Skip to main content
Log in

Existence and Stability Behaviour of FSDE Driven by Rosenblatt Process with the Application of Visual Perception of Fish Robot

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

The successive approximation used to derive the existence and stability results of the fractional stochastic differential equation (FSDEs) driven by the Rosenblatt process and numerical simulation are established and applied for the reduction of stochastic disturbance of minimal level in the visual perception trajectory. The Rosenblatt process ensures the stability of FDSEs by mitigating the stochastic disruption in the ocean water environment, including small particles along the visual perception trajectory to the fish robot. The algorithms have several advantages from gaze shift frames, such as terrific quality of randomness, key sensitivity, and minimizing the stochastic disturbance in the visual perception track for different locations. Numerical simulation results manifest real-world applications’ effectiveness, efficiency, and feasibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ahmed, H.M.: Non-linear fractional integro-differential systems with nonlocal conditions. IMA J. Math. Control Inform. 33, 389–399 (2016). https://doi.org/10.1093/imamci/dnu049

    Article  MathSciNet  Google Scholar 

  2. Al-Ghafri, K.S., Rezazadeh, H.: Solitons and other solutions of ($3 + 1$)-dimensional space-time fractional modified KdV–Zakharov–Kuznetsov equation. Appl. Math. Nonlinear Sci. 4, 289–304 (2019)

    Article  MathSciNet  Google Scholar 

  3. Ali Balci, M.: Fractional interaction of financial agents in a stock market network. App. Math. Nonlinear Sci. 5, 317–336 (2020)

    Article  MathSciNet  Google Scholar 

  4. Balasubramaniam, P., Kumaresan, N., Ratnavelu, K., Tamilalagan, P.: Local and global existence of mild solution for impulsive fractional stochastic differential equations. Bull. Malays. Math. Sci. Soc. 38, 867–884 (2015). https://doi.org/10.1007/s40840-014-0054

    Article  MathSciNet  Google Scholar 

  5. Baskonus, H.M.: Complex surfaces to the fractional ($2+1$)-dimensional Boussinesq dynamical model with local M-derivative. Eur. Phys. J. Plus. 134, 1–10 (2019)

    Article  Google Scholar 

  6. Benchaabane, A., Sakhivel, R.: Sobolev-type fractional stochastic differential equations with non-Lipschitz coefficient. J. Comput. Appl. Math. 312, 65–73 (2017)

    Article  MathSciNet  Google Scholar 

  7. Blouhi, T., Caraballo, T., Ouahab, A.: Existence and stability results for semilinear systems of impulsive stochastic differential equations with fractional Brownian motion. Stoch. Anal. Appl. 34, 792–834 (2016). https://doi.org/10.1080/17442508.2017.1346657

    Article  MathSciNet  Google Scholar 

  8. Boccignone, G.: In Advanced Statistical Method for Eye Movement Analysis and Modelling. Springer, Cham (2019)

    Google Scholar 

  9. Chen, H., Zhu, C., Zhang, Y.: A note on exponential stability for impulsive neutral stochastic partial functional differential equations. J. Appl. Math. Comput. 227, 139–147 (2014)

    Article  MathSciNet  Google Scholar 

  10. Chen, H., Lim, C.C., Shi, P.: Stability analysis for stochastic neutral switched systems with time-varying delay. SIAM J. Control Optim. 59(1), 24–49 (2021)

    Article  MathSciNet  Google Scholar 

  11. Debbouche, A., Nieto, J.J.: Sobolev type fractional abstract evolution equations with nonlocal conditions and optimal multi-controls. Appl. Math. Comput. 245, 74–85 (2014)

    MathSciNet  Google Scholar 

  12. Deng, S., Shu, X.B., Mao, J.: Existence and exponential stability for impulsive neutral stochastic functional differential equations driven by fBm with non compact semigroup via Mönch fixed point. J. Math. Anal. Appl. 467(1), 398–420 (2018). https://doi.org/10.1016/j.jmaa.2018.07.002

    Article  MathSciNet  Google Scholar 

  13. Duncan, T.E., Maslowki, B., Pasik Dunca, B.: Stochastic equations in Hilbert space with a multiplicative fractional Gaussian noise. Stoch. Proc. Appl. 115, 1357–1383 (2005)

    Article  MathSciNet  Google Scholar 

  14. Evirgen, F., Ucar, S., Ozdemir, N.: System analysis of HIV infection model with CD4+T under non-singular kernel derivative. Appl. Math. Nonlinear Sci. 5, 139–146 (2020)

    Article  MathSciNet  Google Scholar 

  15. Fedorov, V.E.E., Romanova, E.A.E., Debbouche, A.: Analytic in a sector resolving families of operators for degenerate evolution equations of a fractional order. J. Math. Sci. 228, 380–394 (2018)

    Article  MathSciNet  Google Scholar 

  16. Fuke, W., Shigeng, H., Mao, X.: Razumikhin-type theorem for neutral stochastic functional differential equations with unbounded delay. Acta Math. Sci. 31(4), 1245–1258 (2011). https://doi.org/10.1016/S0252-9602(11)60312-3

    Article  MathSciNet  Google Scholar 

  17. Funte, C.M., Borowskr, J., Stosin, K., Brendel, W., Wallis, T.S.A., Bethage, M.: Five points to check when comparing visual perception in human and machine. J. Vis. 21, 1–23 (2021)

    Google Scholar 

  18. Garzón, J., Torres, S., Tudor, C.A.: A strong convergence to the Rosenblatt process. J. Math. Anal. Appl. 391(2), 630–647 (2012). https://doi.org/10.1016/j.jmaa.2012.02.040

    Article  MathSciNet  Google Scholar 

  19. Gu, Y., Wang, S., Li, Q., Cheng, Z., Qian, J.: On delay-dependent stability and decay estimate for uncertain systems with time-varying delay. Automatica 34(8), 1035–1039 (1998)

    Article  MathSciNet  Google Scholar 

  20. Guerra, J., Nualart, D.: Stochastic differential equations driven by fractional Brownian motion and standard Brownian motion. Stoch. Anal. Appl. 26, 1053–1075 (2008)

    Article  MathSciNet  Google Scholar 

  21. Gunerhan, H., Celic, E.: Analytical and approximate solutions of fractional partial differential algebraic equations. Appl. Math. Nonlinear Sci. 5, 109–120 (2020)

    Article  MathSciNet  Google Scholar 

  22. Holm, D.D., Hu, R.: Stochastic effects of waves on currents in the ocean mixed layers. J. Math. Phys. 62, 1–32 (2021)

    Article  MathSciNet  Google Scholar 

  23. Ilthan, E., Kiymaz, O.: A generalization of truncated M-fractional derivative and applications to fractional differential equations. App. Math. Nonlinear Sci. 5, 177–188 (2020)

    MathSciNet  Google Scholar 

  24. Jiang, Y., Huang, N., Wei, Z.: Existence of a global attractor for fractional differential hemivariational inequalities. Discrete Contin. Dyn. Syst. Ser. B 25, 1193–1212 (2020). https://doi.org/10.3934/dcdsb.2019216

