Skip to main content

Advertisement

Log in

A tale of two technologies: Can nuclear cardiology survive the emergence of cardiac CT the seventeenth annual Mario S. Verani lectureship

  • Review Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

The Mario S. Verani Lectureship has traditionally been an opportunity for presenters to reflect on the state of nuclear cardiology in clinical practice and expound on new innovations in the field. Mario Verani was a visionary who embraced change and, as a cardiologist, sought to define where other cardiac imaging techniques might complement nuclear cardiology for improving patient care. Over the last decade, nuclear cardiology and cardiac computed tomography (CT) have developed in parallel with both expanding beyond the evaluation of coronary artery disease. However, many consider cardiac CT a formidable threat to nuclear cardiology due to pivotal technical innovations and its subsequent exponential growth in recent years. It is only fitting that this year’s lectureship explore the relative value of both techniques in evaluating and managing cardiac disease, their relative strengths and weaknesses, and the potential value of combining nuclear cardiology and cardiac CT imaging for enhancing patient management. To Mario, my mentor, colleague for over 20 years and friend, this lectureship is truly in honor and remembrance of you.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Adapted from Budoff et al8

Figure 4

Adapted from Chow et al27

Figure 5

Adapted from Zellwenger et al29 and Chang et al30

Figure 6

Adapted from Anand et al,32 He et al,33 Moser et al34 and Berman et al35

Figure 7

Adapted from Danad et al40

Figure 8

Adapted from Mahmarian et al45

Figure 9

Adapted from Kay et al49

Figure 10

Adapted from Patel et al55

Figure 11

Adapted from Min et al56

Figure 12

Adapted from DeBruyne et al63

Figure 13

Adapted from Mahmarian et al70

Figure 14
Figure 15

Adapted from Cook et al72

Figure 16

Adapted from Douglas et al74

Figure 17

Adapted from Ref.75

Figure 18

Adapted from Engbers et al81

Figure 19

Adapted from Chang et al30

Figure 20
Figure 21

Adapted from Divakaran93

Figure 22

Adapted from Calais et al (C)98 and Chen et al (D)99

Figure 23

Adapted from Kim et al101

Figure 24

Adapted from Tam et al (A)100 and Kim et al (B)101

Figure 25

Adapted from Juneau et al (B)102

Similar content being viewed by others

References

  1. Detrano R, Guerci AD, Carr JJ, Bild DE, Burke G, Folsom AR, et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med 2008;358:1336-45.

    CAS  PubMed  Google Scholar 

  2. Chang SM, Nabi F, Xu J, Pratt CM, Mahmarian AC, Frias ME, et al. Value of CACS compared with ETT and myocardial perfusion imaging for predicting long-term cardiac outcome in asymptomatic and symptomatic patients at low risk for coronary disease: Clinical implications in a multimodality imaging world. JACC Cardiovasc Imaging 2015;8:134-44.

    PubMed  Google Scholar 

  3. Rumberger JA, Simons DB, Fitzpatrick LA, Sheedy PF, Schwartz RS. Coronary artery calcium area by electron-beam computed tomography and coronary atherosclerotic plaque area. A histopathologic correlative study. Circulation 1995;92:2157-62.

    CAS  PubMed  Google Scholar 

  4. Erbel R, Möhlenkamp S, Moebus S, Schmermund A, Lehmann N, Stang A, et al. Coronary risk stratification, discrimination, and reclassification improvement based on quantification of subclinical coronary atherosclerosis. The Heinz Nixdorf Recall Study. J Am Coll Cardiol 2010;56:1397-406.

    PubMed  Google Scholar 

  5. Sarwar A, Shaw LJ, Shapiro MD, Blankstein R, Hoffmann U, Cury RC, et al. Diagnostic and prognostic value of absence of coronary artery calcification. JACC Cardiovasc Imaging 2009;2:675-88.

    PubMed  Google Scholar 

  6. Nasir K, Bittencourt MS, Blaha MJ, Blankstein R, Agatson AS, Rivera JJ, et al. Implications of coronary artery calcium testing among statin candidates according to American College of Cardiology/American Heart Association Cholesterol Management Guidelines: MESA (Multi-Ethnic Study of Atherosclerosis). J Am Coll Cardiol 2015;66:1657-68.

    CAS  PubMed  Google Scholar 

  7. Mortensen MB, Falk E, Li D, Nasir K, Blaha MJ, Sandfort V, et al. Statin trials, cardiovascular events, and coronary artery calcification: implications for a trial-based approach to statin therapy in MESA. JACC Cardiovasc Imaging 2018;11:221-30.

