Skip to main content
Log in

Reasons and implications of agreements and disagreements between coronary flow reserve, fractional flow reserve, and myocardial perfusion imaging

  • Review Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Information on coronary physiology and myocardial blood flow (MBF) in patients with suspected angina is increasingly important to inform treatment decisions. A number of different techniques including myocardial perfusion imaging (MPI), noninvasive estimation of MBF, and coronary flow reserve (CFR), as well as invasive methods for CFR and fractional flow reserve (FFR) are now readily available. However, despite their incorporation into contemporary guidelines, these techniques are still poorly understood and their interpretation to guide revascularization decisions is often inconsistent. In particular, these inconsistencies arise when there are discrepancies between the various techniques. The purpose of this article is therefore to review the basic principles, techniques, and clinical value of MPI, FFR, and CFR—with particular focus on interpreting their agreements and disagreements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

CAD:

Coronary artery disease

SPECT:

Single photon emission computerized tomography

MPI:

Myocardial perfusion imaging

PET:

Positron emission tomography

FFR:

Fractional flow reserve

CFR:

Coronary flow reserve

MBF:

Myocardial blood flow

PCI:

Percutaneous coronary intervention

References

  1. Montalescot G, Sechtem U, Achenbach S, Andreotti F, Arden C, Budaj A, et al. 2013 ESC guidelines on the management of stable coronary artery disease: The Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J 2013;34:2949-3003.

    Article  PubMed  Google Scholar 

  2. Fihn SD, Gardin JM, Abrams J, Berra K, Blankenship JC, Dallas AP, et al. 2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines, and the. Circulation 2012;126:e354-471.

    Article  PubMed  Google Scholar 

  3. Hachamovitch R, Hayes SW, Friedman JD, Cohen I, Berman DS. Comparison of the short-term survival benefit associated with revascularization compared with medical therapy in patients with no prior coronary artery disease undergoing stress myocardial perfusion single photon emission computed tomography. Circulation 2003;107:2900-7.

    Article  PubMed  Google Scholar 

  4. Hachamovitch R, Rozanski A, Shaw LJ, Stone GW, Thomson LEJ, Friedman JD, et al. Impact of ischaemia and scar on the therapeutic benefit derived from myocardial revascularization vs. medical therapy among patients undergoing stress-rest myocardial perfusion scintigraphy. Eur Heart J 2011;32:1012-24.

    Article  PubMed  Google Scholar 

  5. Berman DS, Kang X, Slomka PJ, Gerlach J, de Yang L, Hayes SW. Underestimation of extent of ischemia by gated SPECT myocardial perfusion imaging in patients with left main coronary artery disease. J Nucl Cardiol 2007;14:521-8.

    Article  PubMed  Google Scholar 

  6. Topol EJ, Nissen SE. Our preoccupation with coronary luminology the dissociation between clinical and angiographic findings in ischemic heart disease. Circulation 1995;92:2333-42.

    Article  CAS  PubMed  Google Scholar 

  7. Meijboom WB, Van Mieghem CAG, van Pelt N, Weustink A, Pugliese F, Mollet NR, et al. Comprehensive assessment of coronary artery stenosescomputed tomography coronary angiography versus conventional coronary angiography and correlation with fractional flow reserve in patients with stable angina. J Am Coll Cardiol 2008;52:636-43.

    Article  PubMed  Google Scholar 

  8. Toth G, Hamilos M, Pyxaras S, Mangiacapra F, Nelis O, De Vroey F, et al. Evolving concepts of angiogram: Fractional flow reserve discordances in 4000 coronary stenoses. Eur Heart J 2014;35:2831-8.

    Article  PubMed  Google Scholar 

  9. Kern MJ, Samady H. Current concepts of integrated coronary physiology in the catheterization laboratory. J Am Coll Cardiol 2010;55:173-85.

    Article  PubMed  Google Scholar 

  10. Selby JV, Fireman BH, Lundstrom RJ, Swain BE, Truman AF, Wong CC, et al. Variation among hospitals in coronary-angiography practices and outcomes after myocardial infarction in a large health maintenance organization. N Engl J Med 1996;335:1888-96.