    Article  MathSciNet  Google Scholar 

  25. Jumarie, G.: Modeling fractional stochastic systems as non-random fractional dynamics driven by Brownian motions. Appl. Math. Model. 32, 836–859 (2008)

    Article  MathSciNet  Google Scholar 

  26. Kent, C., Guest, D., Adelman, J.S., Lamberts, K.: Stochastic accumulation of feature information in perception and memory. Front. Psychol. 5, 412 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier Science, North-Holland (2006)

    Google Scholar 

  28. Kondrashov, D., Chekroun, M.D., Berloff, P.: Multiscale Stuart–Landau emulators: application to wind-driven ocean gyres. Fluids 3, 1–32 (2018). https://doi.org/10.3390/fluids3010021

    Article  ADS  Google Scholar 

  29. Kumar, V., Malik, M., Debbouche, A.: Stability and controllability analysis of fractional damped differential system with non-instantaneous impulses. Appl. Math. Comput. 391, 1–17 (2020)

    MathSciNet  Google Scholar 

  30. Lakhel, E., McKibben, M.A.: Existence of solutions for fractional neutral functional differential equations driven by fractional Brownian motion with infinite delay. Stochastics 90, 313–329 (2018). https://doi.org/10.1080/17442508.2017.1346657

    Article  MathSciNet  Google Scholar 

  31. Liu, L., Caraballo, T.: Well-posedness and dynamics of a fractional stochastic integro-differential equation. Phys. D Nonlinear Phenom. 355, 45–57 (2017). https://doi.org/10.1016/j.physd.2017.05.006

    Article  MathSciNet  Google Scholar 

  32. Li, Y., Wang, Y.: The existence and exponential behavior of solutions to time fractional stochastic delay evolution inclusions with nonlinear multiplicative noise and fractional noise. Discrete Contin. Dyn. Syst. Ser. B 25, 2665–2697 (2020). https://doi.org/10.3934/dcdsb.2020027

    Article  MathSciNet  Google Scholar 

  33. Li, W., Chen, F., Shen, M., Fei, W., Mao, X.: A stabilization analysis for highly nonlinear neutral stochastic delay hybrid systems with super linearly growing jump coefficients by variable-delay feedback control. J. Frankl. Inst. 360(1), 11932–11964 (2023)

    Article  Google Scholar 

  34. Lu, Z., Zhu, Y., Xu, Q.: Asymptotic stability of fractional neutral stochastic systems with variable delays. Eur. J. Control. 57, 119–124 (2021). https://doi.org/10.1016/j.ejcon.2020.05.005

    Article  MathSciNet  Google Scholar 

  35. Mattuvarkuzhali, C., Balasubramaniam, P.: \({ p}\)th moment stability of fractional stochastic differential inclusion via resolvent operators driven by the Rosenblatt process and Poisson jumps with impulses. Stochastics 92, 1157–1174 (2020)

    Article  MathSciNet  Google Scholar 

  36. Mao, W., You, S., Wu, X., Mao, X.: On the averaging principle for stochastic delay differential equations with jumps. Adv. Differ. Equ. 2015, 70 (2015). https://doi.org/10.1186/s13662-015-0411-0

    Article  MathSciNet  Google Scholar 

  37. Ouahra, M.A., Boufoussi, B., Lakhel, E.: Existence and stability for stochastic impulsive neutral partial differential equations driven by Rosenblatt process with delay and Poisson jumps. Commun. Stoch. Anal. 11, 99–117 (2017)

    MathSciNet  Google Scholar 

  38. Podlubny, I.: Fractional Differential Equations. Academic Press, London (1999)

    Google Scholar 

  39. Randjelovic, J., Jankovic, S.: On the pth moment exponential stability criteria of neutral stochastic functional differential equations. J. Math. Anal. Appl. 326, 266–280 (2007)

    Article  MathSciNet  Google Scholar 

  40. Shen, G., Sakthivel, R., Ren, Y.: Controllability and stability of fractional stochastic functional systems driven by Rosenblatt process. Collect. Math. 71, 63–82 (2020). https://doi.org/10.1007/s13348-019-00248-3

    Article  MathSciNet  Google Scholar 

  41. Sakthivel, R., Revathi, P., Mahumov, N.I.: Asymptotic stability of fractional stochastic neutral differential equations with infinite delays. Abstr. Appl. Anal. (2013). https://doi.org/10.1155/2013/769257

    Article  MathSciNet  Google Scholar 

  42. Sakthivel, R., Revathi, P., Ren, Y.: Retarded stochastic differential equation with infinite delay driven by Rosenblatt process. Stoch. Anal. Appl. 36, 304–323 (2018)

    Article  MathSciNet  Google Scholar 

  43. Sene, N.: Exponential form for Lyapunov function and stability analysis of fractional differential equation. J. Math. Comput. Sci. 18, 388–397 (2018)

    Article  Google Scholar 

  44. Subbaiyan, S., Debbouche, A., Wang, J.: Approximate controllability of Hilfer fractional Sobolev type integrodifferential inclusions with nonlocal conditions. Int. J. Dyn. Syst. Differ. Equ. 10, 59–80 (2020)

    MathSciNet  Google Scholar 

  45. Tan, L., Lei, D.: The averaging method for stochastic differential delay equations under non-Lipschitz conditions. Adv. Differ. Equ. 2013, 38 (2013). https://doi.org/10.1186/1687-1847-2013-38

    Article  MathSciNet  Google Scholar 

  46. Veeresha, P., Baskons, H.M., Gao, W.: Strong interacting internal waves in rotating ocean: novel fractional approach. Axioms 10, 123 (2021)

    Article  Google Scholar 

  47. Vinodkumar, A.: Some results in stochastic functional integro-differential equations with infinite delays. Int. J. Dyn. Syst. Differ. Equ. 7, 36–50 (2017)

    MathSciNet  Google Scholar 

  48. Xu, Y., Duan, J., Xu, W.: An averaging principle for stochastic dynamical systems with Levy noise. Phys. D Nonlinear Phenom. 240, 1395–1401 (2011)

    Article  ADS  Google Scholar 

  49. Xu, W., Zhang, S.: The averaging principle for stochastic differential equations with Caputo fractional derivative. Appl. Math. Lett. 93, 79–84 (2019)

    Article  MathSciNet  Google Scholar 

  50. Yokus, A., Gulbahar, S.: Numerical solutions with linearization techniques of the fractional Harry Dym equation. Appl. Math. Nonlinear Sci. 4, 35–42 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

C. Mattuvarkuzhali - conceptualisation, interpretation and draft manuscript preparation P. Balasubramaniam - investigation and supervision for the research findings.

