcar en Cuba. Boletín No 1 Revista Cuba & Caña, 315. Cuba: INICA.

    Google Scholar 

  • Lam, E., J.J. Shine, J. da Silva, M. Lawton, S. Bonos, M. Calvino, H. Carrer, M.C. Silva-Filho, N. Glynn, Z. Helsel, J. Ma, F. Richard Jr, G.M. Souza, and R. Ming. 2009. Improving sugarcane for biofuel: Engineering for an even better feedstock. Global Change in Biological Bioenergy 1: 251–255.

    Article  CAS  Google Scholar 

  • Liu, B., S. Zhang, X. Zhu, Q. Yang, S. Wu, M. Mei, R. Mauleon, J. Leach, and H. Leung. 2004. Candidate defense genes as predictors of quantitative blast resistance in rice. Molecular Plant Microbe Interactions 17: 1146–1152.

    Article  PubMed  CAS  Google Scholar 

  • Ming, R., S.C. Liu, Y.R. Lin, J. Da Silva, W. Wilson, D. Braga, A. Van Deynze, T.E. Wenslaffe, K.K. Wu, P.H. Moore, W. Burnquist, M.E. Sorrells, J.E. Irvine, and A.H. Paterson. 1998. Detailed alignment of Saccharum and sorghum chromosomes: Comparative organization of closely related diploid and polyploid genomes. Genetics 150: 1663–1682.

    PubMed  CAS  Google Scholar 

  • Ming, R., Y.W. Wang, X. Draye, P.H. Moore, J.E. Irvine, and A.H. Paterson. 2002. Molecular dissection of complex traits in autopolyploids: Mapping QTLs affecting sugar yield and related traits in sugarcane. Theoretical and Applied Genetics 105: 332–345.

    Article  PubMed  CAS  Google Scholar 

  • Pinto, L.R., K.M. Oliveri, E.C. Ulian, A.A.F. Garcia, and A.P. de Souza. 2004. Survey in the sugarcane expressed sequence tag database (SUCEST) for simple sequence repeats. Genome 47: 795–804.

    Article  PubMed  CAS  Google Scholar 

  • Pinto, L.R., K.M. Oliveira, T. Marconi, A.A.F. Garcia, E.C. Ulian, and A.P. De Souza. 2006. Characterization of novel sugarcane expressed sequence tag microsatellites and their comparison with genomic SSRs. Plant Breeding 125: 378–384.

    Article  CAS  Google Scholar 

  • Ramalingam, J., C.M. Vera Cruz, K. Kukreja, J.M. Chittoor, J.L. Wu, S.W. Lee, M. Baraoldan, M.L. George, M.B. Cohen, S.H. Hulbert, J.E. Leach, and H. Leung. 2003. Candidate defense genes from rice, barley and maize and their association with qualitative and quantitative resistance in rice. Molecular Plant Microbe Interactions 16: 14–24.

    Article  PubMed  CAS  Google Scholar 

  • Ramírez, I.M., J.L. Fuentes, N.N. Rodríguez, O. Coto, J. Cueto, D. Becker, and W. Rohde. 2005. Diversity analysis of Cuban avocado varieties based on agro-morphological traits and DNA polymorphisms. Journal of Genetics and Breeding 59: 1–12.

    Google Scholar 

  • Rhode, W. 1996. Inverse sequense tagged repeat (ISTR) analysis: A novel and universal PCR-based technique for genome analysis in the plant and animal kingdom. Journal of Genetics and Breeding 50: 249–261.

    Google Scholar 

  • Schenck, S., M.W. Crepeau, K.K. Wu, P.H. Moore, Q. Yu, and R. Ming. 2004. Genetic diversity and relationships in native Hawaiian Saccharum officinarum sugarcane. Journal of Heredity 95(4): 327–331.

    Article  PubMed  CAS  Google Scholar 

  • Selvi, A., N.V. Nair, J.L. Noyer, N. Singh, N. Balasundaram, K.C. Bansal, K.R. Koundal, and T. Mohapatra. 2005. Genomic constitution and genetic relationship among the tropical and sbtropical Indian sugarcane cultivars revealed by AFLP. Crop Science 45: 1750–1757.

    Article  CAS  Google Scholar 

  • Swapna, M., K. Sivaraju, R.K. Sharma, N.K. Singh, and T. Mohapatra. 2011. Single-strand conformational polymorphism of EST-SSRs: A potential tool for diversity analysis and varietal identification in sugarcane. Plant Molecular Biology Reporter 29: 505–513.

    Article  Google Scholar 

  • Tienderen, P.H., A.A. Haan, C.G. Van Der Linden, and B. Vosman. 2002. Biodiversity assessment using markers for ecologically important traits. Trends in Ecology & Evolution 17: 577–582.

    Article  Google Scholar 

  • Waclawovsky, A.J., P.M. Sato, C.G. Lembke, P.H. Moore, and G.M. Souza. 2010. Sugarcane for bioenergy production: An assessment of yield and regulation of sucrose content. Plant Biotechnology Journal 8: 263–276.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Thanks are due to MINAZ (Sugar Minister) for financial support and to the anonymous referees for their useful critical.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariel D. Arencibia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caraballoso, V., Jorge, H., García, H. et al. Management Flowering Ability to Increase Efficiency in the Sugarcane Breeding Program. Sugar Tech 14, 47–52 (2012). https://doi.org/10.1007/s12355-011-0121-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-011-0121-1

Keywords

Navigation