Skip to main content
Log in

Reducibility in a Certain Matrix Lie Algebra for Smooth Linear Quasi-periodic System

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper we consider the linear quasi-periodic system

$$\begin{aligned} \left\{ \begin{array}{l} {\dot{\theta }}=\omega ,\\ \dot{x}=(A+Q(\theta ))x,\\ \end{array} \right. \end{aligned}$$

where \((x,\theta )\in \mathbb {R}^n\times \mathbb {T}^d\), \(A\in g\) is a \(n\times n\) constant matrix with different eigenvalues, g is a matrix Lie subalgebra of \(gl(n,\mathbb {R})\), \(\omega =\xi \bar{\omega }\in \mathbb {R}^d\) with \(\xi \in \mathcal {O}:=[\frac{1}{2},\frac{3}{2}].\) Letting \(s_0=(d+1)/2 \) and \(\beta =6n^2+6\tau -2\), we prove that if \(Q:\mathbb {T}^d\rightarrow g\) belonging to Sobolev spaces \(H^{s+\beta }\) with each fixed \( s \ge s_0\) is sufficiently small in given \(H^{s_0+\beta }\) norm and \({\bar{\omega }}\) satisfies Diophantine condition, then there exists a Cantor set \({\mathcal {E}}\subset \mathcal {O}\) with almost full Lebesgue measure such that for any \(\xi \in {\mathcal {E}}\), there exists a quasi-periodic transformation of the form \(\theta =\theta \), \(x = e^{P(\theta )}y\) with \(P(\theta )\in H^s\), which reduces above system into a constant system \({\dot{\theta }}=\omega ,\) \(\dot{y}=A_* y\) where \(A_*\in g\) is a constant matrix close to A. Different from classical smooth results, our result requires smallness conditions only on a fixed low Sobolev norm (\(H^{s_0+\beta }\)-norm) of the first perturbation. It is worth mentioning that our system does not need second Melnikov’s condition explicitly. As an application, we apply our results to smooth quasi-periodic Schrödinger equations to study the Lyapunov stability of the equilibrium and the existenc of quasi-periodic solutions. The result can be regarded as the generalization of the stability result in [37] to the smooth category.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avila, A., Fayad, B., Krikorian, R.: A KAM scheme for SL(2, R) cocycles with Liouvillean frequencies. Geom. Funct. Anal. 21, 1001–1019 (2011)

    Article  MathSciNet  Google Scholar 

  2. Baldi, P.: Periodic solutions of forced Kirchhoff equations. Ann. Scuola Norm. Sup. Pisa. Cl. Sci. 8, 117–141 (2009)

    MathSciNet  Google Scholar 

  3. Baldi, P.: Periodic solutions of fully nonlinear autonomous equations of Benjamin–Ono type. Ann. I. H. Poincaré(C) Anal. Non Linéaire 30(1), 33–77 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  4. Baldi, P., Berti, M., Haus, E., Montalto, R.: Time quasi-periodic gravity water waves in finite depth. Invent. Math. 214, 739–911 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  5. Baldi, P., Berti, M., Montalto, R.: A note on KAM theory for quasi-linear and fully nonlinear forced KdV. Rend. Lincei Mat. Appl. 24, 437–450 (2013)

    MathSciNet  Google Scholar 

  6. Baldi, P., Berti, M., Montalto, R.: KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation. Math. Ann. 359, 471–536 (2014)

    Article  MathSciNet  Google Scholar 

  7. Baldi, P., Berti, M., Montalto, R.: KAM for autonomous quasi-linear perturbations of KdV. Ann. I. H. Poincaré (C) Anal. Non Linéaire 33, 1589–1638 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  8. Berti, M., Bolle, P.: Quasi-periodic solutions with Sobolev regularity of NLS on \(\mathbb{T} ^d\) with a multiplicative potential. Eur. J. Math. 15, 229–286 (2013)