    Article  CAS  PubMed  Google Scholar 

  11. White CW, Wright CB, Doty DB, Hiratza LF, Eastham CL, Harrison DG, et al. Does visual interpretation of the coronary arteriogram predict the physiologic importance of a coronary stenosis? N Engl J Med 1984;310:819-24.

    Article  CAS  PubMed  Google Scholar 

  12. Carrick D, Behan M, Foo F, Christie J, Hillis WS, Norrie J, et al. Usefulness of fractional flow reserve to improve diagnostic efficiency in patients with non-ST elevation myocardial infarction. Am J Cardiol 2013;111:45-50.

    Article  PubMed  Google Scholar 

  13. Camici PG, Crea F. Coronary microvascular dysfunction. N Engl J Med 2007;356:830-40.

    Article  CAS  PubMed  Google Scholar 

  14. Kaul S, Jayaweera AR. Myocardial capillaries and coronary flow reserve. J Am Coll Cardiol 2008;52:1399-401.

    Article  PubMed  Google Scholar 

  15. Herrmann J, Kaski JC, Lerman A. Coronary microvascular dysfunction in the clinical setting: From mystery to reality. Eur Heart J 2012;33:2771-82b.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Johnson BD, Shaw LJ, Buchthal SD, Merz CNB, Kim H-W, Scott KN, et al. Prognosis in women with myocardial ischemia in the absence of obstructive coronary disease results from the National Institutes of Health-National Heart, Lung, and Blood Institute-Sponsored Women’s Ischemia Syndrome Evaluation (WISE). Circulation 2004;109:2993-9.

    Article  PubMed  Google Scholar 

  17. Al Suwaidi J, Hamasaki S, Higano ST, Nishimura RA, Holmes DR, Lerman A. Long-term follow-up of patients with mild coronary artery disease and endothelial dysfunction. Circulation 2000;101:948-54.

    Article  Google Scholar 

  18. Pijls NH, Van Son JA, Kirkeeide RL, De Bruyne B, Gould KL. Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous transluminal coronary angioplasty. Circulation 1993;87:1354-67.

    Article  CAS  PubMed  Google Scholar 

  19. Pijls NHJ, de Bruyne B, Peels K, van der Voort PH, Bonnier HJRM, Bartunek J, et al. Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N Engl J Med 1996;334:1703-9.

    Article  CAS  PubMed  Google Scholar 

  20. De Bruyne B, Paulus WJ, Vantrimpont PJ, Sys SU, Heyndrickx GR, Pijls NHJ. Transstenotic coronary pressure gradient measurement in humans: In vitro and in vivo evaluation of a new pressure monitoring angioplasty guide wire. J Am Coll Cardiol 1993;22:119-26.

    Article  PubMed  Google Scholar 

  21. De Bruyne B, Baudhuin T, Melin JA, Pijls NH, Sys SU, Bol A, et al. Coronary flow reserve calculated from pressure measurements in humans. Validation with positron emission tomography. Circulation 1994;89:1013-22.

    Article  PubMed  Google Scholar 

  22. De Bruyne B, Bartunek J, Sys SU, Pijls NHJ, Heyndrickx GR, Wijns W. Simultaneous coronary pressure and flow velocity measurements in humans feasibility, reproducibility, and hemodynamic dependence of coronary flow velocity reserve, hyperemic flow versus pressure slope index, and fractional flow reserve. Circulation 1996;94:1842-9.

    Article  PubMed  Google Scholar 

  23. Elgendy IY, Conti CR, Bavry AA. Fractional flow reserve: An updated review. Clin Cardiol 2014;37:371-80.

    Article  PubMed  Google Scholar 

  24. De Bruyne B, Pijls NHJ, Heyndrickx GR, Hodeige D, Kirkeeide R, Gould KL. Pressure-derived fractional flow reserve to assess serial epicardial stenoses theoretical basis and animal validation. Circulation 2000;101:1840-7.

    Article  PubMed  Google Scholar 

  25. Pijls NHJ, van Schaardenburgh P, Manoharan G, Boersma E, Bech JW, van’t Veer M, et al. Percutaneous coronary intervention of functionally nonsignificant stenosis: 5-Year follow-up of the DEFER study. J Am Coll Cardiol 2007;49:2105-11.

