Skip to main content

Advertisement

Log in

Complete somatostatin-induced insulin suppression combined with heparin loading does not significantly suppress myocardial 18F-FDG uptake in patients with suspected cardiac sarcoidosis

  • Original Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

Cardiac 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography preceded by extended fasting is used to demonstrate active cardiac sarcoidosis. However, physiological insulin-dependent myocardial 18F-FDG uptake often obscures 18F-FDG uptake in sarcoid lesions. We therefore aimed to completely suppress physiological myocardial 18F-FDG uptake by pharmaceutically blocking endogenous insulin secretion while elevating free fatty acids (FFAs).

Methods and results

Six patients with suspected cardiac sarcoidosis were studied in a randomized cross-over design: (1) 12 hours fasting followed by 2 hours saline infusion (SALINE), and (2) 12 hours fasting followed by 2 hour infusions of somatostatin (300 μg/hour) and heparin (70 mIE/kg/minutes) (SOMA). 18F-FDG PET scans were performed post-infusion. Glucose, insulin, and FFA levels were measured and left ventricle SUV-values were recorded. During the SALINE infusion, insulin, glucose, and FFAs remained stable. By design, the SOMA infusions rapidly (<60 minutes) suppressed insulin completely, while FFA levels peaked at 1.13 ± 0.23 mM. However, SOMA infusions only suppressed cardiac 18F-FDG uptake insignificantly globally [SUVmean (g/mL): 4.0 ± 3.3 (SALINE) vs 2.4 ± 1.2 (SOMA), P = .15] and regionally.

Conclusions

Complete insulin suppression combined with markedly increased circulating FFAs does not completely suppress physiological myocardial 18F-FDG uptake and thus conveys no extra diagnostic value compared with extended fasting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Newman LS, Rose CS, Maier LA. Sarcoidosis. N Engl J Med 1997;336:1224-34.

    Article  PubMed  CAS  Google Scholar 

  2. Patel MR, Cawley PJ, Heitner JF, Klem I, Parker MA, et al. Detection of myocardial damage in patients with sarcoidosis. Circulation 2009;120:1969-77.

    Article  PubMed  Google Scholar 

  3. Silverman KJ, Hutchins GM, Bulkley BH. Cardiac sarcoid: a clinicopathologic study of 84 unselected patients with systemic sarcoidosis. Circulation 1978;58:1204-11.

    Article  PubMed  CAS  Google Scholar 

  4. Sharma OP, Maheshwari A, Thaker K. Myocardial sarcoidosis. Chest 1993;103:253-8.

    Article  PubMed  CAS  Google Scholar 

  5. Chiu CZ, Nakatani S, Zhang G, Tachibana T, Ohmori F, et al. Prevention of left ventricular remodeling by long-term corticosteroid therapy in patients with cardiac sarcoidosis. Am J Cardiol 2005;95:143-6.

    Article  PubMed  CAS  Google Scholar 

  6. Ishikawa T, Kondoh H, Nakagawa S, Koiwaya Y, Tanaka K. Steroid therapy in cardiac sarcoidosis. Increased left ventricular contractility concomitant with electrocardiographic improvement after prednisolone. Chest 1984;85:445-7.

    Article  PubMed  CAS  Google Scholar 

  7. Ratner SJ, Fenoglio JJ Jr, Ursell PC. Utility of endomyocardial biopsy in the diagnosis of cardiac sarcoidosis. Chest 1986;90:528-33.

    Article  PubMed  CAS  Google Scholar 

  8. Smedema JP, Snoep G, van Kroonenburgh MP, van Geuns RJ, Dassen WR, et al. Evaluation of the accuracy of gadolinium-enhanced cardiovascular magnetic resonance in the diagnosis of cardiac sarcoidosis. J Am Coll Cardiol 2005;45:1683-90.

    Article  PubMed  Google Scholar 

  9. Yamagishi H, Shirai N, Takagi M, Yoshiyama M, Akioka K, et al. Identification of cardiac sarcoidosis with (13)N-NH(3)/(18)F-FDG PET. J Nucl Med 2003;44:1030-6.

    PubMed  Google Scholar 

  10. van der Vusse GJ, Glatz JF, Stam HC, Reneman RS. Fatty acid homeostasis in the normoxic and ischemic heart. Physiol Rev 1992;72:881-940.

    PubMed  Google Scholar 

  11. Inglese E, Leva L, Matheoud R, Sacchetti G, Secco C, et al. Spatial and temporal heterogeneity of regional myocardial uptake in patients without heart disease under fasting conditions on repeated whole-body 18F-FDG PET/CT. J Nucl Med 2007;48:1662-9.

    Article  PubMed  Google Scholar 

  12. Langah R, Spicer K, Gebregziabher M, Gordon L. Effectiveness of prolonged fasting 18f-FDG PET-CT in the detection of cardiac sarcoidosis. J Nucl Cardiol 2009;16:801-10.

    Article  PubMed  Google Scholar 

  13. Williams G, Kolodny GM. Suppression of myocardial 18F-FDG uptake by preparing patients with a high-fat, low-carbohydrate diet. AJR Am J Roentgenol 2008;190:W151-6.