    Article  MathSciNet  Google Scholar 

  9. Berti, M., Franzoi, L., Maspero, A.: Traveling quasi-periodic water Waves with constant vorticity. Arch. Rational Mech. Anal. 240, 99–202 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  10. Bounemoura, A., Chavaudret, C., Liang, S.: Reducibility of ultra-differentiable quasiperiodic cocycles under an adapted arithmetic condition. Proc. Am. Math. Soc. 149, 2999–3012 (2021)

    Article  MathSciNet  Google Scholar 

  11. Chavaudret, C.: Strong almost reducibility for analytic and Gevrey quasi-periodic cocycles. Bull. Soc. Math. Fr. 141, 47–106 (2013)

    Article  MathSciNet  Google Scholar 

  12. Chavaudret, C., Marmi, S.: Reducibility of quasiperiodic cocycles under a Brjuno–Rüssmann arithmetical condition. J. Mod. Dyn. 6, 59–78 (2012)

    Article  MathSciNet  Google Scholar 

  13. Dinaburg, E.I., Sinai, Ya. G.: The one dimensional Schrödinger equation with quasi-perioidc potential. Funct. Anal. Appl. 9, 8–21 (1975)

    Google Scholar 

  14. Feola, R., Giuliani, F., Procesi, M.: Reducible KAM tori for the Degasperis–Procesi equation. Commun. Math. Phys. 377, 1681–1759 (2020)

    Article  ADS  MathSciNet  PubMed  PubMed Central  Google Scholar 

  15. Eliasson, L.H.: Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation. Commun. Math. Phys. 146, 447–482 (1992)

    Article  ADS  Google Scholar 

  16. Eliasson, L.H.: Almost reducibility of linear quasi-periodic systems, Smooth ergodic theory and its applications (Seattle, WA, 1999), 679–705, Proc. Sympos. Pure Math., 69, Amer. Math. Soc., Providence, RI (2001)

  17. Eliasson, L.H.: Ergodic skew-systems on \(\mathbb{T} ^d \times SO(3, \mathbb{R} )\). Ergod. Th. & Dyn. Syst. 22(5), 1429–1449 (2002)

    Article  Google Scholar 

  18. Her, H., You, J.: Full measure reducibility for generic one-parameter family of quasi-periodic linear systems. J. Dyn. Differ. Equ. 20, 831–866 (2008)

    Article  MathSciNet  Google Scholar 

  19. Hou, X., You, J.: Almost reducibility and non-perturbative reducibility of quasi-periodic linear systems. Invent. Math. 190, 209–260 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  20. Johnson, R., Moser, J.: The rotation number for almost periodic potentials. Commun. Math. Phys. 84, 403–438 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  21. Johnson, R.A., Sell, G.R.: Smoothness of spectral subbundles and reducibility of quasi-periodic linear differential systems. J. Differ. Equ. 41, 262–288 (1981)

    Article  ADS  Google Scholar 

  22. Jorba, À., Simó, C.: On the reducibility of linear differential equation with quasi-perioidc coefficients. J. Differ. Equ. 98, 111–124 (1992)

    Article  ADS  Google Scholar 

  23. Krikorian, R.: Red́uctibilited́es systemès produits-croisés à valeurs dans des groupes compacts. Astérisque 259, 1–216 (1999)

  24. Krikorian, R.: Global density of reducible quasi-periodic cocycles on \(\mathbb{T} ^1\times SU(2)\). Ann. Math. 154, 269–326 (2001)

    Article  MathSciNet  Google Scholar 

  25. Li, J., Zhu, C.: On the reducibility of a class of finitely differentiable quasi-periodic linear systems. J. Math. Anal. Appl. 413, 69–83 (2014)

    Article  MathSciNet  Google Scholar 

  26. Lopes Dias, J.: A normal form theorem for Brjuno skew systems through renormalization. J. Differ. Equ. 230, 1–23 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  27. Lopes Dias, J.: Brjuno condition and renormalization for Poincaré flows. Discret. Contin. Dyn. Syst. 15, 641–656 (2006)