    Article  PubMed  Google Scholar 

  26. Tonino P, De Bruyne B, Pijls N. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 2009;360:213-24.

    Article  CAS  PubMed  Google Scholar 

  27. De Bruyne B, Pijls NHJ, Kalesan B, Barbato E, Tonino PAL, Piroth Z, et al. Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease. N Engl J Med 2012;367:991-1001.

    Article  PubMed  Google Scholar 

  28. Wijns W, Kolh P, Danchin N, Di Mario C, Falk V, Folliguet T, et al. Guidelines on myocardial revascularization: The Task Force on myocardial revascularization of the european society of cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J 2010;31:2501-55.

    Article  PubMed  Google Scholar 

  29. Blows LJ, Redwood SR. The pressure wire in practice. Heart 2007;93:419-22.

    Article  PubMed  Google Scholar 

  30. Plein S, Motwani M. Fractional flow reserve as the reference standard for myocardial perfusion studies: fool’s gold? Eur Hear J Cardiovasc Imaging 2013;14:1211-3.

    Article  Google Scholar 

  31. Pijls NHJ, Tanaka N, Fearon WF. Functional assessment of coronary stenoses: Can we live without it? Eur Heart J 2012;34:1335-44.

    Article  PubMed  Google Scholar 

  32. Perera D, Biggart S, Postema P, Patel S, Lambiase P, Marber M, et al. Right atrial pressure: Can it be ignored when calculating fractional flow reserve and collateral flow index? J Am Coll Cardiol 2004;44:2089-91.

    Article  PubMed  Google Scholar 

  33. Dattilo PB, Prasad A, Honeycutt E, Wang TY, Messenger JC. Contemporary patterns of fractional flow reserve and intravascular ultrasound use among patients undergoing percutaneous coronary intervention in the United States: Insights from the National Cardiovascular Data Registry. J Am Coll Cardiol 2012;60:2337-9.

    Article  PubMed  Google Scholar 

  34. van de Hoef TP, van Lavieren MA, Henriques JPS, Piek JJ, Claessen BEPM. Fractional flow reserve-guided percutaneous coronary intervention: Does coronary pressure never lie? Curr Treat Options Cardiovasc Med 2014;16:294.

    Article  PubMed  Google Scholar 

  35. Berman DS, Stoebner RA, Dey D. Combined anatomy and physiology on coronary computed tomography angiography: A step or two in the right direction∗. J Am Coll Cardiol 2014;63:1913-5.

    Article  PubMed  Google Scholar 

  36. Min JK, Berman DS, Budoff MJ, Jaffer FA, Leipsic J, Leon MB, et al. Rationale and design of the DeFACTO (determination of fractional flow reserve by anatomic computed tomographic AngiOgraphy) study. J Cardiovasc Comput Tomogr 2011;5:301-9.

    Article  PubMed  Google Scholar 

  37. Koo B-K, Erglis A, Doh J-H, Daniels DV, Jegere S, Kim H-S, et al. Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms: Results from the prospective multicenter DISCOVER-FLOW (diagnosis of ischemia-causing stenoses obtained via Noni. J Am Coll Cardiol 2011;58:1989-97.

    Article  PubMed  Google Scholar 

  38. Min JK, Leipsic J, Pencina MJ, Berman DS, Koo B-K, van Mieghem C, et al. Diagnostic accuracy of fractional flow reserve from anatomic CT angiography. JAMA 2012;308:1237-45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Douglas PS, Pontone G, Hlatky MA, Patel MR, Norgaard BL, Byrne RA, et al. Clinical outcomes of fractional flow reserve by computed tomographic angiography-guided diagnostic strategies vs. usual care in patients with suspected coronary artery disease: the prospective longitudinal trial of FFRct: outcome and resource impacts stud. Eur Heart J 2015;36:3359–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dey D, Zamudio MD, Schuhbaeck A, Orozco LEJ, Otaki Y, Gransar H, et al. Relationship between quantitative adverse plaque features from coronary computed tomography angiography and downstream impaired myocardial flow reserve by 13N-ammonia positron emission tomography a pilot study. Circ Cardiovasc Imaging 2015;8:e003255.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Salerno M, Beller GA. Noninvasive assessment of myocardial perfusion. Circ Cardiovasc Imaging 2009;2:412-24.

