Skip to main content
Log in

Dynamical Behavior and Numerical Simulation of an Influenza A Epidemic Model with Log-Normal Ornstein–Uhlenbeck Process

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

Influenza remains one of the most widespread epidemics, characterized by serious pathogenicity and high lethality, posing a significant threat to public health. This paper focuses on an influenza A infection model that includes vaccination and asymptomatic patients. The deterministic model examines the existence and local asymptotic stability of equilibria. In light of the influence of environmental disruption on the spread of disease, we develop a stochastic model in which the transmission rate follows a log-normal Ornstein–Uhlenbeck process. To demonstrate the dynamic behavior of the stochastic model, we verify the existence and uniqueness of the global positive solution. The establishment of suitable Lyapunov functions allows for the determination of sufficient conditions for the stationary distribution and extinction of the disease. Furthermore, the expression of the local density function around the quasi-endemic equilibrium is represented. Eventually, numerical simulations are conducted to support theoretical results and explore the effect of environmental noise. Our findings indicate that high noise intensity can expedite the extinction of the disease, while low noise intensity can facilitate the disease reaching a stationary distribution. This information may be valuable in developing strategies for disease prevention and control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availibility

No datasets were generated or analysed during the current study.

References

  1. Chen, Z., Zhu, W., Feng, H., Luo, H.: Changes in corporate social responsibility efficiency in Chinese food industry brought by COVID-19 pandemic-a study with the super-efficiency DEA-Malmquist-Tobit model. Front. Public Health 10, 875030 (2022)

    Article  Google Scholar 

  2. Li, B., Wang, W., et al.: Aggregation-induced emission-based macrophage-like nanoparticles for targeted photothermal therapy and virus transmission blockage in monkeypox. Adv. Mat. 36, 2305378 (2023)

    Article  Google Scholar 

  3. W. H. O.: Influenza A (H1N1) variant virus-the Netherlands. https://www.who.int/emergencies/disease-outbreak-news/item/2023-DON486

  4. W. H. O.: Influenza(Seasonal). https://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal) (2023)

  5. Centers for Disease Control and Prevention: Key Facts About Influenza(Flu). https://www.cdc.gov/flu/about/keyfacts.htm

  6. Morgan, J.: The 1918–1919 flu pandemic: Lessons learned or fingers crossed? Lancet Resp. Med. 3, 844–845 (2015)

    Article  Google Scholar 

  7. Warren-Gash, C., Blackburn, R., Whitaker, H., McMenamin, J., Hayward, A.C.: Laboratory-confirmed respiratory infections as triggers for acute myocardial infarction and stroke: a self-controlled case series analysis of national linked datasets from Scotland. Eur. Respir. J. 51, 5898931 (2018)

    Article  Google Scholar 

  8. Pease, C.: An evolutionary epidemiological mechanism with applications to type A influenza. Theor. Popu. Biol. 31, 422–452 (1987)

    Article  Google Scholar 

  9. Massad, E., Burattini, M., Coutinho, F., Lopez, L.: The 1918 influenza A epidemic in the city of Sao Paulo, Brazil. Med. Hypoth. 68, 442–445 (2007)

    Article  Google Scholar 

  10. Hooten, M.B., Anderson, J., Waller, L.A.: Assessing North American influenza dynamics with a statistical SIRS model. Spat. Spatio-temporal Epidemiol. 1, 177–185 (2010)

    Article  Google Scholar 

  11. Rai, R.K., Tiwari, P.K., Khajanchi, S.: Modeling the influence of vaccination coverage on the dynamics of COVID-19 pandemic with the effect of environmental contamination. Math. Method Appl. Sci. 46, 12425–12453 (2023)

    Article  MathSciNet  Google Scholar 

  12. Jabbari, A., Lotfi, M., Khajanchi, S.: Mathematical analysis of the dynamics of a fractional-order tuberculosis epidemic in a patchy environment under the influence of re-infection. Math. Method Appl. Sci. 46, 17798–17817 (2023)

    Article  MathSciNet  Google Scholar 

  13. Bera, S., Khajanchi, S., Roy, T.K.: Dynamics of an HTLV-I infection model with delayed CTLs immune response. Appl. Math. Comput. 430, 127206 (2022)

