Skip to main content
Log in

Left main coronary artery disease: A review of the spectrum of noninvasive diagnostic modalities

  • Review Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Medically managed significant left main (LM) stem disease has been considered a determinant of increased cardiac mortality approaching 50% at 3-year follow-up. Despite the clinical significance of LM disease, studies comparing the various diagnostic modalities, especially noninvasive, are sparse. Clinicians, particularly imagers, should be aware of the strengths and weaknesses of existing modalities to diagnose LM disease as integrating many clues (history, symptoms, electrocardiogram, and stress hemodynamics are essential to suspect this diagnosis and proceed to the next step). Here we review the existing data on the current role of electrocardiography, nuclear myocardial perfusion imaging (single photon emission computed tomography and positron emission tomography), stress echocardiography, cardiac computed tomography, and cardiac magnetic resonance imaging in diagnostic evaluation of LM disease. Wherever applicable we have extended our discussion to multivessel coronary artery disease encompassing scenarios where LMS can present as LM equivalent with or without extensive multivessel coronary artery disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Abbreviations

LM:

Left main

LMS:

Left main stenosis

LV:

Left ventricular

LAD:

Left anterior descending

EKG:

Electrocardiogram

SPECT:

Cardiac single photon emission computed tomography

CAD:

Coronary artery disease

MPI:

Myocardial perfusion imaging

RV:

Right ventricular

CT:

Computed tomography

PET:

Positron emission tomography

References

  1. Taylor HA, Deumite NJ, Chaitman BR, Davis KB, Killip T, Rogers WJ. Asymptomatic left main coronary artery disease in the Coronary Artery Surgery Study (CASS) registry. Circulation. 1989;79:1171-9.

    Article  CAS  PubMed  Google Scholar 

  2. Cohen MV, Gorlin R. Main left coronary artery disease. Clinical experience from 1964-1974. Circulation. 1975;52:275-85.

    Article  CAS  PubMed  Google Scholar 

  3. Stone P, Goldschlager N. Left main coronary artery disease: Review and appraisal. Cardiovasc Med. 1979;4:165-77.

    Google Scholar 

  4. DeMots H, Rosch J, McAnulty JH, Rahimtoola SH. Left main coronary artery disease. Cardiovasc Clin. 1977;8:201-11.

    CAS  PubMed  Google Scholar 

  5. Kalbfleisch H, Hort W. Quantitative study on the size of coronary artery supplying areas postmortem. Am Heart J. 1977;94:183-8.

    Article  CAS  PubMed  Google Scholar 

  6. Farinha JB, Kaplan MA, Harris CN, Dunne EF, Carlish RA, Kay JH, et al. Disease of the left main coronary artery. Surgical treatment and long-term follow up in 267 patients. Am J Cardiol. 1978;42:124-8.

    Article  CAS  PubMed  Google Scholar 

  7. Oviedo C, Maehara A, Mintz GS, Araki H, Choi SY, Tsujita K, et al. Intravascular ultrasound classification of plaque distribution in left main coronary artery bifurcations: Where is the plaque really located? Circ Cardiovasc Interv. 2010;3:105-12.

    Article  PubMed  Google Scholar 

  8. Ku DN, Giddens DP, Zarins CK, Glagov S. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis. 1985;5:293-302.

    Article  CAS  PubMed  Google Scholar 

  9. Chaitman BR, Davis K, Fisher LD, Bourassa MG, Mock MB, Lesperance J, et al. A life table and Cox regression analysis of patients with combined proximal left anterior descending and proximal left circumflex coronary artery disease: Non-left main equivalent lesions (CASS). Circulation. 1983;68:1163-70.

    Article  CAS  PubMed  Google Scholar 

  10. Surawicz B, Knilans TK. Chou’s electrocardiography in clinical practice: Adult and pediatric. Philadelphia: Saunders; 2008.

    Google Scholar 

  11. Gorgels AP, Engelen DJ, Wellens HJ. Lead aVR, a mostly ignored but very valuable lead in clinical electrocardiography. J Am Coll Cardiol. 2001;38:1355-6.