Corresponding author

Correspondence to P. Balasubramaniam.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Theorem 3.1

Step 1. Choose \(x^0(t) \in L^\textsf{p}(\Omega , \mathcal {H})\) be a fixed initial approximation for (6), then by using Remark 2.3 for every \(n \ge 1\), we have

$$\begin{aligned} \left\| x^{n}(t)\right\| ^\textsf{p}&\le 4^{\textsf{p}-1}\Bigg \{\left\| S_q(t) \big [\varphi (0)-\mathcal {N}^1(0,0,\varphi )\big ]\right| ^\textsf{p}+\left\| \mathcal {N}^1(t,x_t^n,y_t^n)\right\| ^\textsf{p}\\&\quad +\,\left\| \int _0^tT_q(t-\varsigma )\big [\mathfrak {f}^1\left( \varsigma ,x_\varsigma ^{n-1},y_\varsigma ^{n-1}\right) -\mathfrak {f}^1(\varsigma ,0,0)+\mathfrak {f}^1(\varsigma ,0,0)\big ]d\varsigma \right\| ^\textsf{p}\\&\quad +\!\left\| \int _0^tT_q(t\!-\!\varsigma )\big [\Lambda ^1(\varsigma ,x_\varsigma ^{n-1},y_\varsigma ^{n-1})\!-\!\Lambda ^1(\varsigma ,0,0)\!+\!\Lambda ^1(\varsigma ,0,0)\big ]d\tilde{Z}_Q^{\mathbb {H}}(\varsigma )\right\| ^\textsf{p}\Bigg \}\\&\le 4^{\textsf{p}-1}\Bigg \{\tilde{M}_R^\textsf{p} \left\| \big [\varphi (0)-\mathcal {N}(0,0,\varphi )\big ]\right\| ^\textsf{p}+\left\| \mathcal {N}^1(t,x_t^n,y_t^n)\right\| ^\textsf{p}\\&\quad +2^{\textsf{p}-1}\tilde{M}_T^\textsf{p}\Bigg [\Big [\int _0^t(t-\varsigma )^{\frac{\textsf{p} (q-1)}{\textsf{p}-1}}d\varsigma \Big ]^{\textsf{p}-1}\int _0^t\Big (\left\| \mathfrak {f}^1(\varsigma ,x_\varsigma ^{n-1},y_\varsigma ^{n-1})-\mathfrak {f}(\varsigma ,0,0)\right\| ^\textsf{p}\\&\quad +\left\| \mathfrak {f}^1(\varsigma ,0,0)\right\| ^\textsf{p}\Big )d\varsigma +\tilde{K} C_\mathbb {H}^{\frac{\textsf{p}}{2}} t^{\textsf{p}\mathbb {H} - \frac{\textsf{p}}{2}} \tilde{M}_T^\textsf{p}t^{\frac{2\textsf{p}q-\textsf{p}-1}{2}}\Big (\frac{{\textsf{p}-2}}{2\textsf{p}q-\textsf{p}-2}\Big )^{\frac{\textsf{p}-2}{2}}\\&\quad \times \,\int _0^t\Big (\left\| \Lambda ^1(\varsigma ,x_\varsigma ^{n-1},y_\varsigma ^{n-1})-\Lambda ^1(\varsigma ,0,0)\right\| ^\textsf{p}+\left\| \Lambda ^1(\varsigma ,0,0)\right\| ^\textsf{p}\Big )d\varsigma \Bigg ]\Bigg \}. \end{aligned}$$

Further,

$$\begin{aligned} E\left\| x^n(t)\right\| ^\textsf{p}&\le 4^{\textsf{p}-1}\Bigg \{2^{\textsf{p}-1}\tilde{M}_R^\textsf{p}\big [\big ( E\left\| \varphi \right\| ^\textsf{p}-M_{\mathcal {L}}^*E\left\| \varphi \right\| |^\textsf{p}\big )+\big (E\left\| \hat{\varphi }\right\| ^\textsf{p}-M_{\mathcal {L}}^*E\left\| \hat{\varphi }\right\| ^\textsf{p}\big )\big ]\\ {}&\quad +M_{\mathcal {L}}^*\big (E\left\| x_t^n\right\| ^\textsf{p}+E\left\| y_t\right\| ^\textsf{p}\big )+2^{\textsf{p}-1}\Bigg [\tilde{M}_T^\textsf{p}t^{\textsf{p}q-1}\Big (\frac{{\textsf{p}-1}}{\textsf{p}q-1}\Big )^{\textsf{p}-1}\\&\quad +\,\tilde{K} C_\mathbb {H}^{\frac{\textsf{p}}{2}} t^{\textsf{p}\mathbb {H} - \frac{\textsf{p}}{2}} \tilde{M}_T^\textsf{p}t^{\frac{2\textsf{p}q-\textsf{p}-1}{2}}\Big (\frac{{\textsf{p}-2}}{2\textsf{p}q-\textsf{p}-2}\Big )^{\frac{\textsf{p}-2}{2}}\Bigg ]\\&\quad \times \,\int _0^t\vartheta \big (E\left\| x_\varsigma ^{n-1}\right\| ^\textsf{p}\big )+\hat{\vartheta } \big (E\left\| y_\varsigma ^{n-1}\right\| ^\textsf{p}+\vartheta _0+\hat{\vartheta }_0\big )d\varsigma \Bigg ]\Bigg \}. \end{aligned}$$

Hence

$$\begin{aligned} E\left\| x^n(t)\right\| ^\textsf{p}&\le \eta _1+4^{\textsf{p}-1}\Bigg \{M_{\mathcal {L}}^*\left( E\left\| x_t^n\right\| |^\textsf{p}+E\left\| y_t^n\right\| |^\textsf{p}\right) \\&\quad +2^{\textsf{p}-1}\Bigg [\tilde{M}_T^\textsf{p}t^{\textsf{p}q-1}\left( \frac{{\textsf{p}-1}}{\textsf{p}q-1}\right) ^{\textsf{p}-1}+\tilde{K} C_\mathbb {H}^{\frac{\textsf{p}}{2}}t^{\textsf{p}\mathbb {H} - \frac{\textsf{p}}{2}}\\&\quad \times \, \tilde{M}_T^\textsf{p}t^{\frac{2\textsf{p}q-\textsf{p}-1}{2}}\left( \frac{{\textsf{p}-2}}{2\textsf{p}q-\textsf{p}-2}\right) ^{\frac{\textsf{p}-2}{2}}\int _0^t\Big (\vartheta \left( E\left\| x_\varsigma ^{n-1}\right\| ^\textsf{p}\right) \\&\quad +\hat{\vartheta } \left( E\left\| y_\varsigma ^{n-1}\right\| ^\textsf{p}\right) \Big )d\varsigma \Bigg ]\Bigg \}, \end{aligned}$$

where

$$\begin{aligned} \eta _1&=4^{\textsf{p}-1}\Bigg [\tilde{M}_R^\textsf{p}\left( E\left\| (\varphi _0\right\| ^\textsf{p}+M_{\mathcal {L}}^*E\left\| \varphi _0\right\| ^\textsf{p}\right) +2^{\textsf{p}-1}\Bigg [t^{\textsf{p}q-1}\left( \frac{{\textsf{p}-1}}{\textsf{p}q-1}\right) ^{\textsf{p}-1}\tilde{M}_T^\textsf{p}\\&\quad +\,\tilde{K} C_\mathbb {H}^{\frac{\textsf{p}}{2}} t^{\textsf{p}\mathbb {H} - \frac{\textsf{p}}{2}} \tilde{M}_T^\textsf{p}t^{\frac{2\textsf{p}q-\textsf{p}-1}{2}}\Big (\frac{{\textsf{p}-2}}{2\textsf{p}q-\textsf{p}-2}\Big )^{\frac{\textsf{p}-2}{2}}\Bigg ](\vartheta _0+\hat{\vartheta }_0)\Bigg ]. \end{aligned}$$