    Article  PubMed  Google Scholar 

  42. Jaarsma C, Leiner T, Bekkers SC, Crijns HJ, Wildberger JE, Nagel E, et al. Diagnostic performance of noninvasive myocardial perfusion imaging using single-photon emission computed tomography, cardiac magnetic resonance, and positron emission tomography imaging for the detection of obstructive coronary artery disease: A meta-anal. J Am Coll Cardiol 2012;59:1719-28.

    Article  PubMed  Google Scholar 

  43. Arsanjani R, Xu Y, Hayes SW, Fish M, Lemley M, Gerlach J, et al. Comparison of fully automated computer analysis and visual scoring for detection of coronary artery disease from myocardial perfusion spect in a large population. J Nucl Med 2013;54:221-8.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Motwani M, Maredia N, Fairbairn TA, Kozerke S, Greenwood JP, Plein S. Assessment of ischaemic burden in angiographic three-vessel coronary artery disease with high-resolution myocardial perfusion cardiovascular magnetic resonance imaging. Eur Heart J Cardiovasc Imaging 2014;15:701-8.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Motwani M, Maredia N, Fairbairn TA, Kozerke S, Radjenovic A, Greenwood JP, et al. High-resolution versus standard-resolution cardiovascular MR myocardial perfusion imaging for the detection of coronary artery disease. Circ Cardiovasc Imaging 2012;5:306-13.

    Article  PubMed  Google Scholar 

  46. Dilsizian V, Bacharach SL, Beanlands RS, Bergmann SR, Delbeke D, Gropler RJ. ASNC imaging guidelines for nuclear cardiology procedures: PET myocardial perfusion and metabolism clinical imaging. J Nucl Cardiol 2009;16:651.

    Article  Google Scholar 

  47. Ziadi MC, Williams KA, Guo A, Chow BJW, Renaud JM, Ruddy TD, et al. Impaired myocardial flow reserve on rubidium-82 positron emission tomography imaging predicts adverse outcomes in patients assessed for myocardial ischemia. J Am Coll Cardiol 2011;58:740-8.

    Article  PubMed  Google Scholar 

  48. Murthy VL, Naya M, Foster CR, Hainer J, Gaber M, Di Carli G, et al. Improved cardiac risk assessment with noninvasive measures of coronary flow reserve. Circulation 2011;124:2215-24.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Herzog BA, Husmann L, Valenta I, Gaemperli O, Siegrist PT, Tay FM, et al. Long-term prognostic value of 13N-ammonia myocardial perfusion positron emission tomographyadded value of coronary flow reserve. J Am Coll Cardiol 2009;54:150-6.

    Article  PubMed  Google Scholar 

  50. Taqueti VR, Hachamovitch R, Murthy VL, Naya M, Foster CR, Hainer J, et al. Global coronary flow reserve is associated with adverse cardiovascular events independently of luminal angiographic severity and modifies the effect of early revascularization. Circulation 2015;131:19-27.

    Article  PubMed  Google Scholar 

  51. Murthy VL, Naya M, Taqueti VR, Foster CR, Gaber M, Hainer J, et al. Effects of sex on coronary microvascular dysfunction and cardiac outcomes. Circulation 2014;129:2518-27.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Declerck J, Klein R, Pan X-B, Nakazato R, Tonge C, Arumugam P, et al. Multisoftware reproducibility study of stress and rest myocardial blood flow assessed with 3D dynamic PET/CT and a 1-tissue-compartment model of 82Rb kinetics. J Nucl Med 2013;54:571-7.

    Article  PubMed  Google Scholar 

  53. Klein R, Beanlands RSB. Quantification of myocardial blood flow and flow reserve: technical aspects. J Nucl Cardiol 2010;17:555-70.