    Article  CAS  PubMed  Google Scholar 

  12. Gaitonde RS, Sharma N, Ali-Hasan S, Miller JM, Jayachandran JV, Kalaria VG. Prediction of significant left main coronary artery stenosis by the 12-lead electrocardiogram in patients with rest angina pectoris and the withholding of clopidogrel therapy. Am J Cardiol. 2003;92:846-8.

    Article  PubMed  Google Scholar 

  13. Yamaji H, Iwasaki K, Kusachi S, Murakami T, Hirami R, Hamamoto H, et al. Prediction of acute left main coronary artery obstruction by 12-lead electrocardiography. ST segment elevation in lead aVR with less ST segment elevation in lead V(1). J Am Coll Cardiol. 2001;38:1348-54.

    Article  CAS  PubMed  Google Scholar 

  14. Kosuge M, Kimura K, Ishikawa T, Ebina T, Hibi K, Tsukahara K, et al. Combined prognostic utility of ST segment in lead aVR and troponin T on admission in non-ST-segment elevation acute coronary syndromes. Am J Cardiol. 2006;97:334-9.

    Article  CAS  PubMed  Google Scholar 

  15. Yan AT, Yan RT, Kennelly BM, Anderson FA Jr, Budaj A, Lopez-Sendon J, et al. Relationship of ST elevation in lead aVR with angiographic findings and outcome in non-ST elevation acute coronary syndromes. Am Heart J. 2007;154:71-8.

    Article  PubMed  Google Scholar 

  16. Kuhl JT, Berg RM. Utility of lead aVR for identifying the culprit lesion in acute myocardial infarction. Ann Noninvasive Electrocardiol. 2009;14:219-25.

    Article  PubMed  Google Scholar 

  17. Barrabes JA, Figueras J, Moure C, Cortadellas J, Soler-Soler J. Prognostic value of lead aVR in patients with a first non-ST-segment elevation acute myocardial infarction. Circulation. 2003;108:814-9.

    Article  PubMed  Google Scholar 

  18. Kosuge M, Kimura K, Ishikawa T, Ebina T, Shimizu T, Hibi K, et al. Predictors of left main or three-vessel disease in patients who have acute coronary syndromes with non-ST-segment elevation. Am J Cardiol. 2005;95:1366-9.

    Article  PubMed  Google Scholar 

  19. Rostoff P, Piwowarska W, Konduracka E, Libionka A, Bobrowska-Juszczuk M, Stopyra K, et al. Value of lead aVR in the detection of significant left main coronary artery stenosis in acute coronary syndrome. Kardiol Pol. 2005;62:128-35 discussion 36-7.

    PubMed  Google Scholar 

  20. Yu FJ, Fu XH, Wei YL, Li SL, Xiao YZ, Ding C, et al. Relationship of acute left main coronary artery occlusion and ST-segment elevation in lead aVR. Chin Med J (Engl). 2004;117:459-60.

    Google Scholar 

  21. Rostoff P, Wnuk M, Piwowarska W. Clinical significance of exercise-induced ST-segment elevation in lead aVR and V1 in patients with chronic stable angina pectoris and strongly positive exercise test results. Pol Arch Med Wewn. 2005;114:1180-9.

    PubMed  Google Scholar 

  22. Katircibasi MT, Kocum HT, Tekin A, Erol T, Tekin G, Baltali M, et al. Exercise-induced ST-segment elevation in leads aVR and V1 for the prediction of left main disease. Int J Cardiol. 2008;128:240-3.

    Article  Google Scholar 

  23. Michaelides AP, Psomadaki ZD, Richter DJ, Dilaveris PE, Andrikopoulos GK, Stefanadis C, et al. Significance of exercise-induced simultaneous ST-segment changes in lead aVR and V5. Int J Cardiol. 1999;71:49-56.

    Article  CAS  PubMed  Google Scholar 

  24. Neill J, Shannon HJ, Morton A, Muir AR, Harbinson M, Adgey JA. ST segment elevation in lead aVR during exercise testing is associated with LAD stenosis. Eur J Nucl Med Mol Imaging. 2007;34:338-45.