    PubMed  Google Scholar 

  8. Budoff MJ, Young R, Burke G, Carr JJ, Detrano RC, Folsom AR, et al. Ten-year association of coronary artery calcium with atherosclerotic cardiovascular disease (ASCVD) events: the multi-ethnic study of atherosclerosis (MESA). Eur Heart J 2018;39:2401-8.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Mitchell JD, Fergestrom N, Gage BF, Paisley R, Moon P, Novak E, et al. Impact of statins on cardiovascular outcomes following coronary artery calcium scoring. J Am Coll Cardiol 2018;72:3233-42.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Taylor AJ, Bindeman J, Feuerstein I, Le T, Bauer K, Byrd C, et al. Community-based provision of statin and aspirin after the detection of coronary artery calcium within a community-based screening cohort. J Am Coll Cardiol 2008;51:1337-41.

    PubMed  Google Scholar 

  11. Wong ND, Detrano RC, Diamond G, Rezayat C, Mahmoudi R, Chong EC, et al. Does coronary artery screening by electron beam computed tomography motivate potentially beneficial lifestyle behaviors? Am J Cardiol 1996;78:1220-3.

    CAS  PubMed  Google Scholar 

  12. Rozanski A, Gransar H, Shaw LJ, Kim J, Miranda-Peats L, Wong ND, et al. Impact of coronary artery calcium scanning on coronary risk factors and downstream testing the EISNER (Early Identification of Subclinical Atherosclerosis by Noninvasive Imaging Research) prospective randomized trial. J Am Coll Cardiol 2011;57:1622-32.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Downs J, Clearfield M, Weis S, Whitney E, Shapiro DR, Beere PA, et al. Primary prevention of acute coronary event with lovastatin in men and women with average cholesterol levels: Results of AFCAPS/TexCAPS. Air force/Texas coronary atherosclerosis prevention study. JAMA 1998;279:1615-22.

    CAS  PubMed  Google Scholar 

  14. Sever PS, Dahlof NR, Poulter NR, Wedel H, Beevers G, Caulfield M, et al. Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower than average cholesterol concentrations, in the Anglo-Scandanavian Cardiac Outcomes trial: Lipid lowering Arm (ASCOT-LLA): A multicenter randomized controlled trial. Lancet 2003;361:1149-58.

    CAS  PubMed  Google Scholar 

  15. Colhoun HM, Betteridge DJ, Durrington PN, Hitman GA, Neil HAW, Livingstone SJ, et al. Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative AtoRvastatin Diabetes Study (CARDS): Multicenter randomized placebo-controlled trial. Lancet 2004;364:685-96.

    CAS  PubMed  Google Scholar 

  16. Nakamura H, Arakawa K, Itakura H, Kitabatake A, Goto Y, Toyota T, et al. Primary prevention of cardiovascular disease with pravastatin in Japan (MEGA study): A prospective randomized controlled trial. Lancet 2006;368:1155-63.

    CAS  PubMed  Google Scholar 

  17. Ridker PM, Danielson E, Fonseca FAH, Genest J, Gotto AM, Kastelein JJP, et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med 2008;359:2195-207.

    CAS  PubMed  Google Scholar 

  18. Yusuf S, Bosch J, Dagenais G, Zhu J, Xavier D, Liu L, et al. Cholesterol lowering in intermediate-risk persons without cardiovascular disease. N Engl J Med 2016;374:2021-31.

    CAS  PubMed  Google Scholar 

  19. Sacks FM, Pfeffer MA, Moye LA, Rouleau JL, Rutherford JD, Cole TG, et al. The effects of pravastatin on cardiac events after myocardial infarction in patients with average cholesterol levels. N Engl J Med 1996;335:1001-9.

    CAS  PubMed  Google Scholar 

  20. Cannon CP, Braunwald E, McCabe CH, Rader DJ, Rouleau JL, Belder R, et al. Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med 2004;350:1495-504.

    CAS  PubMed  Google Scholar 

  21. Cannon CP, Blazing MA, Giugliano RP, McCagg A, White JA, Theroux P, et al. Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med 2015;372:2387-97.

    CAS  PubMed  Google Scholar 

  22. Inoue K, Motoyama S, Sarai M, Sato T, Harigaya H, Hara T, et al. Serial coronary CT angiography-verified changes in plaque characteristics as an end point: Evaluation of effect of statin intervention. JACC Cardiovasc Imaging 2010;3:691-8.