    Article  PubMed  Google Scholar 

  54. Slomka PJ, Alexanderson E, Jácome R, Jiménez M, Romero E, Meave A, et al. Comparison of clinical tools for measurements of regional stress and rest myocardial blood flow assessed with 13N-ammonia PET/CT. J Nucl Med 2012;53:171-81.

    Article  CAS  PubMed  Google Scholar 

  55. Motwani M, Kidambi A, Greenwood JP, Plein S. Advances in cardiovascular magnetic resonance in ischaemic heart disease and non-ischaemic cardiomyopathies. Heart 2014;100:1722-33.

    Article  PubMed  Google Scholar 

  56. Motwani M, Fairbairn TA, Larghat A, Mather AN, Biglands JD. Systolic versus diastolic acquisition in myocardial perfusion MR imaging. Radiology 2012;262:816-23.

    Article  PubMed  Google Scholar 

  57. Christian TF, Rettmann DW, Aletras AH, Liao SL, Taylor JL, Balaban RS, et al. Absolute myocardial perfusion in canines measured by using dual-bolus first-pass MR imaging. Radiology 2004;232:677-84.

    Article  PubMed  Google Scholar 

  58. Jerosch-Herold M. Quantification of myocardial perfusion by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2010;12:57.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Costa MA, Shoemaker S, Futamatsu H, Klassen C, Angiolillo DJ, Nguyen M, et al. Quantitative magnetic resonance perfusion imaging detects anatomic and physiologic coronary artery disease as measured by coronary angiography and fractional flow reserve. J Am Coll Cardiol 2007;50:514-22.

    Article  PubMed  Google Scholar 

  60. Patel AR, Antkowiak PF, Nandalur KR, West AM, Salerno M, Arora V, et al. Assessment of advanced coronary artery disease advantages of quantitative cardiac magnetic resonance perfusion analysis. J Am Coll Cardiol 2010;56:561-9.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Lockie T, Ishida M, Perera D, Chiribiri A, De Silva K, Kozerke S, et al. High-resolution magnetic resonance myocardial perfusion imaging at 3.0-Tesla to detect hemodynamically significant coronary stenoses as determined by fractional flow reserve. J Am Coll Cardiol 2011;57:70-5.

    Article  PubMed  Google Scholar 

  62. Motwani M, Kidambi A, Sourbron S, Fairbairn TA, Uddin A, Kozerke S, et al. Quantitative three-dimensional cardiovascular magnetic resonance myocardial perfusion imaging in systole and diastole. J Cardiovasc Magn Reson 2014;16:19.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Morton G, Ishida M, Schuster A, Hussain S, Schaeffter T, Chiribiri A, et al. Perfusion cardiovascular magnetic resonance: Comparison of an advanced, high-resolution and a standard sequence. J Cardiovasc Magn Reson 2012;14:34.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Beanlands RS, Muzik O, Melon P, Sutor R, Sawada S, Muller D, et al. Noninvasive quantification of regional myocardial flow reserve in patients with coronary atherosclerosis using nitrogen-13 ammonia positron emission tomography. Determination of extent of altered vascular reactivity. J Am Coll Cardiol 1995;26:1465-75.

    Article  CAS  PubMed  Google Scholar 

  65. Uren NG, Melin JA, De Bruyne B, Wijns W, Baudhuin T, Camici PG. Relation between myocardial blood flow and the severity of coronary-artery stenosis. N Engl J Med 1994;330:1782-8.

    Article  CAS  PubMed  Google Scholar 

  66. Di Carli M, Czernin J, Hoh CK, Gerbaudo VH, Brunken RC, Huang S-C, et al. Relation among stenosis severity, myocardial blood flow, and flow reserve in patients with coronary artery disease. Circulation 1995;91:1944-51.

    Article  PubMed  Google Scholar 

  67. Ziadi MC, Williams K, Guo A, Renaud JM, Chow BJW, Klein R, et al. Does quantification of myocardial flow reserve using rubidium-82 positron emission tomography facilitate detection of multivessel coronary artery disease? J Nucl Cardiol 2012;19:670-80.