    Article  PubMed  Google Scholar 

  25. Shaw LJ, Peterson ED, Shaw LK, Kesler KL, DeLong ER, Harrell FE Jr, Muhlbaier LH, Mark DB. Use of a prognostic treadmill score in identifying diagnostic coronary disease subgroups. Circulation. 1998;98:1622-30.

    Article  CAS  PubMed  Google Scholar 

  26. Thomson PD, Kelemen MH. Hypotension accompanying the onset of exertional angina. Circulation. 1975;52:28-32.

    Article  CAS  PubMed  Google Scholar 

  27. Weiner DA, McCabe CH, Ryan TJ. Identification of patients with left main and three-vessel coronary disease with clinical and exercise test variables. Am J Cardiol. 1980;46:21-7.

    Article  CAS  PubMed  Google Scholar 

  28. Longhurst JC, Kraus WL. Exercise-induced ST elevation in patients without myocardial infarction. Circulation. 1979;60:616.

    Article  CAS  PubMed  Google Scholar 

  29. Chahine RA, Raiznar AE, Ishimori T. The clinical significance of exercise-induced ST-segment elevation. Circulation. 1976;54:209.

    Article  CAS  PubMed  Google Scholar 

  30. Rehn T, Griffith LS, Achuff SC, Bailey IK, Bulkley BH, Burow R, et al. Exercise thallium-201 myocardial imaging in left main coronary artery disease: Sensitive but not specific. Am J Cardiol. 1981;48:217-23.

    Article  CAS  PubMed  Google Scholar 

  31. Maddahi J, Abdulla A, Garcia EV, Swan HJ, Berman DS. Noninvasive identification of left main and triple vessel coronary artery disease: Improved accuracy using quantitative analysis of regional myocardial stress distribution and washout of thallium-201. J Am Coll Cardiol. 1986;7:53-60.

    Article  CAS  PubMed  Google Scholar 

  32. Nygaard TW, Gibson RS, Ryan JM, Gascho JA, Watson DD, Beller GA. Prevalence of high-risk thallium-201 scintigraphic findings in left main coronary artery stenosis: Comparison with patients with multiple- and single-vessel coronary artery disease. Am J Cardiol. 1984;53:462-9.

    Article  CAS  PubMed  Google Scholar 

  33. Afonso L, Mahajan N. Single-photon emission computed tomography myocardial perfusion imaging in the diagnosis of left main disease. Clin Cardiol. 2009;32:E11-5.

    Article  PubMed  Google Scholar 

  34. Duvernoy CS, Ficaro EP, Karabajakian MZ, Rose PA, Corbett JR. Improved detection of left main coronary artery disease with attenuation-corrected SPECT. J Nucl Cardiol. 2000;7:639-48.

    Article  CAS  PubMed  Google Scholar 

  35. Berman DS, Kang X, Slomka PJ, Gerlach J, de Yang L, Hayes SW, et al. Underestimation of extent of ischemia by gated SPECT myocardial perfusion imaging in patients with left main coronary artery disease. J Nucl Cardiol. 2007;14:521-8.

    Article  PubMed  Google Scholar 

  36. Williams KA, Schneider CM. Increased stress right ventricular activity on dual isotope perfusion SPECT: A sign of multivessel and/or left main coronary artery disease. J Am Coll Cardiol. 1999;34:420-7.

    Article  CAS  PubMed  Google Scholar 

  37. Shiba C, Chikamori T, Hida S, Igarashi Y, Tanaka H, Hirose K, et al. Important parameters in the detection of left main trunk disease using stress myocardial perfusion imaging. J Cardiol. 2009;53:43-52.

    Article  PubMed  Google Scholar 

  38. Jain D, Thompson B, Wackers FJ, Zaret BL. Relevance of increased lung thallium uptake on stress imaging in patients with unstable angina and non-Q wave myocardial infarction: Results of the Thrombolysis in Myocardial Infarction (TIMI)-IIIB Study. J Am Coll Cardiol. 1997;30:421-9.

