Skip to main content
Log in

123I-MIBG for detection of subacute doxorubicin-induced cardiotoxicity in patients with malignant lymphoma

  • Original Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

Doxorubicin is the mainstay of curative lymphoma treatment but is associated with a dose-dependent cardiotoxicity that is often recognized too late to avoid substantial irreversible cardiac injury. Iodine-123 metaiodobenzylguanidine (123I-MIBG) is a gamma-emitting tracer that mimics noradrenaline uptake, storage, and release mechanisms in adrenergic presynaptic neurons. 123I-MIBG scintigraphy can be used for assessment of doxorubicin-induced injury to myocardial adrenergic neurons during treatment and could be the tool for early detection of doxorubicin cardiotoxicity, which is currently lacking.

Methods and Results

A total of 37 lymphoma patients scheduled for doxorubicin treatment were included in our study. 123I-MIBG imaging was performed prior to chemotherapy and after a median of 4 cycles of doxorubicin. Early and late heart-to-mediastinum ratios (H/Mearly and H/Mlate) and washout rate (WOR) were used for evaluation of cardiotoxicity. The prognostic value of 123I-MIBG results was assessed using left ventricular ejection fraction (LVEF) as measured by cardiac magnetic resonance at 1-year follow-up. We found a post-therapy increase in WOR (including nine patients with > 10% increase), which was not statistically significant (18.6 vs 23.4%, P = 0.09). The difference appeared to be driven by an increase in H/Mearly. LVEF decreased from baseline to 1-year follow-up (64 vs 58%, P = 0.03). LVEF change was not associated with changes in WOR (P = 0.5).

Conclusion

The present study does not provide evidence for 123I-MIBG imaging as a clinically applicable tool for early detection of doxorubicin-induced cardiotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Abbreviations

123I-MIBG:

Iodine-123 metaiodobenzylguanidine

CMR:

Cardiac magnetic resonance

H/M early :

Early heart-to-mediastinum ratio

H/M late :

Late heart-to-mediastinum ratio

LVEF:

Left ventricular ejection fraction

WOR:

Washout rate

References

  1. Chatterjee K, Zhang J, Honbo N, Karliner JS. Doxorubicin cardiomyopathy. Cardiology. 2010;115:155-62.

    Article  CAS  Google Scholar 

  2. de Geus-Oei L-F, Mavinkurve-Groothuis AMC, Bellersen L, Gotthardt M, Oyen WJG, Kapusta L, et al. Scintigraphic techniques for early detection of cancer treatment-induced cardiotoxicity. J Nucl Med. 2011;52:560-71.

    PubMed  Google Scholar 

  3. Lekakis J, Prassopoulos V, Athanassiadis P, Kostamis P, Moulopoulos S. Doxorubicin-induced cardiac neurotoxicity: Study with iodine 123-labeled metaiodobenzyiguanidine scintigraphy. J Nucl Cardiol. 1996;3:37-41.

    Article  CAS  Google Scholar 

  4. Flotats A, Carrió I. Cardiac neurotransmission SPECT imaging. J Nucl Cardiol. 2004;11:587-602.

    Article  Google Scholar 

  5. D’Amore C, Gargiulo P, Paolillo S, Pellegrino AM, Formisano T, Mariniello A, et al. Nuclear imaging in detection and monitoring of cardiotoxicity. World J Radiol. 2014;6:486-92.

    Article  Google Scholar 

  6. Gupta S, Amanullah A. Radionuclide imaging of cardiac sympathetic innervation in heart failure : unlocking untapped potential. Hear Fail Rev. 2015;20:215-26.

    Article  CAS  Google Scholar 

  7. Higuchi T, Schwaiger M. Imaging cardiac neuronal function and dysfunction. Curr Cardiol Rep. 2006;8:131-8.

    Article  Google Scholar 

  8. Christensen TE, Kjaer A, Hasbak P. The clinical value of cardiac sympathetic imaging in heart failure. Clin Physiol Funct Imaging. 2014;34:178-82.

    Article  CAS  Google Scholar 

  9. Wakabayashi T, Nakata T, Hashimoto A, Yuda S, Tsuchihashi K, Travin MI, et al. Assessment of underlying etiology and cardiac sympathetic innervation to identify patients at high risk of cardiac death. J Nucl Med. 2001;42:1757-67.

    CAS  PubMed  Google Scholar 

  10. Agostini D, Verberne HJ, Burchert W, Knuuti J, Povinec P, Sambuceti G, et al. I-123- mIBG myocardial imaging for assessment of risk for a major cardiac event in heart failure patients : insights from a retrospective European multicenter study. Eur J Nucl Med Mol Imaging. 2008;35:535-46.