Since \(\varrho (\cdot )\) is concave and \(\varrho (0)=0\), \(\exists \) positive constants \(\alpha , \beta \) such that \(\varrho (\tilde{u}) \le \alpha +\beta \tilde{u}, \ \forall \tilde{u} \ge 0, t \in J.\) It is to be noted that

$$\begin{aligned}&\Big (\sup \limits _{0\le \varsigma \le t}E\left\| x^n(\varsigma )\right\| ^\textsf{p}\Big )\\&\quad \le \eta _1\!+\!\alpha \Big (t^{\textsf{p}q\!-\!1}\Big (\frac{\textsf{p}\!-\!1}{\textsf{p}q\!-\!1}\Big )^{\textsf{p}\!-\!1}\tilde{M}_T^\textsf{p}\!+\!\tilde{K}C_\mathbb {H}^{\frac{\textsf{p}}{2}} t^{\textsf{p}\mathbb {H} \!-\! \frac{\textsf{p}}{2}} \tilde{M}_T^\textsf{p}t^{\frac{2\textsf{p}q-\textsf{p}-1}{2}}\Big (\frac{{\textsf{p}-2}}{2\textsf{p}q-\textsf{p}-2}\Big )^{\frac{\textsf{p}-2}{2}}\Big )\tilde{T}\\&\qquad +\,4^{\textsf{p}-1}M_{\mathcal {L}}^*E\left\| x_{\varsigma }\right\| ^\textsf{p}+4^{\textsf{p}-1}\beta \Bigg \{2^{\textsf{p}-1}\bigg [\tilde{M}_T^\textsf{p}t^{\textsf{p}q-1}\Big (\frac{{\textsf{p}-1}}{\textsf{p}q-1}\Big )^{\textsf{p}-1}\\&\qquad +\,\tilde{K} C_\mathbb {H}^{\frac{\textsf{p}}{2}} t^{\textsf{p}\mathbb {H} - \frac{\textsf{p}}{2}} \tilde{M}_T^\textsf{p}t^{\frac{2\textsf{p}q-\textsf{p}-1}{2}}\Big (\frac{{\textsf{p}-2}}{2\textsf{p}q-\textsf{p}-2}\Big )^{\frac{\textsf{p}-2}{2}}\Big )\\&\quad \le \eta _2+4^{\textsf{p}-1}M_{\mathcal {L}}^*E\left\| x_{\varsigma }\right\| ^\textsf{p}+4^{\textsf{p}-1}\beta \Bigg \{2^{\textsf{p}-1}\bigg [\tilde{M}_T^\textsf{p}\beta t^{\textsf{p}q-1}\Big (\frac{{\textsf{p}-1}}{\textsf{p}q-1}\Big )^{\textsf{p}-1}\\&\qquad +\,\tilde{K} C_\mathbb {H}^{\frac{\textsf{p}}{2}} t^{\textsf{p}\mathbb {H} - \frac{\textsf{p}}{2}} \tilde{M}_T^\textsf{p}t^{\frac{2\textsf{p}q-\textsf{p}-1}{2}}\Big (\frac{{\textsf{p}-2}}{2\textsf{p}q-\textsf{p}-2}\Big )^{\frac{\textsf{p}-2}{2}}\Big )\\&\qquad \times \,\int _0^t\Big (\vartheta (E\left\| x_\varsigma ^{n-1}\right\| ^\textsf{p})+\hat{\vartheta } (E\left\| y_\varsigma ^{n-1}\right\| ^\textsf{p})\Big )d\varsigma \Bigg ]\Bigg \},\ n = 1, 2, \ldots , \end{aligned}$$
$$\begin{aligned} \text {here} \ \ \eta _2&=\eta _1+4^{\textsf{p}-1}\textsf{p}\Bigg \{2^{\textsf{p}-1}\Big (\tilde{M}_T^\textsf{p} t^{\textsf{p}q-1}\Big (\frac{{\textsf{p}-1}}{\textsf{p}q-1}\Big )^{\textsf{p}-1}\\&\quad +\,\tilde{K} C_\mathbb {H}^{\frac{p}{2}} t^{p\mathbb {H} - \frac{p}{2}} \tilde{M}_T^\textsf{p}t^{\frac{2\textsf{p}q-\textsf{p}-1}{2}}\Big (\frac{{\textsf{p}-2}}{2\textsf{p}q-\textsf{p}-2}\Big )^{\frac{\textsf{p}-2}{2}}\Bigg \}\tilde{T} \end{aligned}$$