    Article  PubMed  Google Scholar 

  68. Naya M, Murthy VL, Taqueti VR, Foster CR, Klein J, Garber M, et al. Preserved coronary flow reserve effectively excludes high-risk coronary artery disease on angiography. J Nucl Med 2014;55:248-55.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Di Carli MF, Murthy VL. Cardiac PET/CT for the evaluation of known or suspected coronary artery disease. Radiographics 2011;31:1239-54.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Morton G, Chiribiri A, Ishida M, Hussain ST, Schuster A, Indermuehle A, et al. Quantification of absolute myocardial perfusion in patients with coronary artery disease: comparison between cardiovascular magnetic resonance and positron emission tomography. J Am Coll Cardiol 2012;60:1546-55.

    Article  PubMed  Google Scholar 

  71. Huber A, Sourbron S, Klauss V, Schaefer J, Bauner KU, Schweyer M, et al. Magnetic resonance perfusion of the myocardium: Semiquantitative and quantitative evaluation in comparison with coronary angiography and fractional flow reserve. Invest Radiol 2012;47:332-8.

    Article  PubMed  Google Scholar 

  72. Motwani M, Kidambi A, Fairbairn T, Uddin A, Kozerke S, Sourbron S, et al. Quantitative three-dimensional magnetic resonance myocardial perfusion imaging in systole and diastole. J Cardiovasc Magn Reson 2014;16:19.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Nesterov SV, Deshayes E, Sciagrà R, Settimo L, Declerck JM, Pan X-B, et al. Quantification of myocardial blood flow in absolute terms using 82Rb PET imaging: the RUBY-10 study. JACC Cardiovasc Imaging 2014;7:1119-27.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Barbato E, Aarnoudse W, Aengevaeren WR, Werner G, Klauss V, Bojara W, et al. Validation of coronary flow reserve measurements by thermodilution in clinical practice. Eur Heart J 2004;25:219-23.

    Article  PubMed  Google Scholar 

  75. Gould KL, Kirkeeide RL, Buchi M. Coronary flow reserve as a physiologic measure of stenosis severity. J Am Coll Cardiol 1990;15:459-74.

    Article  CAS  PubMed  Google Scholar 

  76. Escaned J, Echavarría-Pinto M. Moving beyond coronary stenosis has the time arrived to address important physiological questions not answered by fractional flow reserve alone? Circ Cardiovasc Interv 2014;7:282-4.

    Article  PubMed  Google Scholar 

  77. Heusch G. Adenosine and maximum coronary vasodilation in humans: myth and misconceptions in the assessment of coronary reserve. Basic Res Cardiol 2010;105:1-5.

    Article  PubMed  Google Scholar 

  78. Aarnoudse W, Geven M, Barbato E, Botman K, De Bruyne B, Pijls NHJ. Effect of phentolamine on the hyperemic response to adenosine in patients with microvascular disease. Am J Cardiol 2005;96:1627-30.

    Article  CAS  PubMed  Google Scholar 

  79. Barbato E, Bartunek J, Aarnoudse W, Vanderheyden M, Staelens F, Wijns W, et al. Alpha-adrenergic receptor blockade and hyperaemic response in patients with intermediate coronary stenoses. Eur Heart J 2004;25:2034-9.

    Article  CAS  PubMed  Google Scholar 

  80. Schwitter J, Wacker CM, van Rossum AC, Lombardi M, Al-Saadi N, Ahlstrom H, et al. MR-IMPACT: Comparison of perfusion-cardiac magnetic resonance with single-photon emission computed tomography for the detection of coronary artery disease in a multicentre, multivendor, randomized trial. Eur Heart J 2008;29:480-9.

    Article  PubMed  Google Scholar 

  81. Sen S, Escaned J, Malik IS, Mikhail GW, Foale RA, Mila R, et al. Development and validation of a new adenosine-independent index of stenosis severity from coronary wave-intensity analysis results of the ADVISE (adenosine vasodilator independent stenosis evaluation) study. J Am Coll Cardiol 2012;59:1392-402.