    MathSciNet  Google Scholar 

  14. Din, A., Li, Y.: Stationary distribution extinction and optimal control for the stochastic hepatitis B epidemic model with partial immunity. Phys. Scripta 96(7), 074005 (2021)

    Article  Google Scholar 

  15. Mondal, J., Khajanchi, S., Samui, P.: Impact of media awareness in mitigating the spread of an infectious disease with application to optimal control. Eur. Phys. J. Plus 137(8), 983 (2022)

    Article  Google Scholar 

  16. Das, D.K., Khajanchi, S., Kar, T.K.: The impact of the media awareness and optimal strategy on the prevalence of tuberculosis. Appl. Math. Comput. 366, 124732 (2020)

    MathSciNet  Google Scholar 

  17. Dwivedi, A., Keval, R., Khajanchi, S.: Modeling optimal vaccination strategy for dengue epidemic model: a case study of India. Phys. Scripta 97(8), 085214 (2022)

    Article  Google Scholar 

  18. Saha, S., Dutta, P., Samanta, G.: Dynamical behavior of SIRS model incorporating government action and public response in presence of deterministic and fluctuating environments. Chaos, Solitons Fractals 164, 112643 (2022)

    Article  MathSciNet  Google Scholar 

  19. Dutta, P., Samanta, G., Nieto, J.J.: Periodic transmission and vaccination effects in epidemic dynamics: a study using the SIVIS model. Nonlinear Dyn. 112, 2318–2409 (2024)

    Article  Google Scholar 

  20. Samanta, G.P.: Permanence and extinction for a nonautonomous avian-human influenza epidemic model with distributed time delay. Math. Comp. Model. 52(9–10), 1794–1811 (2010)

    Article  MathSciNet  Google Scholar 

  21. Sharma, S., Mondal, A., Pal, A.K., Samanta, G.P.: Stability analysis and optimal control of avian influenza virus A with time delays. Int. J. Dyn. Control 6, 1351–1366 (2018)

    Article  MathSciNet  Google Scholar 

  22. Din, A.: The stochastic bifurcation analysis and stochastic delayed optimal control for epidemic model with general incidence function. Chaos 31(12), 123101 (2021)

    Article  MathSciNet  Google Scholar 

  23. Samsuzzoha, M., Singh, M., Lucy, D.: A numerical study on an influenza epidemic model with vaccination and diffusion. Appl. Math. Comput. 219, 122–141 (2012)

    MathSciNet  Google Scholar 

  24. Guan, X., Yang, F., Cai, Y., Wang, W.: Global stability of an influenza A model with vaccination. Appl. Math. Lett. 134, 108322 (2022)

    Article  MathSciNet  Google Scholar 

  25. Sardar, M., Khajanchi, S.: Is the Allee effect relevant to stochastic cancer model? J. Appl. Math. Comp. 68(4), 2293–2315 (2022)

    Article  MathSciNet  Google Scholar 

  26. Alsakaji, H.J., Rihan, F.A., Hashish, A.: Dynamics of a stochastic epidemic model with vaccination and multiple time-delays for COVID-19 in the UAE. Complexity 2022, 1–15 (2022)

    Article  Google Scholar 

  27. Rihan, F.A., Alsakaji, H.J.: Analysis of a stochastic HBV infection model with delayed immune response. Math. Biosci. Eng. 18(5), 5194–5220 (2021)

    Article  MathSciNet  Google Scholar 

  28. Rihan, F.A., Alsakaji, H.J., Kundu, S., et al.: Dynamics of a time-delay differential model for tumour-immune interactions with random noise. Alex. Eng. J. 61(12), 11913–11923 (2022)

    Article  Google Scholar 

  29. Shi, Z., Jiang, D.: Dynamical behaviors of a stochastic HTLV-I infection model with general infection form and Ornstein-Uhlenbeck process. Chaos, Solitons Fractals 165, 112789 (2022)

    Article  MathSciNet  Google Scholar 

  30. Zhang, X., Shi, Z., Wang, Y.: Dynamics of a stochastic avian-human influenza epidemic model with mutation. Phys. A 534, 121940 (2019)

    Article  MathSciNet  Google Scholar 

  31. Zhang, F., Zhang, X.: The threshold of a stochastic avian-human influenza epidemic model with psychological effect. Phys. A 492, 485–495 (2018)