and seeing that

$$\begin{aligned} E\left\| x_t\right\| ^\textsf{p} \!&=\!\sup \limits _{-s\le \hat{\theta }\le 0}E\left\| x(t+\hat{\theta })\right\| ^\textsf{p}\!\le \!2^{\textsf{p}-1}\!\!\sup \limits _{-s\le \hat{\pi }\le 0}E\left\| x(\hat{\pi })\right\| ^\textsf{p}\!+\!2^{\textsf{p}-1}\!\sup \limits _{0\le \hat{\pi }\le \tilde{T}}E\left\| x(\hat{\pi })\right\| ^\textsf{p}\\ \text {and}\\E\left\| x_\varsigma ^{n}\right\| ^\textsf{p}&\le 2^{\textsf{p}-1}E\left\| \varphi \right\| ^\textsf{p}+2^{\textsf{p}-1}\sup \limits _{0\le \varsigma \le t}E\left\| x^{n-1}(\varsigma )\right\| ^\textsf{p}.\\E\left\| y_t\right\| ^\textsf{p} \!&=\!\sup \limits _{-s\le \hat{\theta }\le 0}E\left\| y(t+\hat{\theta })\right\| ^\textsf{p}\!\le \!2^{\textsf{p}-1}\!\!\sup \limits _{-s\le \hat{\pi }\le 0}E\left\| y(\hat{\pi })\right\| ^\textsf{p}\!+\!2^{\textsf{p}-1}\!\sup \limits _{0\le \hat{\pi }\le \tilde{T}}E\left\| y(\hat{\pi })\right\| ^\textsf{p}\\\text {and}\\E\left\| y_\varsigma ^{n}\right\| ^\textsf{p}&\le 2^{\textsf{p}-1}E\left\| \hat{\varphi }\right\| ^\textsf{p}+2^{\textsf{p}-1}\sup \limits _{0\le \hat{\varsigma }\le t}E\left\| y^{n-1}(\varsigma )\right\| ^\textsf{p}.\\ \text {Now}, \\&\Big (\sup \limits _{0\le \varsigma \le t}E\left\| x^n(\varsigma )\right\| ^\textsf{p}\Big )+\Big (\sup \limits _{0\le \varsigma \le t}E\left\| y^n(\varsigma )\right\| ^\textsf{p}\Big )\\&\quad \le \eta _2+10^{\textsf{p}-1}M_{\mathcal {L}}^*(\left\| \varphi \right\| ^\textsf{p}+ \left\| \hat{\varphi }\right\| ^\textsf{p})+10^{\textsf{p}-1}M_{\mathcal {L}}^*\sup \limits _{0\le \varsigma \le t}E\left\| x^n(\varsigma )\right\| ^\textsf{p}\\&\qquad +\sup \limits _{0\le \varsigma \le t}E\left\| y^n(\varsigma )\right\| ^\textsf{p} +\,4^{\textsf{p}-1}\beta \Bigg \{2^{\textsf{p}-1}\bigg [\tilde{M}_T^\textsf{p}\beta t^{\textsf{p}q-1}\Big (\frac{{\textsf{p}-1}}{\textsf{p}q-1}\Big )^{\textsf{p}-1}\\&\qquad +\,\tilde{K} C_\mathbb {H}^{\frac{\textsf{p}}{2}} t^{\textsf{p}\mathbb {H} - \frac{\textsf{p}}{2}} \tilde{M}_T^\textsf{p}t^{\frac{2\textsf{p}q-\textsf{p}-1}{2}}\Big (\frac{{\textsf{p}-2}}{2\textsf{p}q-\textsf{p}-2}\Big )^{\frac{\textsf{p}-2}{2}}\Big )\Bigg ]\tilde{T}\Bigg \}\\&\qquad +\,4^{\textsf{p}-1}\beta \Bigg \{2^{\textsf{p}-1}\bigg [\tilde{M}_T^\textsf{p}\beta t^{\textsf{p}q-1}\Big (\frac{{\textsf{p}-1}}{\textsf{p}q-1}\Big )^{\textsf{p}-1}\\&\qquad +\tilde{K} C_\mathbb {H}^{\frac{\textsf{p}}{2}} t^{\textsf{p}\mathbb {H} - \frac{\textsf{p}}{2}} \tilde{M}_T^\textsf{p}t^{\frac{2\textsf{p}q-\textsf{p}-1}{2}}\Big (\frac{{\textsf{p}-2}}{2\textsf{p}q-\textsf{p}-2}\Big )^{\frac{\textsf{p}-2}{2}}\bigg ]\\&\qquad \times \,\int _0^t(E\left\| x^{n-1}(\varsigma )\right\| ^\textsf{p}+E\left\| y^{n-1}(\varsigma )\right\| ^\textsf{p})d\varsigma \Bigg \},\ n = 1, 2, \ldots \end{aligned}$$
$$\begin{aligned}&\sup \limits _{0\le \varsigma \le t}E\left\| x^n(\varsigma )\right\| ^\textsf{p}+\Big (\sup \limits _{0\le \varsigma \le t}E\left\| y^n(\varsigma )\right\| ^\textsf{p}\Big )\Big (1-10^{\textsf{p}-1}M_{\mathcal {L}}^*\Big )\\&\quad \le \eta _3+4^{\textsf{p}-1}\beta \Bigg \{2^{\textsf{p}-1}\bigg [\tilde{M}_T^\textsf{p}\beta t^{\textsf{p}q-1}\Big (\frac{{\textsf{p}-1}}{\textsf{p}q-1}\Big )^{\textsf{p}-1}\\&\qquad +\tilde{K} C_\mathbb {H}^{\frac{\textsf{p}}{2}} t^{\textsf{p}\mathbb {H} - \frac{\textsf{p}}{2}} \tilde{M}_T^\textsf{p}t^{\frac{2\textsf{p}q-\textsf{p}-1}{2}}\Big (\frac{{\textsf{p}-2}}{2\textsf{p}q-\textsf{p}-2}\Big )^{\frac{\textsf{p}-2}{2}}\bigg ]\\&\qquad \times \,\int _0^t(E\left\| x^{n-1}(\varsigma )\right\| ^\textsf{p}+E\left\| y^{n-1}(\varsigma )\right\| ^\textsf{p})d\varsigma \Bigg \},\ n = 1, 2, \ldots \\&\Big (\sup \limits _{0\le \varsigma \le t}E\left\| x^n(\varsigma )\right\| ^\textsf{p}\Big )+\Big (\sup \limits _{0\le \varsigma \le t}E\left\| y^n(\varsigma )\right\| ^\textsf{p}\Big )\\&\quad \le \frac{1}{\Big (1-10^{\textsf{p}-1}M_{\mathcal {L}}^*\Big )} \Bigg \{\eta _3+10^{\textsf{p}-1}\beta \bigg [\tilde{M}_T^\textsf{p}\beta t^{\textsf{p}q-1}\Big (\frac{{\textsf{p}-1}}{\textsf{p}q-1}\Big )^{\textsf{p}-1}\\&\qquad +\,\tilde{K} C_\mathbb {H}^{\frac{\textsf{p}}{2}} t^{\textsf{p}\mathbb {H} - \frac{\textsf{p}}{2}} \tilde{M}_T^\textsf{p}t^{\frac{2\textsf{p}q-\textsf{p}-1}{2}}\Big (\frac{{\textsf{p}-2}}{2\textsf{p}q-\textsf{p}-2}\Big )^{\frac{\textsf{p}-2}{2}}\Big )\bigg ]\\&\qquad \times \int _0^t(E\left\| x^{n-1}(\varsigma )\right\| ^\textsf{p}+E\left\| y^{n-1}(\varsigma )\right\| ^\textsf{p}) d\varsigma \Bigg \}, \end{aligned}$$

where, \(\eta _3=\eta _2+\frac{4^{\textsf{p}-1}}{1-8^{\textsf{p}-1}}\Bigg \{2^{\textsf{p}-1}\beta \Big (\tilde{M}_T^\textsf{p}t^{\textsf{p}q-1}\Big (\frac{{\textsf{p}-1}}{\textsf{p}q-1}\Big )^{\textsf{p}-1}+\tilde{K} C_\mathbb {H}^{\frac{\textsf{p}}{2}} t^{\textsf{p}\mathbb {H} - \frac{\textsf{p}}{2}} \tilde{M}_T^\textsf{p}t^{\frac{2\textsf{p}q-\textsf{p}-1}{2}}\Big (\frac{{\textsf{p}-2}}{2\textsf{p}q-\textsf{p}-2}\Big )^{\frac{\textsf{p}-2}{2}}\Big )\tilde{T}\Bigg \}\). Also, for every \(\hat{K} \ge 1\)