    PubMed  Google Scholar 

  23. Zeb I, Li D, Nasir K, Malpeso J, Batool A, Flores F, et al. Effect of statin treatment on coronary plaque progression—A serial coronary CT angiography study. Atherosclerosis 2013;231:198-204.

    CAS  PubMed  Google Scholar 

  24. Shin S, Park HB, Chang HJ, Arsanjani R, Min JK, Kim YJ, et al. Impact of intensive LDL cholesterol lowering on coronary artery atherosclerosis progression: A serial CT angiography study. JACC Cardiovasc Imaging 2017;10:437-46.

    PubMed  Google Scholar 

  25. Lee SE, Chang HJ, Sung JM, Park HB, Heo R, Rizvi A, et al. Effects of statins on coronary atherosclerotic plaques: The PARADIGM Study. JACC Cardiovasc Imaging 2018;11:1475-84.

    PubMed  Google Scholar 

  26. Tamarappoo B, Otaki Y, Doris M, Arnson YK, Gransar H, Hayes S, et al. Improvement in LDL is associated with decrease in non-calcified plaque volume on coronary CTA as measured by automated quantitative software. J Cardiovasc Comput Tomogr 2018;12:385-90.

    PubMed  Google Scholar 

  27. Chow BJ, Small G, Yam Y, Chen L, McPherson R, Achenbach S, et al. Prognostic and therapeutic implications of statin and aspirin therapy in individuals with nonobstructive coronary artery disease: results from the CONFIRM (COronary CT Angiography EvaluatioN For Clinical Outcomes: An InteRnational Multicenter registry) registry. Arterioscler Thromb Vasc Biol 2015;35:981-9.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hulten E, Bittencourt MS, Singh A, O’Leary D, Christman MP, Osmani W, et al. Coronary artery disease detected by coronary computed tomographic angiography is associated with intensification of preventive medical therapy and lower low-density lipoprotein cholesterol. Circ Cardiovasc Imaging 2014;7:629-38.

    PubMed  Google Scholar 

  29. Zellwenger MJ, Hachamovitch R, Kang X, Hayes SW, Friedman JD, Germano G, et al. Threshold, incidence, and predictors of prognostically high-risk silent ischemia in asymptomatic patients without prior diagnosis of coronary artery disease. J Nucl Cardiol 2009;16:193-200.

    Google Scholar 

  30. Chang SM, Nabi F, Xu J, Peterson LE, Achari A, Pratt CM, et al. The coronary artery calcium score and stress myocardial perfusion imaging provide independent and complementary prediction of cardiac risk. J Am Coll Cardiol 2009;54:1872-82.

    PubMed  Google Scholar 

  31. Young LH, Wackers FJ, Chyun DA, Davey JA, Barrett EJ, Taillefer R, et al. Cardiac outcomes after screening for asymptomatic coronary artery disease in patients with type 2 diabetes: the DIAD study: A randomized controlled trial. JAMA 2009;301:1547-55.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Anand DV, Lim E, Hopkins D, Corder R, Shaw LJ, Sharp P, et al. Risk stratification in uncomplicated type 2 diabetes: Prospective evaluation of the combined use of coronary artery calcium imaging and selective myocardial perfusion scintigraphy. Eur Heart J 2006;27:713-21.

    PubMed  Google Scholar 

  33. He Z, Hedrick TD, Pratt CM, Verani MS, Aquino V, Roberts R, et al. Severity of coronary artery calcification by electron beam computed tomography predicts silent myocardial ischemia. Circulation 2000;101:244-51.

    CAS  PubMed  Google Scholar 

  34. Moser KW, O’Keefe JH, Bateman TM, McGhie IA. Coronary calcium screening in asymptomatic patients as a guide to risk factor modification and stress myocardial perfusion imaging. J Nucl Cardiol 2003;10:692-5.

    Google Scholar 

  35. Berman DS, Wong ND, Gransar H, Miranda-Peats R, Dahlbeck J, Hayes SW, et al. Relationship between stress-induced myocardial ischemia and atherosclerosis measured by coronary calcium tomography. JACC 2004;44:923-30.

    CAS  PubMed  Google Scholar 

  36. Bavishi C, Argulian E, Chatterjee S, Rozanski A. CACS and the frequency of stress-induced myocardial ischemia during MPI: A meta-analysis. JACC Cardiovasc Imaging 2016;9:580-9.