    Article  CAS  PubMed  Google Scholar 

  39. Jain D, Lahiri A, Raftery EB. Lung thallium uptake on rest, stress, and redistribution cardiac imaging. Am J Card Imaging. 1990;4:303-9.

    Google Scholar 

  40. Boucher CA, Zir LM, Beller GA, Okada RD, McKusick KA, Strauss HW, et al. Increased lung uptake of thallium-201 during exercise myocardial imaging: clinical, hemodynamic and angiographic implications in patients with coronary artery disease. Am J Cardiol. 1980;46:189-96.

    Article  CAS  PubMed  Google Scholar 

  41. Bingham JB, McKusick KA, Strauss HW, Boucher CA, Pohost GM. Influence of coronary artery disease on pulmonary uptake of thallium-201. Am J Cardiol. 1980;46:821-6.

    Article  CAS  PubMed  Google Scholar 

  42. Kushner FG, Okada RD, Kirshenbaum HD, Boucher CA, Strauss HW, Pohost GM. Lung thallium-201 uptake after stress testing in patients with coronary artery disease. Circulation. 1981;63:341-7.

    Article  CAS  PubMed  Google Scholar 

  43. Choy JB, Leslie WD. Clinical correlates of Tc-99m sestamibi lung uptake. J Nucl Cardiol. 2001;8:639-44.

    Article  CAS  PubMed  Google Scholar 

  44. Maisey MN, Mistry R, Sowton E. Planar imaging techniques used with technetium-99m sestamibi to evaluate chronic myocardial ischemia. Am J Cardiol. 1990;66:47e-54e.

    Article  CAS  PubMed  Google Scholar 

  45. Tailefer R, Costi P, Jary M, Benjamin C, Leveille J, Lambert R. Increased 99mTc-sestamibi (MIBI) lung uptake in diagnosis of coronary artery disease: Comparison between early (5 min) and delayed (60 min) post-stress MIBI and 201-thalium (TL) planar imaging [Abstract]. J Nucl Med. 1993;34:121P.

    Google Scholar 

  46. Hurwitz GA, Fox SP, Driedger AA, Willems C, Powe JE. Pulmonary uptake of sestamibi on early post-stress images: Angiographic relationships, incidence and kinetics. Nucl Med Commun. 1993;14:15-22.

    Article  CAS  PubMed  Google Scholar 

  47. Kumar SP, Brewington SD, O’Brien KF, Movahed A. Clinical correlation between increased lung to heart ratio of technetium-99m sestamibi and multivessel coronary artery disease. Int J Cardiol. 2005;101:219-22.

    Article  PubMed  Google Scholar 

  48. Karimi-Ashtiani S, Arsanjani R, Fish M, Kavanagh P, Germano G, Berman D, et al. Direct quantification of left ventricular motion and thickening changes using rest-stress myocardial perfusion SPECT. J Nucl Med. 2012;53:1392-400.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Emmett L, Iwanochko RM, Freeman MR, Barolet A, Lee DS, Husain M. Reversible regional wall motion abnormalities on exercise technetium-99m-gated cardiac single photon emission computed tomography predict high-grade angiographic stenoses. J Am Coll Cardiol. 2002;39:991-8.

    Article  PubMed  Google Scholar 

  50. Shirai N, Yamagishi H, Yoshiyama M, Teragaki M, Akioka K, Takeuchi K, et al. Incremental value of assessment of regional wall motion for detection of multivessel coronary artery disease in exercise (201)Tl gated myocardial perfusion imaging. J Nucl Med. 2002;43:443-50.

    PubMed  Google Scholar 

  51. Lima RS, Watson DD, Goode AR, Siadaty MS, Ragosta M, Beller GA, et al. Incremental value of combined perfusion and function over perfusion alone by gated SPECT myocardial perfusion imaging for detection of severe three-vessel coronary artery disease. J Am Coll Cardiol. 2003;42:64-70.

    Article  PubMed  Google Scholar 

  52. Diamond JA, Makaryus AN, Sandler DA, Machac J, Henzlova MJ. Normal or near normal myocardial perfusion stress imaging in patients with severe coronary artery disease. J Cardiovasc Med (Hagerstown). 2008;9:820-5.