$$\begin{aligned}{} & {} \max \limits _{1\le n\le \hat{K}}\sup \limits _{0 \le \varsigma \le t}E\left\| x^{n-1}(\varsigma )\right\| ^\textsf{p} \le E\left\| x^0(\varsigma )\right\| ^\textsf{p}+\max \limits _{1\le n\le \hat{K}}\sup \limits _{0 \le \varsigma \le t}E\left\| x^n(\varsigma )\right\| ^\textsf{p}\text {and}\\{} & {} \max \limits _{1\le n\le \hat{K}}\sup \limits _{0 \le \varsigma \le t}E\left\| y^{n-1}(\varsigma )\right\| ^\textsf{p} \le E\left\| y^0(\varsigma )\right\| ^\textsf{p}+\max \limits _{1\le n\le \hat{K}}\sup \limits _{0 \le \varsigma \le t}E\left\| y^n(\varsigma )\right\| ^\textsf{p} \end{aligned}$$
$$\begin{aligned}&\max \limits _{1\le n\le \hat{K}}\sup \limits _{0 \le \varsigma \le t}E\left\| x^ {n-1}(\varsigma )\right\| ^\textsf{p}+\max \limits _{1\le n\le \hat{K}}E\sup \limits _{0 \le \varsigma \le t}\left\| y^ {n-1}(\varsigma )\right\| ^\textsf{p} \\&\quad \le \frac{1}{\Big (1-10^{\textsf{p}-1}M_{\mathcal {L}}^*\Big )} \Bigg \{\eta _3+10^{\textsf{p}-1}\beta \bigg [\tilde{M}_T^\textsf{p}\beta t^{\textsf{p}q-1}\Big (\frac{{\textsf{p}-1}}{\textsf{p}q-1}\Big )^{\textsf{p}-1}\\&\qquad +\tilde{K}C_\mathbb {H}^{\frac{\textsf{p}}{2}} t^{\textsf{p}\mathbb {H} \!-\! \frac{\textsf{p}}{2}} \tilde{M}_T^\textsf{p}t^{\frac{2\textsf{p}q\!-\!\textsf{p}\!-\!1}{2}}\Big (\frac{{\textsf{p}\!-\!2}}{2\textsf{p}q\!-\!\textsf{p}\!-\!2}\Big )^{\frac{\textsf{p}\!-\!2}{2}}\Big )\bigg ]\int _0^t(E\left\| x^{0}(\varsigma )\right\| ^\textsf{p}\!+\!E\left\| y^{0}(\varsigma )\right\| ^\textsf{p})d\varsigma \\&\qquad +10^{\textsf{p}\!-\!1}\beta \bigg [\tilde{M}_T^\textsf{p}\beta t^{\textsf{p}q\!-\!1}\Big (\frac{{\textsf{p}\!-\!1}}{\textsf{p}q\!-\!1}\Big )^{\textsf{p}\!-\!1}\!+\!\tilde{K} C_\mathbb {H}^{\frac{\textsf{p}}{2}} t^{\textsf{p}\mathbb {H} \!-\! \frac{\textsf{p}}{2}} \tilde{M}_T^\textsf{p}t^{\frac{2\textsf{p}q\!-\!\textsf{p}\!-\!1}{2}}\Big (\frac{{\textsf{p}\!-\!2}}{2\textsf{p}q\!-\!\textsf{p}\!-\!2}\Big )^{\frac{\textsf{p}\!-\!2}{2}}\bigg ]\\&\qquad \times \, \int _0^t(\max \limits _{1\le n\le \hat{K}}\sup \limits _{0 \le \tilde{r} \le \varsigma }E\left\| x^{n}(\tilde{r})\right\| ^\textsf{p}+\max \limits _{1\le n\le \hat{K}}\sup \limits _{0 \le \tilde{r} \le \varsigma }E\left\| y^{n}(\tilde{r})\right\| ^\textsf{p})d\varsigma \Bigg \}\\ \end{aligned}$$
$$\begin{aligned}&\quad \le \frac{1}{\Big (1-10^{\textsf{p}-1}M_{\mathcal {L}}^*\Big )} \Bigg \{\eta _3+10^{\textsf{p}-1}\beta \bigg [\tilde{M}_T^\textsf{p}\beta t^{\textsf{p}q-1}\Big (\frac{{\textsf{p}-1}}{\textsf{p}q-1}\Big )^{\textsf{p}-1}\\&\qquad +\,\tilde{K} C_\mathbb {H}^{\frac{\textsf{p}}{2}} t^{\textsf{p}\mathbb {H} - \frac{\textsf{p}}{2}} \tilde{M}_T^\textsf{p}t^{\frac{2\textsf{p}q-\textsf{p}-1}{2}}\Big (\frac{{\textsf{p}-2}}{2\textsf{p}q-\textsf{p}-2}\Big )^{\frac{\textsf{p}-2}{2}}\bigg ](E\left\| \varphi \right\| ^\textsf{p}+E\left\| \hat{\varphi }\right\| ^\textsf{p})\tilde{T}\\&\qquad +\,8^{\textsf{p}-1}\beta \bigg [\tilde{M}_T^\textsf{p}\beta t^{\textsf{p}q-1}\Big (\frac{{\textsf{p}-1}}{\textsf{p}q-1}\Big )^{\textsf{p}-1}\\&\qquad +\,\tilde{K} C_\mathbb {H}^{\frac{\textsf{p}}{2}} t^{\textsf{p}\mathbb {H} - \frac{\textsf{p}}{2}} \tilde{M}_T^\textsf{p}t^{\frac{2\textsf{p}q-\textsf{p}-1}{2}}\Big (\frac{{\textsf{p}-2}}{2\textsf{p}q-\textsf{p}-2}\Big )^{\frac{\textsf{p}-2}{2}}\bigg ]\int _0^t\max \limits _{1\le n\le \hat{K}}(\sup \limits _{0 \le \tilde{r} \le \varsigma }E\left\| x^{n}(\tilde{r})\right\| ^\textsf{p}\\ {}&\quad +E\left\| y^{n}(\tilde{r})\right\| ^\textsf{p})d\varsigma \Bigg \}\le \eta _4+\eta _5\int _0^t(E\left\| x^n(\varsigma )\right\| ^\textsf{p}+E\left\| y^n(\varsigma )\right\| ^\textsf{p})d\varsigma , \end{aligned}$$

