Advertisement

Virgin olive oil: a key healthy component of the Mediterranean diet

  • José Mataix
  • Maurizio Battino
  • M. Carmen Ramirez-Tortosa
  • Enrico Bertoli
  • José L. Quiles
Review

Abstract

Oxidative stress is in the basis of some diseases such as atherosclerosis, and is considered to be very important from the point of view of ageing. Biological membranes are very sensitive to oxidative stress because the presence of carbon-carbon double bonds in the lipid tails of their phospholipids. The type of dietary fat influences several biochemical parameters at the membrane level because membranes adapt their lipid composition to some extent in response to dietary fat. It is well know that dietary fat may modulate membrane susceptibility to oxidation, thus probably affecting in a direct or indirect way the susceptibility to oxidative stress-related phenomena. In this review we summarize more than 15 years of research on the role of dietary fat, namely virgin olive oil, from the point of view of mitochondrial oxidative stress, ageing and atherosclerosis prevention.

Keywords

Virgin olive oil Ageing Oxidative stress 

References

  1. 1.
    Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine, 3rd edn. Oxford University Press, OxfordGoogle Scholar
  2. 2.
    Cadenas E, Davies KJA (2000) Mitochondrial free radical generation, oxidative stress and aging. Free Radic Biol Med 29:222–230CrossRefGoogle Scholar
  3. 3.
    Cross AR, Jones OT (1991) Enzymic mechanisms of superoxide production. Biochim Biophys Acta 1057:281–298CrossRefGoogle Scholar
  4. 4.
    Montine TJ, Neely MD, Quinn JF et al (2002) Lipid peroxidation in aging brain and Alzheimer’s disease. Free Radic Biol Med 33:620–626CrossRefGoogle Scholar
  5. 5.
    Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malondialdehyde and related aldehydes. Free Radic Biol Med 11:81–128CrossRefGoogle Scholar
  6. 6.
    Bohr VA, Anson RM (1999) Mitochondrial DNA repair pathways. J Bioenerg Biomembr 31:391–398CrossRefGoogle Scholar
  7. 7.
    Mataix J, Quiles JL, Huertas JR et al (1998) Tissue specific interactions of exercise, dietary fatty acids, and vitamin E in lipid peroxidation. Free Radic Biol Med 24:511–521CrossRefGoogle Scholar
  8. 8.
    Quiles JL, Huertas JR, Mañas M et al (1999) Physical exercise affects the lipid profile of mitochondrial membranes in rats fed with virgin olive oil or sunflower oil. Br J Nutr 81:21–24Google Scholar
  9. 9.
    Huertas JR, Battino M, Lenaz G et al (1991) Changes in mitochondrial and microsomal rat liver coenzyme Q9 and Q10 content induced by dietary fat and endogenous lipid peroxidation. FEBS Lett 287:89–92CrossRefGoogle Scholar
  10. 10.
    Quiles JL, Ramírez-Tortosa MC, Ibáñez S et al (1999) Vitamin E supplementation increases the stability and the in vivo antioxidant capacity of refined olive oil. Free Radic Res 31:S129–S135CrossRefGoogle Scholar
  11. 11.
    Ochoa-Herrera JJ, Huertas JR, Quiles JL et al (2001) Dietary oils high in oleic acid, but with different non-glyceride contents, have different effects on lipid profiles and peroxidation in rabbit hepatic mitochondria. J Nutr Biochem 12:357–364CrossRefGoogle Scholar
  12. 12.
    Battino M, Ferreiro MS, Littarru G et al (2002) Structural damage induced by peroxidation could account for functional impairment of heavy synaptic mitochondria. Free Radic Res 36:479–484CrossRefGoogle Scholar
  13. 13.