    Article  Google Scholar 

  11. Nakata T, Nakajima K, Yamashina S, Yamada T, Momose M, Kasama S, et al. A pooled analysis of multicenter cohort studies of 123I-mIBG imaging of sympathetic innervation for assessment of long-term prognosis in heart failure. JACC Cardiovasc Imaging. 2013;6:772-84.

    Article  Google Scholar 

  12. Ogita H, Shimonagata T, Fukunami M, Kumagai K, Yamada T, Asano Y, et al. Prognostic significance of cardiac 123-I metaiodobenzylguanidine imaging for mortality and morbidity in patients with chronic heart failure : A prospective study. Heart. 2001;86:656-60.

    Article  CAS  Google Scholar 

  13. Carrio I, Estorch M, Bernã L, López-Pousa J, Tabernero J, Torres G. Indium-111-antimyosin and iodine-123-MIBG studies in early assessment of doxorubicin cardiotoxicity. J Nucl Med. 1995;36:2044-9.

    CAS  PubMed  Google Scholar 

  14. Valdés Olmos RA, Bokkel Huinink WW, Hoeve RFA, van Tinteren H, Bruning PF, et al. Assessment of anthracycline-related myocardial adrenergic derangement by [1231] metaiodobenzylguanidine scintigraphy. Eur J Cancer. 1995;31:26-31.

    Article  Google Scholar 

  15. Flotats A, Carrió I, Agostini D, Le Guludec D, Marcassa C, Schaffers M, et al. Proposal for standardization of 123 I-metaiodobenzylguanidine (MIBG) cardiac sympathetic imaging by the EANM Cardiovascular Committee and the European Council of Nuclear Cardiology. Eur J Nucl Med Mol Imaging. 2010;37:1802-12.

    Article  Google Scholar 

  16. Laursen AH, Thune JJ, Hutchings M, Hasbak P, Kjær A, Elming MB, et al. I-MIBG imaging for detection of anthracycline-induced cardiomyopathy. Clin Physiol Funct Imaging. 2018;38:176-85.

    Article  Google Scholar 

  17. Cardinale D, Colombo A, Bacchiani G, Tedeschi I, Meroni CA, Veglia F, et al. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation. 2015;131:1981-8.

    Article  CAS  Google Scholar 

  18. Dansk Cardiologisk Selskab. Kardiologisk håndtering af cancerpatienter før, under og efter behandling med kardiotoksiske antineoplastika og stråleterapi. 2016;1-9.

  19. Campo E, Swerdlow SH, Harris NL, Pileri S, Stein H, Jaffe ES. The 2008 WHO classification of lymphoid neoplasms and beyond: evolving concepts and practical applications. Blood. 2014;117:501-32.

    Article  Google Scholar 

  20. Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127:2375-90.

    Article  CAS  Google Scholar 

  21. Cheson BD, Fisher RI, Barrington SF, Cavalli F, Schwartz LH, Zucca E, et al. Recommendations for Initial Evaluation, Staging, and Response Assessment of Hodgkin and Non-Hodgkin Lymphoma: The Lugano Classification. J Clin Oncol. 2018;32:3059-68.

    Article  Google Scholar 

  22. Volkova M, Russell R. Anthracycline cardiotoxicity : prevalence, pathogenesis and treatment. Curr Cardiol Rev. 2011;7:214-20.

    Article  CAS  Google Scholar 

  23. Glass CK, Mitchell RN. Winning the battle, but losing the war: Mechanisms and morphology of cancer-therapy-associated cardiovascular toxicity. Cardiovasc Pathol. 2017;30:55-63.

    Article  CAS  Google Scholar 

  24. Estorch M, Carrió I, Berná L, López-Pousa J, Torres G. Myocardial iodine-labeled metaiodobenzylguanidine 123 uptake relates to age. J Nucl Cardiol. 1995;2:126-32.

    CAS  PubMed  Google Scholar 

  25. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. 2015.

  26. Somsen GA, Verberne HJ, Fleury E, Righetti A. Normal values and within-subject variability of cardiac I-123 MIBG scintigraphy in healthy individuals : implications for clinical studies. J Nucl Cardiol. 2004;11:126-33.

    Article  Google Scholar 

  27. Oliveira GH, Al-Kindi SG, Caimi PF, Lazarus HM. Maximizing anthracycline tolerability in hematologic malignancies: Treat to each heart’s content. Blood Rev. 2016;30:169-78.

    Article  CAS  Google Scholar 

  28. Wakasugi S, Fischman AJ, Babich JW, Aretz HT, Callahan RJ, Nakaki M, et al. Metaiodobenzylguanidine : Evaluation of its potential as a tracer for monitoring doxorubicin cardiomyopathy. J Nucl Med. 1993;34:1282-6.