    PubMed  Google Scholar 

  37. Wolk MJ, Bailey SR, Doherty JU, Douglas PS, Hendel RC, Kramer CM, et al. ACCF/AHA/ASE/ASNC/HFSA/HRS/SCAI/SCCT/SCMR/STS 2013 multimodality appropriate use criteria for the detection and risk assessment of stable ischemic heart disease: A report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, American Heart Association, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, and Society of Thoracic Surgeons. J Am Coll Cardiol 2014;63:380-406.

    PubMed  Google Scholar 

  38. McArdle BA, Dowsley TF, deKemp RA, Wells GA, Beanlands RS. Does Rubidium-82 PET have superior accuracy to SPECT perfusion imaging for the diagnosis of obstructive coronary disease? J Am Coll Cardiol. 2012;60:1828-37.

    Google Scholar 

  39. Abdulla J, Abildstrom SZ, Gotzsche O, Christensen E, Kober L, Torp-Pedersen C. 64-multislice detector computed tomography coronary angiography as potential alternative to conventional coronary angiography: A systematic review and meta-analysis. Eur Hear J 2007;28:3042-50.

    Google Scholar 

  40. Danad I, Raijmakers PG, Driessen RS, Leipsic J, Raju R, Naoum C, et al. Comparison of coronary CT angiography, SPECT, PET, and hybrid imaging for diagnosis of ischemic heart disease determined by fractional flow reserve. JAMA Cardiol 2017;2:1100-1.

    PubMed  PubMed Central  Google Scholar 

  41. Nørgaard BL, Leipsic J, Gaur S, Seneviratne S, Ko BS, Ito H. Diagnostic performance of noninvasive fractional flow reserve derived from computed tomography angiography in suspected coronary artery disease: The NXT trial (Analysis of coronary blood flow using CT Angiography: Next Steps). JACC 2014;63:1145-55.

    PubMed  Google Scholar 

  42. Uretsky S, Cohen R, Argulian E, Balasundaram K, Supariwala A, Subero M, et al. Combining stress-only myocardial perfusion imaging with coronary calcium scanning as a new paradigm for initial patient work-up: An exploratory analysis. J Nucl Cardiol 2015;22:89-97.

    PubMed  Google Scholar 

  43. Brodov Y, Gransar H, Dey D, Shalev A, Germano G, Friedman JD, et al. Combined quantitative assessment of myocardial perfusion and coronary artery calcium score by hybrid 82Rb PET/CT improves detection of coronary artery disease. J Nucl Med 2015;56:1345-50.

    CAS  PubMed  Google Scholar 

  44. Shaw LJ, Iskandrian AE. Prognostic value of gated myocardial perfusion SPECT. J Nucl Cardiol 2004;11:171-85.

    PubMed  Google Scholar 

  45. Mahmarian JJ, Shaw LJ, Filipchuk NG, Dakik HA, Iskander SS, Ruddy TD, et al. A multinational study to establish the value of early adenosine technetium-99m sestamibi myocardial perfusion imaging in identifying a low-risk group for early hospital discharge after acute myocardial infarction. J Am Coll Cardiol 2006;48:2448-57.

    PubMed  Google Scholar 

  46. Hachamovitch R, Berman DS, Kiat H, Cohen I, Friedman JD, Shaw LJ. Value of stress myocardial perfusion single photon emission computed tomography in patients with normal resting electrocardiograms: An evaluation of incremental prognostic value and cost-effectiveness. Circulation 2002;105:823-9.

    PubMed  Google Scholar 

  47. Cerci MS, Cerci JJ, Cerci RJ, Pereira Neto CC, Trindade E, Delbeke D, da Cunha CL, Vitola JV. Myocardial perfusion imaging is a strong predictor of death in women. JACC Cardiovasc Imaging 2011;4:880-8.

    PubMed  Google Scholar 

  48. Dorbala S, Di Carli MF, Beanlands RS, Merhige ME, Williams BA, Veledar E, et al. Prognostic value of stress myocardial perfusion positron emission tomography: Results from a multicenter observational registry. J Am Coll Cardiol 2013;15(61):176-84.

    Google Scholar 

  49. Kay J, Dorbala S, Goyal A, Fazel R, Di Carli MF, Einstein AJ, et al. Influence of sex on risk stratification with stress myocardial perfusion Rb-82 positron emission tomography: Results from the PET (Positron Emission Tomography) Prognosis Multicenter Registry. J Am Coll Cardiol 2013;62:1866-76.