    Article  Google Scholar 

  53. Berman DS, Kiat H, Friedman JD, Diamond G. Clinical applications of exercise nuclear cardiology studies in the era of healthcare reform. Am J Cardiol. 1995;75:3d-13d.

    Article  CAS  PubMed  Google Scholar 

  54. Brown KA. Prognostic value of cardiac imaging in patients with known or suspected coronary artery disease: Comparison of myocardial perfusion imaging, stress echocardiography, and position emission tomography. Am J Cardiol. 1995;75:35d-41d.

    Article  CAS  PubMed  Google Scholar 

  55. Segall G. Assessment of myocardial viability by positron emission tomography. Nucl Med Commun. 2002;23:323-30.

    Article  PubMed  Google Scholar 

  56. Di Carli MF, Hachamovitch R. Should PET replace SPECT for evaluating CAD? The end of the beginning. J Nucl Cardiol. 2006;13:2-7.

    Article  PubMed  Google Scholar 

  57. Zaidi H, Hasegawa BH. Attenuation correction strategies in emission tomography. In: Zaidi H, editor. Quantitative analysis in nuclear medicine imaging. New York: Springer; 2006. p. 167-204.

    Chapter  Google Scholar 

  58. Abraham A, Kass M, Ruddy TD, deKemp RA, Lee AK, Ling MC, et al. Right and left ventricular uptake with Rb-82 PET myocardial perfusion imaging: Markers of left main or 3 vessel disease. J Nucl Cardiol. 2010;17:52-60.

    Article  PubMed  Google Scholar 

  59. Dorbala S, Vangala D, Sampson U, Limaye A, Kwong R, Di Carli MF. Value of vasodilator left ventricular ejection fraction reserve in evaluating the magnitude of myocardium at risk and the extent of angiographic coronary artery disease: A 82Rb PET/CT study. J Nucl Med. 2007;48:349-58.

    PubMed  Google Scholar 

  60. Christian TF, Rettmann DW, Aletras AH, Liao SL, Taylor JL, Balaban RS, et al. Absolute myocardial perfusion in canines measured by using dual-bolus first-pass MR imaging. Radiology. 2004;232:677-84.

    Article  PubMed  Google Scholar 

  61. Berman DS, Kang X, Gransar H, Gerlach J, Friedman JD, Hayes SW, et al. Quantitative assessment of myocardial perfusion abnormality on SPECT myocardial perfusion imaging is more reproducible than expert visual analysis. J Nucl Cardiol. 2009;16:45-53.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Zaacks SM, Ali A, Parrillo JE, Barron JT. How well does radionuclide dipyridamole stress testing detect three-vessel coronary artery disease and ischemia in the region supplied by the most stenotic vessel? Clin Nucl Med. 1999;24:35-41.

    Article  CAS  PubMed  Google Scholar 

  63. Camici PG, Crea F. Coronary microvascular dysfunction. N Engl J Med. 2007;356:830-40.

    Article  CAS  PubMed  Google Scholar 

  64. Patel AR, Epstein FH, Kramer CM. Evaluation of the microcirculation: Advances in cardiac magnetic resonance perfusion imaging. J Nucl Cardiol. 2008;15:698-708.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Al-Saadi N, Nagel E, Gross M, Bornstedt A, Schnackenburg B, Klein C, et al. Noninvasive detection of myocardial ischemia from perfusion reserve based on cardiovascular magnetic resonance. Circulation. 2000;101:1379-83.

    Article  CAS  PubMed  Google Scholar 

  66. Hsu LY, Groves DW, Aletras AH, Kellman P, Arai AE. A quantitative pixel-wise measurement of myocardial blood flow by contrast-enhanced first-pass CMR perfusion imaging: Microsphere validation in dogs and feasibility study in humans. JACC Cardiovasc Imaging. 2012;5:154-66.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Muzik O, Duvernoy C, Beanlands RS, Sawada S, Dayanikli F, Wolfe ER Jr, et al. Assessment of diagnostic performance of quantitative flow measurements in normal subjects and patients with angiographically documented coronary artery disease by means of nitrogen-13 ammonia and positron emission tomography. J Am Coll Cardiol. 1998;31:534-40.