    Google Scholar 

  29. Jeon TJ, Lee JD, Ha J, Yang WI, Cho SH. Evaluation of cardiac adrenergic neuronal damage in rats with doxorubicin-induced cardiomyopathy using iodine-131 MIBG autoradiography and PGP 95 immunohistochemistry. Eur J Nucl Med. 2000;27:686-93.

    Article  CAS  Google Scholar 

  30. Takano H, Ozawa H, Kobayashi I, Hamaoka S, Nakajima A, Nakamura T, et al. Atrophic nerve fibers in regions of reduced MIBG uptake in doxorubicin cardiomyopathy. J Nucl Med. 1995;36:2060-1.

    CAS  PubMed  Google Scholar 

  31. Verberne HJ, Brewster LM, Somsen GA, van Eck-Smit BLF. Prognostic value of myocardial 123 I-metaiodobenzylguanidine (MIBG) parameters in patients with heart failure: A systematic review. Eur Heart J. 2008;29:1147-59.

    Article  Google Scholar 

  32. Nakata T, Miyamoto K, Doi A, Sasao H, Wakabayashi T, Kobayashi H, et al. Cardiac death prediction and impaired cardiac sympathetic innervation assessed by MIBG in patients with failing and nonfailing hearts. J Nucl Cardiol. 1998;5:579-90.

    Article  CAS  Google Scholar 

  33. Wakasugi S, Wada A, Hasegawa Y, Nakano S, Shibata N. Detection of abnormal cardiac adrenergic neuron activity in adriamycin-induced cardiomyopathy with Iodine-125-metaiodobenzylguanidine. J Nucl Med. 1992;33:208-14.

    CAS  PubMed  Google Scholar 

  34. Sakata K, Shirotani M, Yoshida H, Kurata C. Physiological fluctuation of the human left ventricle sympathetic nervous system assessed by iodine-123-MIBG nervous system pathophysiology has pro. J Nucl Med. 1998;39:1667-71.

    CAS  PubMed  Google Scholar 

  35. Sakata K, Iida K, Mochizuki N, Ito M, Nakaya Y. Physiological changes in human cardiac sympathetic innervation and activity assessed by 123 I-metaiodobenzylguanidine (MIBG) imaging. Circ J. 2009;73:310-5.

    Article  Google Scholar 

  36. dos Santos MJ, da Rocha ET, Verberne HJ, da Silva ET, Aragon DC, Junior JS. Assessment of late anthracycline-induced cardiotoxicity by 123I-mIBG cardiac scintigraphy in patients treated during childhood and adolescence. J Nucl Cardiol. 2015;24:1-9.

    Google Scholar 

  37. Paolillo S, Rengo G, Pagano G, Pellegrino T, Savarese G, Femminella GD, et al. Impact of diabetes on cardiac sympathetic innervation in patients with heart failure. Diabetes Care. 2013;36:2395-401.

    Article  CAS  Google Scholar 

  38. Orimo S, Suzuki M, Inaba A, Mizusawa H. 123I-MIBG myocardial scintigraphy for differentiating Parkinson’ s disease from other neurodegenerative parkinsonism: A systematic review and meta-analysis. Park Relat Disord. 2012;18:494-500.

    Article  Google Scholar 

  39. Carrio I, Cowie MR, Yamazaki J, Udelson J, Camici PG. Cardiac sympathetic imaging with mIBG in heart failure. JACC Cardiovasc Imaging. 2010;3:92-100.

    Article  Google Scholar 

  40. Valdes Olmos RA, Huinink WW, Dewit LGH, Hoefnagel CA, Liem IH, van Tinteren H. Iodine-123 metaiodobenzylguanidine in the assessment of late cardiac effects from cancer therapy. Eur J Nucl Med. 1996;23:453-8.

    Article  CAS  Google Scholar 

Download references

Disclosure

The authors have no conflicts of interest to declare

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Høgsbro Laursen MD.

Additional information

The authors of this article have provided a PowerPoint file, available for download at SpringerLink, which summarises the contents of the paper and is free for re-use at meetings and presentations. Search for the article DOI on SpringerLink.com.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 19 kb)

Supplementary material 2 (PPTX 227 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laursen, A.H., Ripa, R.S., Hasbak, P. et al. 123I-MIBG for detection of subacute doxorubicin-induced cardiotoxicity in patients with malignant lymphoma. J. Nucl. Cardiol. 27, 931–939 (2020). https://doi.org/10.1007/s12350-018-01566-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-018-01566-y

Keywords

Navigation