    Huertas JR, Battino M, Mataix FJ et al (1991) Cytochrome oxidase induction after oxidative stress induced by adriamycin in liver of rats fed with dietary olive oil. Biochem Biophys Res Commun 181:375–382CrossRefGoogle Scholar
  14. 14.
    Quiles JL, Huertas JR, Mañas M et al (2001) Dietary fat type and regular exercise affect mitochondrial composition and function depending on specific tissue in rat. J Bioenerg Biomembr 33:127–143CrossRefGoogle Scholar
  15. 15.
    Quiles JL, Huertas JR, Mañas M et al (1999) Oxidative stress induced by exercise and dietary fat modulates the coenzyme Q and vitamin A balance between plasma and mitochondria. Int J Vitam Nutr Res 69:243–249CrossRefGoogle Scholar
  16. 16.
    Quiles JL, Martínez E, Ibáñez S et al (2002) Ageing-related tissue-specific alterations in mitochondrial composition and function are modulated by dietary fat type in the rat. J Bioenerg Biomembr 34:517–524CrossRefGoogle Scholar
  17. 17.
    Ramírez-Tortosa MC, López-Pedrosa JM, Suarez A et al (1999) Olive oil and fish oil enriched diets modify plasma lipids and susceptibility of low density lipoprotein to oxidative modification in free-living male patients with peripheral vascular disease: the Spanish Nutrition Study. Br J Nutr 82:31–39Google Scholar
  18. 18.
    Battino M, Quiles JL, Huertas JR et al (2002) Feeding fried oil changes antioxidant and fatty acid pattern of rat and affects rat liver mitochondrial respiratory chain components. J Bioenerg Biomembr 34:127–134CrossRefGoogle Scholar
  19. 19.
    Ochoa JJ, Quiles JL, Ramirez-Tortosa MC et al (2002) Dietary oils high in oleic acid but with different unsaponifiable fraction contents have different effects in fatty acid composition and peroxidation in rabbit LDL. Nutrition 18:60–65CrossRefGoogle Scholar
  20. 20.
    Quiles JL, Huertas JR, Battino M et al (2002) Antioxidant nutrients and adriamycin toxicity. Toxicology 180:79–95CrossRefGoogle Scholar
  21. 21.
    Feinstein E, Canaani E, Weiner LM (1993) Dependence of nucleic acid degradation on in situ free-radical production by adriamycin. Biochemistry 32:13156–13161CrossRefGoogle Scholar
  22. 22.
    Huertas JR, Battino M, Barzanti V et al (1992) Mitochondrial and microsomal cholesterol mobilization after oxidative stress induced by adriamycin in rats fed with dietary olive and corn oil. Life Sci 50:2111–2188CrossRefGoogle Scholar
  23. 23.
    Mataix J, Mañas M, Quiles JL et al (1997) Coenzyme Q content depends upon oxidative stress and dietary fat unsaturation.Mol Aspects Med 18:S129–S135CrossRefGoogle Scholar
  24. 24.
    Goormaghtigh E, Ruysschaert JM (1984) Anthracycline glycosidemembrane interactions. Biochim Biophys Acta 779:271–288Google Scholar
  25. 25.
    Mataix J (2001) Aceite de oliva virgen: nuestro patrimonio alimentario. Universidad de Granada y PULEVA Food, GranadaGoogle Scholar
  26. 26.
    Quiles JL, Ramírez-Tortosa MC, Huertas JR et al (1999) Olive oil supplemented with vitamin E affects mitochondrial coenzyme Q levels in liver of rats after an oxidative stress induced by adriamycin. Biofactors 9:331–336Google Scholar
  27. 27.
    Quiles JL, Huertas JR, Battino M et al (2002) The intake of fried virgin olive oil or sunflower oils differentially induces oxidative stress in rat liver microsomes. Br J Nutr. 88:57–65CrossRefGoogle Scholar
  28. 28.
    Higashi Y, Yoshizyumi M (2004) Exercise and endothelial function: role of endothelium-derived nitric oxide and oxidative stress in healthy subjects and hypertensive patients. Pharmacol Ther 102:87–96CrossRefGoogle Scholar