where

$$\begin{aligned}\eta _4&= \frac{1}{\Big (1-10^{\textsf{p}-1}M_{\mathcal {L}}^*\Big )} \Bigg \{\eta _3+10^{\textsf{p}-1}\beta \bigg [\tilde{M}_T^\textsf{p}\beta t^{\textsf{p}q-1}\Big (\frac{{\textsf{p}-1}}{\textsf{p}q-1}\Big )^{\textsf{p}-1}\\&\quad +\,\tilde{K} C_\mathbb {H}^{\frac{\textsf{p}}{2}} t^{\textsf{p}\mathbb {H} - \frac{\textsf{p}}{2}} \tilde{M}_T^\textsf{p}t^{\frac{2\textsf{p}q-\textsf{p}-1}{2}}\Big (\frac{{\textsf{p}-2}}{2\textsf{p}q-\textsf{p}-2}\Big )^{\frac{\textsf{p}-2}{2}}\bigg ](E\left\| \varphi \right\| ^\textsf{p}+E\left\| \hat{\varphi }\right\| ^\textsf{p})\tilde{T}\Bigg \},\\ \eta _5&=\frac{1}{\Big (1-10^{\textsf{p}-1}M_{\mathcal {L}}^*\Big )} \Bigg \{8^{\textsf{p}-1}\beta \bigg [\tilde{M}_T^\textsf{p}\beta t^{\textsf{p}q-1}\Big (\frac{{\textsf{p}-1}}{\textsf{p}q-1}\Big )^{\textsf{p}-1}\\&\quad +\,\tilde{K} C_\mathbb {H}^{\frac{\textsf{p}}{2}} t^{\textsf{p}\mathbb {H} - \frac{\textsf{p}}{2}} \tilde{M}_T^\textsf{p}t^{\frac{2\textsf{p}q-\textsf{p}-1}{2}}\Big (\frac{{\textsf{p}-2}}{2\textsf{p}q-\textsf{p}-2}\Big )^{\frac{\textsf{p}-2}{2}}\bigg ]\Bigg \}, \end{aligned}$$
$$\begin{aligned} \max \limits _{1\le n\le \hat{K}}&\sup \limits _{0 \le \varsigma \le t}E\left\| x^{n-1}(\varsigma )\right\| ^\textsf{p}+\max \limits _{1\le n\le \hat{K}}\sup \limits _{0 \le \varsigma \le t}E\left\| y^{n-1}(\varsigma )\right\| ^\textsf{p}\\ {}&\le \eta _4+\eta _5\int _0^t\max \limits _{1\le n\le \hat{K}}\sup \limits _{0 \le \tilde{r} \le \varsigma }(E\left\| x^{n}(\tilde{r})\right\| ^\textsf{p}+E\left\| y^{n}(\tilde{r})\right\| ^\textsf{p})d\varsigma . \end{aligned}$$

Since \(\hat{K}\) is arbitrary, by the Gronwall inequality, one can have

$$\begin{aligned} \sup \limits _{0 \le \varsigma \le t}E\left\| x^{n-1}(\varsigma )\right\| ^\textsf{p}+\sup \limits _{0 \le \varsigma \le t}E\left\| y^{n-1}(\varsigma )\right\| ^\textsf{p}\le \eta _4 e^{\eta _5\tilde{T}}. \end{aligned}$$

Also,

$$\begin{aligned} E\left\| x^n\right\| ^\textsf{p}_{\hat{C}_{s}}= & {} E\left\| x_0^n\right\| ^\textsf{p}+E\left\| y_0^n\right\| ^\textsf{p}+\int _0^{\tilde{T}}E\left\| x_0^n\right\| ^\textsf{p}+E\left\| y_0^n\right\| ^\textsf{p}d\varsigma \le E\left\| \hat{\varphi }\right\| ^\textsf{p}\\{} & {} +E\left\| \varphi \right\| ^\textsf{p}+\tilde{T}\eta _4e^{\eta _5\tilde{T}} < \infty . \end{aligned}$$

This implies the boundedness.

Step 2. Choose the sequence \( x^n(t), \ n \ge 1, \) is a Cauchy sequence. For all \( m, n \ge 0 \) and \( t \in \hat{J} \) and \(M_{\mathcal {L}}^* < \frac{1}{3^{\textsf{p}-1}}\), one can have

$$\begin{aligned}&\sup \limits _{0 \le \varsigma \le t}E\left\| x^{n+1} (\varsigma ) -x^{m+1}(\varsigma )\right\| ^\textsf{p}+\sup \limits _{0 \le \varsigma \le t}E\left\| y^{n+1} (\varsigma ) -y^{m+1}(\varsigma )\right\| ^\textsf{p}\\&\quad \le 4^{\textsf{p}\!-\!1}\Bigg \{ M_{\mathcal {L}}^* \sup \limits _{0 \le \varsigma \le t}E\left\| x^{n+1}( \varsigma ) \!-\!x^{m+1}(\varsigma )\right\| ^\textsf{p} \!+\! M_{\mathcal {L}}^* \sup \limits _{0 \le \varsigma \le t}E\left\| y^{n\!+\!1}( \varsigma ) \!-\!y^{m\!+\!1}(\varsigma )\right\| ^\textsf{p}\\&\qquad +\,\left( \tilde{M}_T^\textsf{p}t^{\textsf{p}q-1}\left( \frac{{\textsf{p}-1}}{\textsf{p}q-1}\right) ^{\textsf{p}-1}+\tilde{K}C_\mathbb {H}^{\frac{\textsf{p}}{2}} t^{\textsf{p}\mathbb {H} - \frac{\textsf{p}}{2}} \tilde{M}_T^\textsf{p}t^{\frac{2\textsf{p}q-\textsf{p}-1}{2}}\left( \frac{{\textsf{p}-2}}{2\textsf{p}q-\textsf{p}-2}\right) ^{\frac{\textsf{p}-2}{2}}\right) \\&\qquad \times \,\left( \int _0^t\vartheta \left( \sup \limits _{0 \le \varsigma \le t}E\left\| x_{\varsigma }^n-x_{\varsigma }^m\right\| ^\textsf{p}\right) d\varsigma +\int _0^t\hat{\vartheta }\left( \sup \limits _{0 \le \varsigma \le t}E\left\| y_{\varsigma }^n-y_{\varsigma }^m\right\| ^\textsf{p}\right) d\varsigma \right) \Bigg \}. \end{aligned}$$
$$\begin{aligned} \text {Thus,}&\left( \sup \limits _{0 \le \varsigma \le t}E\left\| x^{n+1}(t) \!-\!x^{m+1}(t)\right\| ^\textsf{p}\!+\!\sup \limits _{0 \le \varsigma \le t}E\left\| y^{n+1}(t) \!-\!y^{m+1}(t)\right\| ^\textsf{p}\right) (1\!-\!4^{\textsf{p}-1}M_{\mathcal {L}}^*)\\&\quad \le 4^{\textsf{p}-1}\Bigg \{ \left( \tilde{M}_T^\textsf{p}t^{\textsf{p}q-1}\left( \frac{{\textsf{p}\!-\!1}}{\textsf{p}q\!-\!1}\right) ^{\textsf{p}-1}\!+\!\tilde{K} C_\mathbb {H}^{\frac{\textsf{p}}{2}} t^{\textsf{p}\mathbb {H} - \frac{\textsf{p}}{2}} \tilde{M}_T^\textsf{p}t^{\frac{2\textsf{p}q-\textsf{p}-1}{2}}\left( \frac{{\textsf{p}\!-\!2}}{2\textsf{p}q\!-\!\textsf{p}-2}\right) ^{\frac{\textsf{p}-2}{2}}\right) \\&\qquad \times \,\left( \int _0^t\vartheta \left( \sup \limits _{0 \le \varsigma \le t}E\left\| x_{\varsigma }^n\!-\!x_{\varsigma }^m\right\| ^\textsf{p}\right) d\varsigma \!+\!\int _0^t\hat{\vartheta }\left( \sup \limits _{0 \le \varsigma \le t}E\left\| y_{\varsigma }^n\!-\!y_{\varsigma }^m\right\| ^\textsf{p}\right) d\varsigma \right) \Bigg \}. \end{aligned}$$
$$\begin{aligned} \text {That is}&\sup \limits _{0 \le \varsigma \le t}E\left\| x^{n+1}(t) -x^{m+1}(t)\right\| ^\textsf{p}+\sup \limits _{0 \le \varsigma \le t}E\left\| y^{n+1}(t) -y^{m+1}(t)\right\| ^\textsf{p}\\&\quad \le \frac{4^{\textsf{p}-1}}{1-4^{\textsf{p}-1}M_{\mathcal {L}}^*} \left\{ \Big (\tilde{M}_T^\textsf{p}t^{\textsf{p}q-1}\Big (\frac{{\textsf{p}-1}}{\textsf{p}q-1}\Big )^{\textsf{p}-1}\right. \\&\qquad +\,\tilde{K} C_\mathbb {H}^{\frac{\textsf{p}}{2}} t^{\textsf{p}\mathbb {H} - \frac{\textsf{p}}{2}} \tilde{M}_T^\textsf{p}t^{\frac{2\textsf{p}q-\textsf{p}-1}{2}}\Big (\frac{{\textsf{p}-2}}{2\textsf{p}q-\textsf{p}-2}\Big )^{\frac{\textsf{p}-2}{2}}\Big )\\&\left. \qquad \times \,\left( \int _0^t\vartheta \left( \sup \limits _{0 \le \varsigma \le t}E\left\| x_{\varsigma }^n\!-\!x_{\varsigma }^m\right\| ^\textsf{p}\right) d\varsigma \!+\!\int _0^t\hat{\vartheta }\left( \sup \limits _{0 \le \varsigma \le t}E\left\| y_{\varsigma }^n\!-\!y_{\varsigma }^m\right\| ^\textsf{p}\right) d\varsigma \right) \right\} . \end{aligned}$$