    PubMed  Google Scholar 

  50. Sharir T, Germano G, Kavanagh PB, Lai S, Cohen I, Lewin HC, et al. Incremental prognostic value of post-stress left ventricular ejection fraction and volume by gated myocardial perfusion single photon emission computed tomography. Circulation 1999;100:1035-42.

    CAS  PubMed  Google Scholar 

  51. Dorbala S, Vangala D, Sampson U, Limaye A, Kwong R, Di Carli MF. Value of vasodilator left ventricular ejection fraction reserve in evaluating the magnitude of myocardium at risk and the extent of angiographic coronary artery disease: A 82Rb PET/CT study. J Nucl Med 2007;48:349-58.

    PubMed  Google Scholar 

  52. Taqueti VR, Hachamovitch R, Murthy VL, Naya M, Foster CR, Hainer J, et al. Global coronary flow reserve is associated with adverse cardiovascular events independently of luminal angiographic severity and modifies the effect of early revascularization. Circulation 2015;131:19-27.

    PubMed  Google Scholar 

  53. Murthy VL, Naya M, Foster CR, Gaber M, Hainer J, Klein J, et al. Association between coronary vascular dysfunction and cardiac mortality in patients with and without diabetes mellitus. Circulation 2012;126:1858-68.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Taqueti VR, Solomon SD, Shah AM, Desai AS, Groarke JD, Osborne MT, et al. Coronary microvascular dysfunction and future risk of heart failure with preserved ejection fraction. Eur Heart J 2018;39:840-9.

    CAS  PubMed  Google Scholar 

  55. Patel KK, Spertus JA, Chan PS, Sperry BW, Al Badarin F, Kennedy KF, et al. Myocardial blood flow reserve assessed by positron emission tomography myocardial perfusion imaging identifies patients with a survival benefit from early revascularization. Eur Heart J 2020;41:759–68

    PubMed  Google Scholar 

  56. Min JK, Dunning A, Lin FY, Achenbach S, Al-Mallah M, Budoff MJ, et al. Age- and sex-related differences in all-cause mortality risk based on coronary computed tomography angiography findings results from the International Multicenter CONFIRM (Coronary CT Angiography Evaluation for Clinical Outcomes: An International Multicenter Registry) of 23,854 patients without known coronary artery disease. J Am Coll Cardiol 2011;58:849-60.

    PubMed  Google Scholar 

  57. Hulten EA, Carbonaro S, Petrillo SP, Mitchell JD, Villines TC. Prognostic value of cardiac computed tomography angiography: A systematic review and meta-analysis. J Am Coll Cardiol 2011;57:1237-47.

    PubMed  Google Scholar 

  58. Coenen A, Rossi A, Lubbers MM, Kurata A, Kono AK, Chelu RG, et al. Integrating CT myocardial perfusion and CT-FFR in the work-up of coronary artery disease. JACC Cardiovasc Imaging 2017;10:760-70.

    PubMed  Google Scholar 

  59. Lubbers M, Coenen A, Kofflard M, Bruning T, Kietselaer B, Galema T, et al. Comprehensive cardiac CT with myocardial perfusion imaging versus functional testing in suspected coronary artery disease: The multicenter, randomized CRESCENT-II trial. JACC Cardiovasc Imaging 2018;11:1625-36.

    PubMed  Google Scholar 

  60. Tonino PA, De Bruyne B, Pijls NH, Siebert U, Ikeno F, van’ t Veer M, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 2009;360:213-24.

    CAS  PubMed  Google Scholar 

  61. Pijls NH, Fearon WF, Tonino PA, Siebert U, Ikeno F, Bornschein B, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention in patients with multivessel coronary artery disease: 2-year follow-up of the FAME (Fractional Flow Reserve Versus Angiography for Multivessel Evaluation) study. J Am Coll Cardiol 2010;56:177-84.

    PubMed  Google Scholar 

  62. van Nunen LX, Zimmermann FM, Tonino PA, Barbato E, Baumbach A, Engstrøm T, et al. Fractional flow reserve versus angiography for guidance of PCI in patients with multivessel coronary artery disease (FAME): 5-year follow-up of a randomised controlled trial. Lancet 2015;386:1853-60.