    Article  MathSciNet  Google Scholar 

  32. Lanconelli, A., Perçin, B.: On a new method for the stochastic perturbation of the disease transmission coefficient in SIS models. Appl. Math. Comput. 413, 126600 (2022)

    MathSciNet  Google Scholar 

  33. Zhang, X., Yuan, R.: A stochastic chemostat model with mean-reverting Ornstein-Uhlenbeck process and Monod-Haldane response function. Appl. Math. Comput. 394, 125833 (2021)

    MathSciNet  Google Scholar 

  34. Zhang, X., Su, T., Jiang, D.: Dynamics of a stochastic SVEIR epidemic model incorporating General incidence rate and Ornstein-Uhlenbeck Process. J. Nonl. Sci. 76, 33–76 (2023)

    MathSciNet  Google Scholar 

  35. Diekmann, O., Heesterbeek, J., Metz, J.: On the definition and the computation of the basic reproduction ratio \(R_{0}\) in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28, 365–382 (1990)

    Article  MathSciNet  Google Scholar 

  36. Sharma, S., Samanta, G.P.: Stability analysis and optimal control of an epidemic model with vaccination. Int. J. Biomath. 8(03), 1550030 (2015)

    Article  MathSciNet  Google Scholar 

  37. Khajanchi, S.: Uniform persistence and global stability for a brain tumor and immune system interaction. Biophys. Rev. Lett. 12(04), 187–208 (2017)

    Article  Google Scholar 

  38. Din, A., Li, Y., Yusuf, A.: Delayed hepatitis B epidemic model with stochastic analysis. Chaos, Solitons Fractals 146, 110839 (2021)

    Article  MathSciNet  Google Scholar 

  39. Mao, X.: Stochastic Differential Equations and Applications. Horwood Publishing, Chichester (1997)

    Google Scholar 

  40. Meyn, S., Tweedie, R.L.: Stability of Markovian processes III: Foster-Lyapunov criteria for continuous-time processes. Adv. Appl. Probab. 25, 518–548 (1993)

    Article  MathSciNet  Google Scholar 

  41. Zhang, X., Yang, Q., Tan, S.: Dynamical behavior and numerical simulation of a stochastic eco-epidemiological model with Ornstein-Uhlenbeck process. Commun. Nonlinear Sci. 123, 107284 (2023)

    Article  MathSciNet  Google Scholar 

  42. Liu, H., Ma, Z.: The threshold of survival for system of two species in a polluted environment. J. Math. Biol. 30, 49–61 (1991)

    Article  MathSciNet  Google Scholar 

  43. Ma, Z., Zhou, Y., Li, C.: Qualitative and Stability Methods for Ordinary Differential Equations. Science Press (2001)

  44. Gardiner, C.W.: Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences. Springer, Berlin (1983)

    Book  Google Scholar 

  45. Zhou, B., Jiang, D., Dai, Y., Hayat, T.: Stationary distribution and density function expression for a stochastic SIQRS epidemic model with temporary immunity. Nonlinear Dyn. 105, 931–955 (2021)

    Article  Google Scholar 

  46. Higham, D.J.: An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 43, 525–546 (2001)

    Article  MathSciNet  Google Scholar 

  47. Andreasen, V.: Dynamics of annual influenza A epidemics with immuno-selection. J. Math. Biol. 46(6), 504–536 (2003)

    Article  MathSciNet  Google Scholar 

  48. Zhou, B., Jiang, D., Han, B., Hayat, T.: Threshold dynamics and density function of a stochastic epidemic model with media coverage and mean-revertingn Ornstein-Uhlenbeck process. Math. Comput. Simul. 196, 15–44 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Z.X.H provided conceptualization and methodology, put forward formal analysis, supervised the manuscript, and reviewed it. Z.X.S calculated formal analysis, carried out numerical simulations, wrote the manuscript, and revised it.

Corresponding author

Correspondence to Xinhong Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Proof of Theorem 3.1

Proof of Theorem 3.1

Proof

As the coefficients of model (3) are locally Lipschitz continuous, there is a unique solution on \(t \in \left[ 0, \tau _{e}\right) \) for model (3), where \(\tau _{e}\) is defined as an explosion time. We can get the conclusion that the solution is global as long as the explosion time \(\tau _{e}=+\infty \), a.s..