  29. 29.
    Quiles JL, Huertas JR, Mañas M et al (1994) Peroxidative extent and coenzyme Q levels in the rat: influence of physical training and dietary fats. Mol Aspects Med 15:S89–S95CrossRefGoogle Scholar
  30. 30.
    Quiles JL, Huertas JR, Mañas M et al (1998) Plasma antioxidants are strongly affected by iron-induced lipid peroxidation in rats subjected to physical exercise and different dietary fats. Biofactors 8:119–127Google Scholar
  31. 31.
    Barja G (2002) Rate of generation of oxidative stress-related damage and animal longevity. Free Radic Biol Med 33:1167–1172CrossRefGoogle Scholar
  32. 32.
    Salvioli S, Bonafè M, Capri M et al (2001) Mitochondria, aging and longevity-a new perspective. FEBS Lett 492:9–13CrossRefGoogle Scholar
  33. 33.
    Van Remmen H, Richardson A (2001) Oxidative damage to mitochondria and aging. Exp Gerontol 36:957–968CrossRefGoogle Scholar
  34. 34.
    Chevanne M, Caldini R, Tombaccini D et al (2003) Comparative levels of DNA breaks and sensitivity to oxidative stress in aged and senescent human fibroblasts: a distinctive pattern for centenarians. Biogerontology 4:97–104CrossRefGoogle Scholar
  35. 35.
    Kang CM, Kristal BS, Yu BP (1998) Age-related mitochondrial DNA deletions: effect of dietary restriction. Free Radic Biol Med 24:148–154CrossRefGoogle Scholar
  36. 36.
    Mancini M, Parillo M, Rivellese A (1995) Nutrition and cardiovascular risk: the Mediterranean experience. Acta Cardiol 44:466–467Google Scholar
  37. 37.
    Kris-Etherton PM, Pearson TA, Wan Y et al (1999) High-monounsaturated fatty acid diets lower both plasma cholesterol and triacylglycerol concentrations. Am J Clin Nutr 70:1009–1015Google Scholar
  38. 38.
    Caruso D, Visioli F, Patelli R et al (2001) Urinary excretion of olive oil phenols and their metabolites in humans. Metabolism 50:1426–1428CrossRefGoogle Scholar
  39. 39.
    Visioli F, Caruso D, Plasmati E et al (2001) Hydroxytyrosol, as a component of olive mill waste water, is dose-dependently absorbed and increases the antioxidant capacity of rat plasma. Free Radic Res 34:301–305CrossRefGoogle Scholar
  40. 40.
    Miro-Casas E, Covas MI, Fito M et al (2003) Tyrosol and hydroxytyrosol are absorbed from moderate and sustained doses of virgin olive oil in humans. Eur J Clin Nutr 57:186–190CrossRefGoogle Scholar
  41. 41.
    Ramirez-Tortosa MC, Suarez A, Gomez MC et al (1999) Effect of extra-virgin olive oil and fish-oil supplementation on plasma lipids and susceptibility of low-density lipoprotein to oxidative alteration in free-living Spanish male patients with peripheral vascular disease. Clin Nutr 18:167–174CrossRefGoogle Scholar
  42. 42.
    Ramirez-Tortosa MC, Aguilera CM, Quiles JL et al (1998) Influence of dietary lipids on lipoprotein composition and LDL Cu(2+)-induced oxidation in rabbits with experimental atherosclerosis. Biofactors 8:79–85Google Scholar
  43. 43.
    Baroni SS, Amelio M, Sangiorfi Z et al (1999) Solid monounsaturated diet lowers LDL unsaturation trait and oxidisability in hypercholesterolemic (type II) patients. Free Radic Res 30:275–285CrossRefGoogle Scholar
  44. 44.
    Ramirez-Tortosa MC, Urbano G, Lopez-Jurado M et al (1999) Extra-virgin olive oil increases the resistance of LDL to oxidation more than refined olive oil in free-living men with peripheral vascular disease. J Nutr 129:2177–2183Google Scholar
  45. 45.