    PubMed  Google Scholar 

  63. De Bruyne B, Pijls NH, Kalesan B, Barbato E, Tonino PA, Piroth Z, et al. Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease. N Engl J Med 2012;367(11):991-1001. Erratum in: N Engl J Med 2012;367:1768.

  64. Xaplanteris P, Fournier S, Pijls NHJ, Fearon WF, Barbato E, Tonino PAL, et al. Five-year outcomes with PCI guided by fractional flow reserve. N Engl J Med 2018;379:250-9.

    PubMed  Google Scholar 

  65. Boden WE, O’Rourke RA, Teo KK, Hartigan PM, Maron DJ, Kostuk WJ, et al. Optimal medical therapy with or without PCI for stable coronary disease. N Engl J Med 2007;356:1503-16.

    CAS  PubMed  Google Scholar 

  66. BARI 2D Study Group, Frye RL, August P, Brooks MM, Hardison RM, Kelsey SF, et al. A randomized trial of therapies for type 2 diabetes and coronary artery disease. N Engl J Med 2009;360:2503-15.

    Google Scholar 

  67. Pursnani S, Korley F, Gopaul R, Kanade P, Chandra N, Shaw RE, et al. Percutaneous coronary intervention versus optimal medical therapy in stable coronary artery disease: A systematic review and meta-analysis of randomized clinical trials. Circ Cardiovasc Interv 2012;5:476-90.

    PubMed  Google Scholar 

  68. Stergiopoulos K, Boden WE, Hartigan P, Möbius-Winkler S, Hambrecht R, Hueb W, et al. Percutaneous coronary intervention outcomes in patients with stable obstructive coronary artery disease and myocardial ischemia: A collaborative meta-analysis of contemporary randomized clinical trials. JAMA Intern Med 2014;174:232-40.

    PubMed  Google Scholar 

  69. American College of Cardiology. International study of comparative health effectiveness with medical and invasive approaches (ISCHEMIA) trial presented American Heart Association Meeting 2020. Washington, DC: American College of Cardiology; 2020.

    Google Scholar 

  70. Mahmarian JJ, Pratt CM, Boyce TM, Verani MS. The variable extent of jeopardized myocardium in patients with single vessel coronary artery disease: Quantification by thallium-201 single photon emission computed tomography. J Am Coll Cardiol 1991;17:355-62.

    CAS  PubMed  Google Scholar 

  71. Gibbons RJ, Holmes DR, Reeder GS, Bailey KR, Hopfenspirger MR, Gersh BJ. Immediate angioplasty compared with the administration of a thrombolytic agent followed by conservative treatment for myocardial infarction. The Mayo Coronary Care Unit and Catheterization Laboratory Groups. N Engl J Med 1993;328:685-91.

    CAS  PubMed  Google Scholar 

  72. Cook CM, Petraco R, Shun-Shin MJ, Ahmad Y, Nijjer S, Al-Lamee R, et al. Diagnostic accuracy of computed tomography-derived fractional flow reserve: A systematic review. JAMA Cardiol 2017;2:803-10.

    PubMed  Google Scholar 

  73. Douglas PS, De Bruyne B, Pontone G, Patel MR, Norgaard BL, Byrne RA, et al. 1-year outcomes of FFRCT-guided care in patients with suspected coronary disease: The PLATFORM study. J Am Coll Cardiol 2016;68:435-45.

    PubMed  Google Scholar 

  74. Douglas PS, Hoffmann U, Patel MR, Mark DB, Al-Khalidi HR, Cavanaugh B, et al. Outcomes of anatomical versus functional testing for coronary artery disease. N Engl J Med 2015;372:1291-300.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. SCOT-HEART Investigators. CT coronary angiography in patients with suspected angina due to coronary heart disease (SCOT-HEART): an open-label, parallel-group, multicentre trial. Lancet 2015;385:2383-91. Erratum in: Lancet 2015;385:2354.

  76. SCOT-HEART Investigators, Newby DE, Adamson PD, Berry C, Boon NA, Dweck MR, et al. Coronary CT angiography and 5-year risk of myocardial infarction. N Engl J Med 2018;379:924-33.

    Google Scholar 

  77. Moss AJ, Williams MC, Newby DE, Nicol ED. The updated NICE guidelines: cardiac CT as the first-line test for coronary artery disease. Curr Cardiovasc Imaging Rep 2017;10:15.