    Article  CAS  PubMed  Google Scholar 

  68. Camici PG, Rimoldi OE. The clinical value of myocardial blood flow measurement. J Nucl Med. 2009;50:1076-87.

    Article  PubMed  Google Scholar 

  69. Murthy VL, Naya M, Foster CR, Hainer J, Gaber M, Di Carli G, et al. Improved cardiac risk assessment with noninvasive measures of coronary flow reserve. Circulation. 2011;124:2215-24.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Herzog BA, Husmann L, Valenta I, Gaemperli O, Siegrist PT, Tay FM, et al. Long-term prognostic value of 13N-ammonia myocardial perfusion positron emission tomography added value of coronary flow reserve. J Am Coll Cardiol. 2009;54:150-6.

    Article  PubMed  Google Scholar 

  71. Tio RA, Dabeshlim A, Siebelink HM, de Sutter J, Hillege HL, Zeebregts CJ, et al. Comparison between the prognostic value of left ventricular function and myocardial perfusion reserve in patients with ischemic heart disease. J Nucl Med. 2009;50:214-9.

    Article  PubMed  Google Scholar 

  72. Murthy VL, Naya M, Foster CR, Gaber M, Hainer J, Klein J, et al. Association between coronary vascular dysfunction and cardiac mortality in patients with and without diabetes mellitus. Circulation. 2012;126:1858-68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Naya M, Murthy VL, Taqueti VR, Foster CR, Klein J, Garber M, et al. Preserved coronary flow reserve effectively excludes high-risk coronary artery disease on angiography. J Nucl Med. 2014;55:248-55.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Parkash R, deKemp RA, Ruddy TD, Kitsikis A, Hart R, Beauchesne L, et al. Potential utility of rubidium 82 PET quantification in patients with 3-vessel coronary artery disease. J Nucl Cardiol. 2004;11:440-9.

    Article  CAS  PubMed  Google Scholar 

  75. Andrade MJ, Picano E, Pingitore A, Petix N, Mazzoni V, Landi P, et al. Dipyridamole stress echocardiography in patients with severe left main coronary artery narrowing. Echo Persantine International Cooperative (EPIC) Study Group-Subproject “Left Main Detection”. Am J Cardiol. 1994;73:450-5.

    Article  CAS  PubMed  Google Scholar 

  76. Attenhofer CH, Pellikka PA, Oh JK, Roger VL, Sohn DW, Seward JB. Comparison of ischemic response during exercise and dobutamine echocardiography in patients with left main coronary artery disease. J Am Coll Cardiol. 1996;27:1171-7.

    Article  CAS  PubMed  Google Scholar 

  77. Karabinos IK, Papadopoulos A, Karvouni E, Korovesis S, Giazitzoglou E, Katritsis D. Reliability and safety of dobutamine stress echocardiography for detection of myocardial ischemia-viability: Experience from 802 consecutive studies. Hellenic J Cardiol. 2004;45:71-83.

    Google Scholar 

  78. Mahajan N, Polavaram L, Vankayala H, Ference B, Wang Y, Ager J, et al. Diagnostic accuracy of myocardial perfusion imaging and stress echocardiography for the diagnosis of left main and triple vessel coronary artery disease: A comparative meta-analysis. Heart. 2010;96:956-66.

    Article  CAS  PubMed  Google Scholar 

  79. Saraste M, Vesalainen RK, Ylitalo A, Saraste A, Koskenvuo JW, Toikka JO, Vaittinen MA, Hartiala JJ, Airaksinen KE. Transthoracic Doppler echocardiography as a noninvasive tool to assess coronary artery stenoses-a comparison with quantitative coronary angiography. J Am Soc Echocardiogr. 2005;18:679-85.

    Article  PubMed  Google Scholar 

  80. Anjaneyulu A, Raghu K, Chandramukhi S, Satyajit GM, Arramraja S, Raghavaraju P, Krishnamraju P, Somaraju B. Evaluation of left main coronary artery stenosis by transthoracic echocardiography. J Am Soc Echocardiogr. 2008;21:855-60.