    Article  MathSciNet  Google Scholar 

  28. Lopes Dias, J., Pedro Gaivão, J.: Linearization of Gevrey flows on \(\mathbb{T} ^d\) with a Brjuno type arithmetical condition. J. Differ. Equ. 267, 7167–7212 (2019)

    Article  ADS  Google Scholar 

  29. Moser, J.: On invariant curves of area-preserving mappings of an annulus. Nachr. Akad. Wiss. Gottingen Math. -Phys. KI. II, 1–20 (1962)

    MathSciNet  Google Scholar 

  30. Moshchevitin, N.G.: Differential equations with almost periodic and conditionally periodic coefficients: recurrence and reducibility. Mat. Zametki 64(2), 229–237 (1998). (Engl. Transl. Math. Notes 64(1–2) (1998), 194–201)

  31. Nash, J.: The imbedding problem for Riemannian manifolds. Ann. Math. 63(2), 20–63 (1956)

    Article  MathSciNet  Google Scholar 

  32. Procesi, C., Procesi, M.: A KAM algorithm for the resonant non-linear Schrödinger equation. Adv. Math. 272, 399–470 (2015)

    Article  MathSciNet  Google Scholar 

  33. Puig, J., Simó, C.: Analytic families of reducible linear quasi-periodic differential equations. Ergod. Theory & Dyn. Syst. 26, 481–524 (2006)

    Article  MathSciNet  Google Scholar 

  34. Rüssmann, H.: On the one dimensional Schrödinger equation with a quasi-perioidc potential. Ann. N. Y. Acad. Sci. 357, 90–107 (1980)

    Article  ADS  Google Scholar 

  35. Xu, J., Lu, X.: On the reducibility of two-dimensional linear quasi-periodic systems with small parameter. Ergod. Theory Dyn. Syst. 35, 2334–2352 (2015)

    Article  MathSciNet  Google Scholar 

  36. Yuan, X., Nunes, A.: A note on the reducibility of linear differential equations with quasiperiodic coefficients. Int. J. Math. Math. Sci. 2003, 4071–4083 (2003)

    Article  MathSciNet  Google Scholar 

  37. Zhang, D., Wu, H.: On the reducibility of two-dimensional quasi-periodic systems with Liouvillean basic frequencies and without non-degeneracy condition. J. Differ. Equ. 324, 1–40 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  38. Zhang, D., Xu, J.: On the reducibility of analytic quasi-periodic systems with Liouvillean basic frequencies. Commun. Pure Appl. Anal. 21, 1417–1445 (2022)

    Article  MathSciNet  Google Scholar 

  39. Zhang, D., Xu, J., Xu, X.: Reducibility of three dimensional skew symmetric system with Liouvillean basic frequencies. Discret. Contin. Dyn. Syst. 38, 2851–2877 (2018)

    Article  MathSciNet  Google Scholar 

  40. Zhang, Y., Yuan, W., Si, J. Si.: Construction of quasi-periodic solutions for nonlinear forced perturbations of dissipative Boussinesq systems. Nonlinear Anal. Real World Appl. 67, 103621 (2022)

  41. Zhou, Q., Wang, J.: Reducibility results for quasiperiodic cocycles with Liouvillean frequency. J. Dyn. Differ. Equ. 24, 61–83 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Si.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The second author was partially supported by the National Natural Science Foundation of China (Grant Nos. 12001315, 12371172, 11971261, 12071255, 12171281), Shandong Provincial Natural Science Foundation, China (Grant No. ZR2020MA015).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Si, W. Reducibility in a Certain Matrix Lie Algebra for Smooth Linear Quasi-periodic System. Qual. Theory Dyn. Syst. 23, 97 (2024). https://doi.org/10.1007/s12346-023-00952-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00952-3

Keywords

Mathematics Subject Classification

Navigation