    PubMed  PubMed Central  Google Scholar 

  78. Williams MC, Moss AJ, Dweck M, Adamson PD, Alam S, Hunter A, et al. Coronary artery plaque characteristics associated with adverse outcomes in the SCOT-HEART study. J Am Coll Cardiol 2019;73:291-301.

    PubMed  PubMed Central  Google Scholar 

  79. Mouden M, Timmer JR, Reiffers S, Oostdijk AH, Knollema S, Ottervanger JP, et al. Coronary artery calcium scoring to exclude flow-limiting coronary artery disease in symptomatic stable patients at low or intermediate risk. Radiology 2013;269:77-83.

    PubMed  Google Scholar 

  80. Schenker MP, Dorbala S, Hong EC, Rybicki FJ, Hachamovitch R, Kwong RY, et al. Interrelation of coronary calcification, myocardial ischemia, and outcomes in patients with intermediate likelihood of coronary artery disease: A combined positron emission tomography/computed tomography study. Circulation 2008;117:1693-700.

    PubMed  PubMed Central  Google Scholar 

  81. Engbers EM, Timmer JR, Ottervanger JP, Mouden M, Knollema S, Jager PL. Prognostic value of coronary artery calcium scoring in addition to single-photon emission computed tomographic myocardial perfusion imaging in symptomatic patients. Circ Cardiovasc Imaging 2016;9:e003966.

    PubMed  Google Scholar 

  82. Bokhari S, Castaño A, Pozniakoff T, Deslisle S, Latif F, Maurer MS. (99m)Tc-pyrophosphate scintigraphy for differentiating light-chain cardiac amyloidosis from the transthyretin-related familial and senile cardiac amyloidoses. Circ Cardiovasc Imaging 2013;6:195-201.

    PubMed  PubMed Central  Google Scholar 

  83. Hutt DF, Quigley AM, Page J, Hall ML, Burniston M, Gopaul D, et al. Utility and limitations of 3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy in systemic amyloidosis. Eur Heart J Cardiovasc Imaging 2014;15:1289-98.

    PubMed  Google Scholar 

  84. Falk RH, Quarta CC, Dorbala S. How to image cardiac amyloidosis. Circ Cardiovasc Imaging 2014;7:552-62.

    PubMed  PubMed Central  Google Scholar 

  85. Cappelli F, Gallini C, Di Mario C, Costanzo EN, Vaggelli L, Tutino F, et al. Accuracy of 99mTc-hydroxymethylene diphosphonate scintigraphy for diagnosis of transthyretin cardiac amyloidosis. J Nucl Cardiol 2019;26:497-504.

    PubMed  Google Scholar 

  86. Castano A, Haq M, Narotsky DL, Goldsmith J, Weinberg RL, Morgenstern R, et al. Multicenter study of planar technetium 99m pyrophosphate cardiac imaging: predicting survival for patients with ATTR cardiac amyloidosis. JAMA Cardiol 2016;1:880-9.

    PubMed  Google Scholar 

  87. Dorbala S, Ando Y, Bokhari S, Dispenzieri A, Falk RH, Ferrari VA, et al. ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI expert consensus recommendations for multimodality imaging in cardiac amyloidosis: Part 2 of 2-diagnostic criteria and appropriate utilization. J Nucl Cardiol 2020;27:659–73

    Google Scholar 

  88. Maurer MS, Schwartz JH, Gundapaneni B, Elliott PM, Merlini G, Waddington-Cruz M, et al. Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy. NEJM 2018;379:1007-16.

    CAS  PubMed  Google Scholar 

  89. Dorbala S, Vangala D, Semer J, Strader C, Bruyere JR Jr, Di Carli MF, et al. Imaging cardiac amyloidosis: A pilot study using 18F-florbetapir positron emission tomography. Eur J Nucl Med Mol Imaging. 2014;41:1652-62.

    CAS  PubMed  Google Scholar 

  90. Kim YJ, Ha S, Kim YI. Cardiac amyloidosis imaging with amyloid positron emission tomography: A systematic review and meta-analysis. J Nucl Cardiol 2020;27:123–32.

    PubMed  Google Scholar 

  91. Bokhari S, Lin JC, Julien HM. FDG-PET is a superior tool in the diagnosis and management of cardiac sarcoidosis. J Am Coll Cardiol Expert Anal 2020.

  92. Juneau D, Nery P, Russo J, de Kemp RA, Leung E, Beanlands RSB, et al. How common is isolated cardiac sarcoidosis? Extra-cardiac and cardiac findings on clinical examination and whole-body 18F-fluorodeoxyglucose positron emission tomography. Int J Cardiol 2018;253:189-93.