Let \(n_{0}\) be a positive integer which ensure that \((S(0), A(0), I(0), \beta (0)) \in R_{+}^{4}\), model (3) stays in the interval \([\frac{1}{n_{0}},n_{0}]\).For each \(n>n_{0}\),

$$\begin{aligned} \tau _{n}{} & {} = inf \{ 0<t<\tau _{e}|\min \{S(t),A(t),I(t),\beta (t) \}\\{} & {} <\frac{1}{n} \ or \ \max \{S(t), A(t), I(t), \beta (t)\}>n \}. \end{aligned}$$

Obviously, \(\tau _{n}\) is a monotone increasing function about variable n. For convenience, we define \(\inf \{\varnothing \}=+\infty \) and \(\tau _{\infty }=\lim _{n \rightarrow +\infty } \tau _{n}\). As \(\tau _{\infty } \le \tau _{e}\) a.s., \(\tau _{e} = \infty \) as long as \(\tau _{\infty } = \infty \). Next, we need to verify \(\tau _{\infty }=\infty \).

Assuming \(\tau _{\infty }<\infty \) a.s., then there exist three constants \((\zeta , T, n_{1})\), satisfying \(\zeta \in (0,1)\), \(T \in R_{+}\), \(n_{1} \in N^{*}\) such that

$$\begin{aligned} \begin{aligned} P\left( \tau _{n} \le T\right) \ge \zeta , \ \forall n \ge n_{1}. \end{aligned} \end{aligned}$$
(A.1)

Then we can construct a non-negative \(C^2\)-function \(W(S,A,I,\beta ): R_{+}^{4}\rightarrow R_{+}\) as follows

$$\begin{aligned} W(S, A, I, \beta )=S-1-\log S+A-1-\log A+I-1-\log I+\beta -1-\log \beta . \end{aligned}$$

By It\(\hat{o}\)’s formula, one derives that

$$\begin{aligned} {\mathcal {L}}(-\log S)={} & {} -\frac{(1-p+\frac{\gamma _{3}}{\mu })\Lambda }{S}+\mu +\varphi +\beta (I+\delta A)-\frac{\gamma _{1} A+\gamma _{2} I}{S}+\frac{\gamma _{3}(S+A+I)}{S}, \nonumber \\ {\mathcal {L}}(-\log A)={} & {} -\delta \beta A+\mu +\nu +\gamma _{1}, {\mathcal {L}}(-\log I)=-\beta S-\nu \frac{A}{I}+\mu +\gamma _{2}. \end{aligned}$$
(A.2)
$$\begin{aligned} d\beta =\beta \left[ \alpha (\log \bar{\beta }-\log \beta )+\frac{1}{2}\sigma ^{2}\right] dt+\sigma \beta dB(t). \end{aligned}$$
(A.3)

Thus, referring (A.2) and (A.3), applying It\(\hat{o}\)’s to \(W(S,A,I,\beta )\) yields

$$\begin{aligned}{} & {} {\mathcal {L}} W(S, A, I, \beta )=(1-p+\frac{\gamma _3}{\mu })\Lambda -(\mu +\gamma _3)(S+A+I)-\varphi S+\mu +\varphi +\beta (I+\delta A) \nonumber \\{} & {} \qquad -\frac{\gamma _1 A+\gamma _2 I}{S}-\frac{1}{S}[(1-p+\frac{\gamma _3}{\mu })\Lambda -\gamma _{3}(S+A+I)]-\delta \beta S+(\mu +\nu +\gamma _1)-\beta S\nonumber \\{} & {} \qquad -\nu \frac{A}{I}+(\mu +\gamma _2)+\beta [\alpha (\log \bar{\beta }-\log \beta )+\frac{1}{2}\sigma ^{2}]-\alpha (\log \bar{\beta }-\log \beta )\nonumber \\{} & {} \quad =(\mu +\gamma _{3})[\bar{\Lambda }-(S+A+I)]-\varphi S-\frac{1}{S}[(1-p+\frac{\gamma _3}{\mu })\Lambda -\gamma _3(S+A+I)]+\mu +\varphi \nonumber \\{} & {} \qquad +\beta (I+\delta A)-\frac{\gamma _1 A+\gamma _2 I}{S}-\delta \beta S+(\mu +\nu +\gamma _1)+(\mu +\gamma _2)-\beta S-\nu \frac{A}{I}\nonumber \\{} & {} \qquad +\beta [\alpha (\log \bar{\beta }-\log \beta )+\frac{1}{2}\sigma ^{2}]-\alpha (\log \bar{\beta }-\log \beta )\nonumber \\{} & {} \quad \le 3\mu +\varphi +\nu +\gamma _1+\gamma _2+(\mu +\gamma _{3})\bar{\Lambda }+\beta (I+\delta A)-\frac{(1-p+\frac{\gamma _{3}}{\mu })\Lambda -\gamma _{3}(S+A+I)}{S}\nonumber \\{} & {} \qquad +\beta [\alpha (\log \bar{\beta }-\log \beta )+\frac{1}{2}\sigma ^{2}]-\alpha (\log \bar{\beta }-\log \beta ).\nonumber \\ \end{aligned}$$
(A.4)