    Article  CAS  PubMed  Google Scholar 

  82. Christou MAC, Siontis GCM, Katritsis DG, Ioannidis JPA. Meta-analysis of fractional flow reserve versus quantitative coronary angiography and noninvasive imaging for evaluation of myocardial ischemia. Am J Cardiol 2007;99:450-6.

    Article  PubMed  Google Scholar 

  83. van de Hoef TP, Meuwissen M, Escaned J, Davies JE, Siebes M, Spaan JAE, et al. Fractional flow reserve as a surrogate for inducible myocardial ischaemia. Nat Rev Cardiol 2013;10:439-52.

    Article  PubMed  Google Scholar 

  84. Spaan JAE, Piek JJ, Hoffman JIE, Siebes M. Physiological basis of clinically used coronary hemodynamic indices. Circulation 2006;113:446-55.

    Article  PubMed  Google Scholar 

  85. Schelbert HR. FFR and coronary flow reserve: friends or foes? JACC Cardiovasc Imaging 2012;5:203-6.

    Article  PubMed  Google Scholar 

  86. Leung DY, Leung M. Non-invasive/invasive imaging: Significance and assessment of coronary microvascular dysfunction. Heart 2011;97:587-95.

    Article  PubMed  Google Scholar 

  87. van de Hoef TP, Nolte F, Damman P, Delewi R, Bax M, Chamuleau SAJ, et al. Diagnostic accuracy of combined intracoronary pressure and flow velocity information during baseline conditions adenosine-free assessment of functional coronary lesion severity. Circ Cardiovasc Interv 2012;5:508-14.

    Article  PubMed  Google Scholar 

  88. Meuwissen M, Siebes M, Chamuleau SAJ, van Eck-Smit BLF, Koch KT, de Winter RJ, et al. Hyperemic stenosis resistance index for evaluation of functional coronary lesion severity. Circulation 2002;106:441-6.

    Article  PubMed  Google Scholar 

  89. DEFINE-FLOW (distal evaluation of functional performance with intravascular sensors to assess the narrowing effect—combined pressure and Doppler FLOW velocity measurements). https://clinicaltrials.gov/ct2/show/NCT02328820. Accessed 15 Nov 2015.

  90. De Bruyne B, Bartunek J, Sys SU, Heyndrickx GR. Relation between myocardial fractional flow reserve calculated from coronary pressure measurements and exercise-induced myocardial ischemia. Circulation 1995;92:39-46.

    Article  PubMed  Google Scholar 

  91. Melikian N, De Bondt P, Tonino P, De Winter O, Wyffels E, Bartunek J, et al. Fractional flow reserve and myocardial perfusion imaging in patients with angiographic multivessel coronary artery disease. JACC Cardiovasc Interv 2010;3:307-14.

    Article  PubMed  Google Scholar 

  92. Meuwissen M, Chamuleau SAJ, Siebes M, Schotborgh CE, Koch KT, de Winter RJ, et al. Role of variability in microvascular resistance on fractional flow reserve and coronary blood flow velocity reserve in intermediate coronary lesions. Circulation 2001;103:184-7.

    Article  CAS  PubMed  Google Scholar 

  93. Johnson NP, Kirkeeide RL, Gould KL. Is discordance of coronary flow reserve and fractional flow reserve due to methodology or clinically relevant coronary pathophysiology? JACC Cardiovasc Imaging 2012;5:193-202.

    Article  PubMed  Google Scholar 

Download references

Disclosure

Manish Motwani is supported by the Dowager Countess Eleanor Peel Trust (Rothwell-Jackson Travelling Fellowship [UK]) and the Dickinson Trust Scholarship (UK). Mahsaw Motlagh and Anuj Gupta have no disclosures. Cedars-Sinai Medical Center receives royalties for the quantitative assessment of function, perfusion, and flow, a portion of which is distributed to Daniel S Berman and Piotr J. Slomka.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr J. Slomka PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motwani, M., Motlagh, M., Gupta, A. et al. Reasons and implications of agreements and disagreements between coronary flow reserve, fractional flow reserve, and myocardial perfusion imaging. J. Nucl. Cardiol. 25, 104–119 (2018). https://doi.org/10.1007/s12350-015-0375-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-015-0375-1

Keywords

Navigation