    Article  PubMed  Google Scholar 

  81. Caiati C, Zedda N, Cadeddu M, Chen L, Montaldo C, Iliceto S, Lepera ME, Favale S. Detection, location, and severity assessment of left anterior descending coronary artery stenoses by means of contrast-enhanced transthoracic harmonic echo Doppler. Eur Heart J. 2009;30:1797-806.

    Article  PubMed  Google Scholar 

  82. Ruzsa Z, Palinkas A, Forster T, Ungi I, Varga A. Angiographically borderline left main coronary artery lesions: Correlation of transthoracic doppler echocardiography and intravascular ultrasound: A pilot study. Cardiovasc Ultrasound. 2011;9:19.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Small GR, Kazmi M, Dekemp RA, Chow BJ. Established and emerging dose reduction methods in cardiac computed tomography. J Nucl Cardiol. 2011;18:570-9.

    Article  PubMed  Google Scholar 

  84. Mowatt G, Cummins E, Waugh N, Walker S, Cook J, Jia X, et al. Systematic review of the clinical effectiveness and cost-effectiveness of 64-slice or higher computed tomography angiography as an alternative to invasive coronary angiography in the investigation of coronary artery disease. Health Technol Assess. 2008;12:iii-iv ix-143.

    Article  CAS  Google Scholar 

  85. Stein PD, Yaekoub AY, Matta F, Sostman HD. 64-slice CT for diagnosis of coronary artery disease: A systematic review. Am J Med. 2008;121:715-25.

    Article  PubMed  Google Scholar 

  86. Cademartiri F, La Grutta L, Malago R, Alberghina F, Palumbo A, Belgrano M, et al. Assessment of left main coronary artery atherosclerotic burden using 64-slice CT coronary angiography: Correlation between dimensions and presence of plaques. Radiol Med. 2009;114:358-69.

    Article  CAS  PubMed  Google Scholar 

  87. Hoffmann U, Moselewski F, Cury RC, Ferencik M, Jang IK, Diaz LJ, Abbara S, Brady TJ, Achenbach S. Predictive value of 16-slice multidetector spiral computed tomography to detect significant obstructive coronary artery disease in patients at high risk for coronary artery disease: Patient-versus segment-based analysis. Circulation. 2004;110:2638-40.

    Article  PubMed  Google Scholar 

  88. Hamdan A, Asbach P, Wellnhofer E, Klein C, Gebker R, Kelle S, et al. A prospective study for comparison of MR and CT imaging for detection of coronary artery stenosis. JACC Cardiovasc Imaging. 2011;4:50-61.

    Article  PubMed  Google Scholar 

  89. Nagel E, Lehmkuhl HB, Bocksch W, Klein C, Vogel U, Frantz E, et al. Noninvasive diagnosis of ischemia-induced wall motion abnormalities with the use of high-dose dobutamine stress MRI: Comparison with dobutamine stress echocardiography. Circulation. 1999;99:763-70.

    Article  CAS  PubMed  Google Scholar 

  90. Pennell DJ, Underwood SR, Manzara CC, Swanton RH, Walker JM, Ell PJ, et al. Magnetic resonance imaging during dobutamine stress in coronary artery disease. Am J Cardiol. 1992;70:34-40.

    Article  CAS  PubMed  Google Scholar 

  91. Baer FM, Voth E, Theissen P, Schicha H, Sechtem U. Gradient-echo magnetic resonance imaging during incremental dobutamine infusion for the localization of coronary artery stenoses. Eur Heart J. 1994;15:218-25.

    CAS  PubMed  Google Scholar 

  92. van Rugge FP, van der Wall EE, Spanjersberg SJ, de Roos A, Matheijssen NA, Zwinderman AH, et al. Magnetic resonance imaging during dobutamine stress for detection and localization of coronary artery disease. Quantitative wall motion analysis using a modification of the centerline method. Circulation. 1994;90:127-38.