    Nicolaiew N, Lemort N, Adorni L et al (1998) Comparison between extra virgin olive oil and oleic acid rich sunflower oil: effects on postprandial lipemia and LDL susceptibility to oxidation. Ann Nutr Metab 42:251–260CrossRefGoogle Scholar
  46. 46.
    Fito M, Gimeno E, Covas MI et al (2002) Postprandial and shortterm effects of dietary virgin olive oil on oxidant/antioxidant status. Lipids 37:245–251CrossRefGoogle Scholar
  47. 47.
    Coni E, Di Benedetto R, Di Pasquale M et al (2000) Protective effect of oleuropein, an olive oil biophenol, on low density lipoprotein oxidizability in rabbits. Lipids 35:45–54CrossRefGoogle Scholar
  48. 48.
    Visioli F, Bellomo G, Montedoro G et al (1995) Low density lipoprotein oxidation is inhibited in vitro by olive oil constituents. Atherosclerosis 117:25–32CrossRefGoogle Scholar
  49. 49.
    Covas MI, Fito M, Lamuela-Raventos RM et al (2000) Virgin olive oil phenolic compounds: binding to human low density lipoprotein (LDL) and effect on LDL oxidation. Int J Clin Pharmacol Res 20:49–54Google Scholar
  50. 50.
    Oubina P, Sanchez-Muniz FJ, Rodenas S, Cuesta C (2001) Eicosanoid production, thrombogenic ratio, and serum and LDL peroxides in normo-and hypercholesterolaemic post-menopausal women consuming two oleic acid-rich diets with different content of minor components. Br J Nutr 85:41–47CrossRefGoogle Scholar
  51. 51.
    Visioli F, Caruso D, Galli C, Viappiani S et al (2000) Olive oils rich in natural catecholic phenols decrease isoprostane excretion in humans. Biochem Biophys Res Commun 278:797–799CrossRefGoogle Scholar
  52. 52.
    Aguilera CM, Ramirez-Tortosa MC, Mesa MD et al (2002) Sunflower, virgin-olive and fish oils differentially affect the progression of aortic lesions in rabbits with experimental atherosclerosis. Atherosclerosis 162:335–344CrossRefGoogle Scholar
  53. 53.
    Masella R, Vari R, D’Archivio M, Di Benedetto R et al (2004) Extra virgin olive oil biophenols inhibit cell-mediated oxidation of LDL by increasing the mRNA transcription of glutathione-related enzymes. J Nutr 134:785–791Google Scholar
  54. 54.
    Patrono C, FitzGerald GA (1997) Isoprostanes: potential markers of oxidant stress in atherothrombotic disease. Arterioscler Thromb Vasc Biol 17:2309–2315Google Scholar
  55. 55.
    Newby AC, Zaltsman AB (1999) Fibrous cap formation or destruction-the critical importance of vascular smooth muscle cell proliferation, migration and matrix formation. Cardiovasc Res 41:345–360CrossRefGoogle Scholar
  56. 56.
    Chait A, Wight TN (2000) Interaction of native and modified low-density lipoproteins with extracellular matrix. Curr Opin Lipidol 11:457–463CrossRefGoogle Scholar
  57. 57.
    Song L, Xu M, Lopes-Virella MF, Huang Y (2001) Quercetin inhibits matrix metalloproteinase-1 expression in human vascular endothelial cells through extracellular signal-regulated kinase. Arch Biochem Biophys 391:72–78CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2008

Authors and Affiliations

  • José Mataix
    • 1
  • Maurizio Battino
    • 2
  • M. Carmen Ramirez-Tortosa
    • 3
  • Enrico Bertoli
    • 2
  • José L. Quiles
    • 1
  1. 1.Department of Physiology, Institute of Nutrition and Food TechnologyUniversity of GranadaGranadaSpain
  2. 2.Institute of Biochemistry, Faculty of MedicineUniversità Politecnica delle MarcheAnconaItaly
  3. 3.Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food TechnologyUniversity of GranadaGranadaSpain

Personalised recommendations