    Article  PubMed  Google Scholar 

  14. Harisankar CN, Mittal BR, Agrawal KL, Abrar ML, Bhattacharya A. Utility of high fat and low carbohydrate diet in suppressing myocardial FDG uptake. J Nucl Cardiol 2011;18:926-36.

    Article  PubMed  Google Scholar 

  15. Ishimaru S, Tsujino I, Takei T, Tsukamoto E, Sakaue S, et al. Focal uptake on 18F-fluoro-2-deoxyglucose positron emission tomography images indicates cardiac involvement of sarcoidosis. Eur Heart J 2005;26:1538-43.

    Article  PubMed  Google Scholar 

  16. Israel O, Weiler-Sagie M, Rispler S, Bar-Shalom R, Frenkel A, et al. PET/CT quantitation of the effect of patient-related factors on cardiac 18F-FDG uptake. J Nucl Med 2007;48:234-9.

    PubMed  CAS  Google Scholar 

  17. Nesterov SV, Han C, Maki M, Kajander S, Naum AG, et al. Myocardial perfusion quantitation with 15O-labelled water PET: high reproducibility of the new cardiac analysis software (Carimas). Eur J Nucl Med Mol Imaging 2009;36:1594-602.

    Article  PubMed  Google Scholar 

  18. Youssef G, Leung E, Mylonas I, Nery P, Williams K, et al. The use of 18F-FDG PET in the diagnosis of cardiac sarcoidosis: a systematic review and metaanalysis including the Ontario experience. J Nucl Med 2012;53:241-8.

    Article  PubMed  CAS  Google Scholar 

  19. Tahara N, Tahara A, Nitta Y, Kodama N, Mizoguchi M, et al. Heterogeneous myocardial FDG uptake and the disease activity in cardiac sarcoidosis. JACC Cardiovasc Imaging 2010;3:1219-28.

    Article  PubMed  Google Scholar 

  20. Cheng VY, Slomka PJ, Ahlen M, Thomson LE, Waxman AD, et al. Impact of carbohydrate restriction with and without fatty acid loading on myocardial 18F-FDG uptake during PET: a randomized controlled trial. J Nucl Cardiol 2010;17:286-91.

    Article  PubMed  Google Scholar 

  21. Heusch P, Buchbender C, Beiderwellen K, Nensa F, Hartung-Knemeyer V, et al. Standardized uptake values for [(1)(8)F] FDG in normal organ tissues: comparison of whole-body PET/CT and PET/MRI. Eur J Radiol 2013;82:870-6.

    Article  PubMed  Google Scholar 

  22. Soejima K, Yada H. The work-up and management of patients with apparent or subclinical cardiac sarcoidosis: with emphasis on the associated heart rhythm abnormalities. J Cardiovasc Electrophysiol 2009;20:578-83.

    Article  PubMed  Google Scholar 

  23. Nishiyama Y, Yamamoto Y, Fukunaga K, Takinami H, Iwado Y, et al. Comparative evaluation of 18F-FDG PET and 67 Ga scintigraphy in patients with sarcoidosis. J Nucl Med 2006;47:1571-6.

    PubMed  Google Scholar 

  24. Ito K, Morooka M, Okazaki O, Minaminoto R, Kubota K, et al. Efficacy of heparin loading during an 18F-FDG PET/CT examination to search for cardiac sarcoidosis activity. Clin Nucl Med 2013;38:128-30.

    Article  PubMed  Google Scholar 

  25. Soussan M, Brillet PY, Nunes H, Pop G, Ouvrier MJ, et al. Clinical value of a high-fat and low-carbohydrate diet before FDG-PET/CT for evaluation of patients with suspected cardiac sarcoidosis. J Nucl Cardiol 2013;20:120-7.

    Article  PubMed  Google Scholar 

  26. Neglia D, De Caterina A, Marraccini P, Natali A, Ciardetti M, et al. Impaired myocardial metabolic reserve and substrate selection flexibility during stress in patients with idiopathic dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 2007;293:H3270-8.

    Article  PubMed  CAS  Google Scholar 

  27. Heather LC, Howell NJ, Emmanuel Y, Cole MA, Frenneaux MP, et al. Changes in cardiac substrate transporters and metabolic proteins mirror the metabolic shift in patients with aortic stenosis. PLoS One 2011;6:e26326.

    Article  PubMed  CAS  Google Scholar 

  28. Ohira H, Tsujino I, Yoshinaga K. (1)(8)F-Fluoro-2-deoxyglucose positron emission tomography in cardiac sarcoidosis. Eur J Nucl Med Mol Imaging 2011;38:1773-83.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

L.C.G., N.L.C., E.B., L.P.T., and S.S.N. have nothing to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars C. Gormsen MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gormsen, L.C., Christensen, N.L., Bendstrup, E. et al. Complete somatostatin-induced insulin suppression combined with heparin loading does not significantly suppress myocardial 18F-FDG uptake in patients with suspected cardiac sarcoidosis. J. Nucl. Cardiol. 20, 1108–1115 (2013). https://doi.org/10.1007/s12350-013-9798-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-013-9798-8

Keywords

Navigation