    PubMed  Google Scholar 

  93. Divakaran S, Stewart GC, Lakdawala NK, Padera RF, Zhou W, Desai AS, et al. Diagnostic accuracy of advanced imaging in cardiac sarcoidosis. Circ Cardiovasc Imaging 2019;12:e008975.

    PubMed  PubMed Central  Google Scholar 

  94. Blankstein R, Osborne M, Naya M, Waller A, Kim CK, Murthy VL, et al. Cardiac positron emission tomography enhances prognostic assessments of patients with suspected cardiac sarcoidosis. J Am Coll Cardiol 2014;63:329-36.

    PubMed  Google Scholar 

  95. Osborne MT, Hulten EA, Singh A, Waller AH, Bittencourt MS, Stewart GC, et al. Reduction in 18F-fluorodeoxyglucose uptake on serial cardiac positron emission tomography is associated with improved left ventricular ejection fraction in patients with cardiac sarcoidosis. J Nucl Cardiol 2014;21:166-74.

    PubMed  Google Scholar 

  96. Cabrera R, Ananthasubramaniam K. Diagnosis, therapeutic response assessment, and detection of disease recurrence in cardiac sarcoidosis: Integral role of cardiac PET. J Nucl Cardiol 2016;23:850-3.

    PubMed  Google Scholar 

  97. Sarrazin JF, Philippon F, Tessier M, Guimond J, Molin F, Champagne J, et al. Usefulness of fluorine-18 positron emission tomography/computed tomography for identification of cardiovascular implantable electronic device infections. J Am Coll Cardiol 2012;59:1616-25.

    PubMed  Google Scholar 

  98. Calais J, Touati A, Grall N, Laouénan C, Benali K, Mahida B, et al. Diagnostic impact of 18F-fluorodeoxyglucose positron emission tomography/computed tomography and white blood cell SPECT/computed tomography in patients with suspected cardiac implantable electronic device chronic infection. Circ Cardiovasc Imaging 2019;12:e007188.

    PubMed  Google Scholar 

  99. Chen W, Dilsizian V. Is 18F-flurodeoxyglucose positron emission tomography/computed tomography more reliable than clinical standard diagnosis for guiding patient management decisions in cardiac implantable electronic device infection? Circ Cardiovasc Imaging. 2019;12:e009453.

    PubMed  Google Scholar 

  100. Tam MC, Patel VN, Weinberg RL, Hulten EA, Aaronson KD, Pagani FD, et al. Diagnostic accuracy of FDG PET/CT in suspected LVAD infections: A case series, systematic review, and meta-analysis. JACC Cardiovasc Imaging 2020;13:1191–202

    PubMed  Google Scholar 

  101. Kim J, Feller ED, Chen W, Liang Y, Dilsizian V. FDG PET/CT for early detection and localization of left ventricular assist device infection: Impact on patient management and outcome. JACC Cardiovasc Imaging 2019;12:722-9.

    CAS  PubMed  Google Scholar 

  102. Juneau D, Golfam M, Hazra S, Erthal F, Zuckier LS, Bernick J, et al. Molecular Imaging for the diagnosis of infective endocarditis: A systematic literature review and meta-analysis. Int J Cardiol 2018;253:183-8.

    PubMed  Google Scholar 

  103. Salaun E, Sportouch L, Barral PA, Hubert S, Lavoute C, Casalta AC, et al. Diagnosis of infective endocarditis after TAVR: Value of a multimodality imaging approach. JACC Cardiovasc Imaging 2018;11:143-6.

    PubMed  Google Scholar 

  104. San S, Abulizi M, Moussafeur A, Oliver L, Lepeule R, Nahory L, et al. Characterization of 18-fluorodeoxyglucose uptake pattern in infective endocarditis after transcatheter aortic valve implantation. JACC Cardiovasc Imaging 2019;12:930-2.

    PubMed  Google Scholar 

Download references

Disclosure

John Mahmarian declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Mahmarian MD, FACC, MASNC, FSCCT.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmarian, J. A tale of two technologies: Can nuclear cardiology survive the emergence of cardiac CT the seventeenth annual Mario S. Verani lectureship. J. Nucl. Cardiol. 27, 865–890 (2020). https://doi.org/10.1007/s12350-020-02086-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-020-02086-4

Keywords

Navigation