Summing the first three equations in model (3) obtains the following differential equation

$$\begin{aligned} d(S+A+I)= & {} \left[ \left( 1-p+\frac{\gamma _{3}}{\mu }\right) \Lambda -(\mu +\gamma _{3})(S+A+I)-\varphi S\right] dt \\\le & {} (\mu +\gamma _{3})[\bar{\Lambda }-(S+A+I)], \end{aligned}$$

which means

$$\begin{aligned} S(t)+A(t)+I(t) \le {\left\{ \begin{array}{ll} S(0)+A(0)+I(0), &{} if\ S(0)+A(0)+I(0) \ge \bar{\Lambda },\\ \bar{\Lambda }, &{} if\ S(0)+A(0)+I(0) < \bar{\Lambda }. \end{array}\right. } \end{aligned}$$

Denote \(K = \max \{S(0)+A(0)+I(0), \bar{\Lambda }\}\), thus the following inequation holds

$$\begin{aligned} S(t)+A(t)+I(t) \le K. \end{aligned}$$
(A.5)

Combining inequation (A.5), (A.4) can be transformed into

$$\begin{aligned} {\mathcal {L}}W\le & {} 3\mu +\varphi +\nu +\gamma _1+\gamma _2+(\mu +\gamma _{3})\bar{\Lambda }+\beta (I+\delta A) \nonumber \\{} & {} -\frac{(1-p+\frac{\gamma _{3}}{\mu })\Lambda -\gamma _{3}(S+A+I)}{S} \nonumber \\{} & {} +\beta [\alpha (\log \bar{\beta }-\log \beta )+\frac{1}{2}\sigma ^{2}]-\alpha (\log \bar{\beta }-\log \beta ), \nonumber \\\le & {} 3\mu +\varphi +\nu +\gamma _1+\gamma _2+(\mu +\gamma _{3})\bar{\Lambda }+\beta (1+\delta )K \nonumber \\{} & {} +\beta [\alpha (\log \bar{\beta }-\log \beta )+\frac{1}{2}\sigma ^{2}]-\alpha (\log \bar{\beta }-\log \beta ),\nonumber \\ {}:= & {} H(\beta ). \end{aligned}$$
(A.6)

Especially, if \(S(0)+A(0)+I(0)<\bar{\Lambda }\), then \(K=\bar{\Lambda }\), which indicates the solution (S(t), A(t), I(t)) has an invariant set \(\Gamma ^{*}=\{(S(t),A(t),I(t))\in R_{+}^{4}|S(t)+A(t)+I(t)<\bar{\Lambda }\}\). It is obvious that \(\lim \nolimits _{\beta \rightarrow 0} H(\beta )=-\infty \) and \(\lim \nolimits _{\beta \rightarrow +\infty } H(\beta )=-\infty \). Then there is a positive constant \(H _{0}\) which satisfies

$$\begin{aligned} \sup \limits _{\beta \in R_{+}} H(\beta ) < H_{0}. \end{aligned}$$

The rest proof is similar to paper [48]. Then we finish the proof. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zhang, X. Dynamical Behavior and Numerical Simulation of an Influenza A Epidemic Model with Log-Normal Ornstein–Uhlenbeck Process. Qual. Theory Dyn. Syst. 23, 190 (2024). https://doi.org/10.1007/s12346-024-01051-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-024-01051-7

Keywords

Navigation