    Article  PubMed  Google Scholar 

  93. McCarthy RM, Deshpande VS, Beohar N, Meyers SN, Shea SM, Green JD, et al. Three dimensional breathhold magnetization-prepared TrueFISP: A pilot study for magnetic resonance imaging of the coronary artery disease. Invest Radiol. 2007;42:665-70.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Yang CW, Carr JC, Francois CJ, Shea SM, Deshpande VS, Meyers SN, et al. Coronary magnetic resonance angiography using magnetization-prepared contrast-enhanced breath-hold volume-targeted imaging (MPCE-VCATS). Invest Radiol. 2006;41:639-44.

    Article  PubMed  Google Scholar 

  95. So NM, Lam WW, Li D, Chan AK, Sanderson JE, Metreweli C. Magnetic resonance angiography of coronary arteries with a 3-dimensional magnetization-prepared true fast imaging with steady-state precession sequence compared with conventional coronary angiography. Am Heart J. 2005;150:530-5.

    Article  PubMed  Google Scholar 

  96. Kim WY, Danias PG, Stuber M, Flamm SD, Plein S, Nagel E, et al. Coronary magnetic resonance angiography for the detection of coronary stenoses. N Engl J Med. 2001;345:1863-9.

    Article  CAS  PubMed  Google Scholar 

  97. Sardanelli F, Molinari G, Zandrino F, Balbi M. Three-dimensional, navigator-echo MR coronary angiography in detecting stenoses of the major epicardial vessels, with conventional coronary angiography as the standard of reference. Radiology. 2000;214:808-14.

    Article  CAS  PubMed  Google Scholar 

  98. Bunce N, Rahman S, Jhooti P, Lorenz C, Pennell D. The assessment of coronary artery disease by combined magnetic resonance coronary angiography and perfusion [Abstract]. J Cardiovasc Magn Reson. 2001;3:118.

    Google Scholar 

  99. Moustapha AI, Pereyra M, Muthupillai R, Wilson JM, Flamm SD. Coronary magnetic resonance angiography using a free breathing, T2 weighted, three-dimensional gradient echo sequence with navigator respiratory and ECG gating can be used to detect coronary artery disease [Abstract]. J Am Coll Cardiol. 2001;37:380A.

    Article  Google Scholar 

  100. Sommer T, Hofer U, Hackenbroch M, Meyer C, Flacke S, Schmiedel A, et al. Submillimeter 3D coronary MR angiography with real-time navigator correction in 107 patients with suspected coronary artery disease. Rofo. 2002;174:459-66.

    Article  CAS  PubMed  Google Scholar 

  101. Bogaert J, Kuzo R, Dymarkowski S, Beckers R, Piessens J, Rademakers FE. Coronary artery imaging with real-time navigator three-dimensional turbo-field-echo MR coronary angiography: Initial experience. Radiology. 2003;226:707-16.

    Article  PubMed  Google Scholar 

  102. Plein S, Ridgway JP, Jones TR, Bloomer TN, Sivananthan MU. Coronary artery disease: Assessment with a comprehensive MR imaging protocol-initial results. Radiology. 2002;225:300-7.

    Article  PubMed  Google Scholar 

  103. Hundley WG, Hamilton CA, Clarke GD, Hillis LD, Herrington DM, Lange RA, et al. Visualization and functional assessment of proximal and middle left anterior descending coronary stenosis in humans with magnetic resonance imaging. Circulation. 1999;99:3248-54.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Karthik Ananthasubramaniam acknowledges the research Grant support as part of trials involving Astellas Pharma US Inc, GE Healthcare, Alnylam pharmaceuticals, and Speakers Bureau Lantheus Medical Imaging.

Conflicts of interest

Nishtha Sareen declares no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karthik Ananthasubramaniam MD FACC FASE FASNC FRCP(Glas).

Additional information

See related editorial, doi:10.1007/s12350-015-0306-1.

Funding: None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sareen, N., Ananthasubramaniam, K. Left main coronary artery disease: A review of the spectrum of noninvasive diagnostic modalities. J. Nucl. Cardiol. 23, 1411–1429 (2016). https://doi.org/10.1007/s12350-015-0152-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-015-0152-1

Keywords

Navigation