Thus,

$$\begin{aligned}&\sup \limits _{0 \le \varsigma \le t}E\left\| x^{n+1}(t) -x^{m+1}(t)\right\| ^\textsf{p}+\sup \limits _{0 \le \varsigma \le t}E\left\| y^{n+1}(t) -y^{m+1}(t)\right\| ^\textsf{p}\nonumber \\&\quad \le \frac{\eta _64^{\textsf{p}-1}}{1-4^{\textsf{p}-1}M_{\mathcal {L}}^*}\left( \int _0^t\vartheta \left( \sup \limits _{0\le \varsigma \le t}E\left\| x_{\varsigma }^n-x_{\varsigma }^m\right\| ^\textsf{p}\right) d\varsigma \right. \nonumber \\&\qquad +\left. \int _0^t\hat{\vartheta }\left( \sup \limits _{0 \le \varsigma \le t}E\left\| y_{\varsigma }^n-y_{\varsigma }^m\right\| ^\textsf{p}\right) d\varsigma \right) , \end{aligned}$$
(24)

where \(\eta _6 = \tilde{M}_T^\textsf{p}t^{\textsf{p}q-1}\Big (\frac{{\textsf{p}-1}}{\textsf{p}q-1}\Big )^{\textsf{p}-1}+\tilde{K} C_\mathbb {H}^{\frac{\textsf{p}}{2}} t^{\textsf{p}\mathbb {H} - \frac{\textsf{p}}{2}} \tilde{M}_T^\textsf{p}t^{\frac{2\textsf{p}q-\textsf{p}-1}{2}}\Big (\frac{{\textsf{p}-2}}{2\textsf{p}q-\textsf{p}-2}\Big )^{\frac{\textsf{p}-2}{2}}.\) Through the integration and the application of Jesen’s inequality (21) becomes

$$\begin{aligned}&\int _0^t\sup \limits _{0\le l\le \varsigma }\left( E\left\| x^{n+1}(l)-x^{m+1}(l)\right\| ^\textsf{p}+E\left\| y^{n+1}(l) -y^{m+1}(l)\right\| ^\textsf{p}\right) d\varsigma \\&\quad = \frac{\eta _6}{1-4^{\textsf{p}-1}M_{\mathcal {L}}^*}\int _0^t\int _0^\varsigma \left[ \vartheta \left( \sup \limits _{0\le \tilde{r} \le l}E\left\| x^n(\tilde{r})-x^m(\tilde{r})\right\| ^\textsf{p}\right) \right. \\&\left. \qquad +\,\hat{\vartheta }\left( \sup \limits _{0\le \tilde{r} \le l}E\left\| y^n(\tilde{r})-y^m(\tilde{r})\right\| ^\textsf{p}\right) \right] dld\varsigma \\&\quad \le \frac{\eta _6}{1-4^{\textsf{p}-1}M_{\mathcal {L}}^*} \int _0^t\varsigma \int _0^\varsigma \left[ \vartheta \left( \sup \limits _{0\le \tilde{r} \le l}E\left\| x^n(\tilde{r})-x^m(\tilde{r})\right\| ^\textsf{p}\right) \right. \\&\qquad \left. +\,\hat{\vartheta }\left( \sup \limits _{0\le \tilde{r} \le l}E\left\| y^n(\tilde{r})-y^m(\tilde{r})\right\| ^\textsf{p}\right) \right] \frac{1}{\varsigma }dld\varsigma \\&\quad \le \frac{\eta _6}{1-4^{\textsf{p}-1}M_{\mathcal {L}}^*} t\left[ \int _0^t\vartheta \left( \int _0^\varsigma \sup \limits _{0\le \tilde{r} \le l}E\left\| x^n(\tilde{r})-x^m(\tilde{r})\right\| ^\textsf{p}\frac{1}{\varsigma }dl\right) \right. \\&\left. \qquad +\,\hat{\vartheta }\left( \int _0^\varsigma \sup \limits _{0\le \tilde{r} \le l}E\left\| x^n(\tilde{r})-x^m(\tilde{r})\right\| ^\textsf{p}\frac{1}{\varsigma }dl\right) \right] d\varsigma . \end{aligned}$$

Then

$$\begin{aligned} \Psi _{n+1, m+1}(t)\le \frac{\eta _6}{1-4^{\textsf{p}-1}M_{\mathcal {L}}^*} \int _0^t \big (\vartheta +\hat{\vartheta }\big )(\Psi _{n,m}(\varsigma ))d\varsigma , \end{aligned}$$
(25)

where

$$\begin{aligned} \Psi _{n,m}(t) = \dfrac{\int _0^t\big [\big (\sup \nolimits _{0\le \tilde{r} \le l}E\left\| x^n(\tilde{r})-x^m(\tilde{r})\right\| ^\textsf{p}\big )+\big (\sup \nolimits _{0\le \tilde{r} \le l}E\left\| y^n(\tilde{r})-y^m(\tilde{r})\right\| ^\textsf{p}\big )\big ]d\varsigma }{t}. \end{aligned}$$

From (20), one can see that

$$\begin{aligned} \sup \limits _{n,m}\Psi _{n,m}(t) < \infty . \end{aligned}$$

Using Fatou’s lemma and taking limits on both sides of the inequality (22), one can get

$$\begin{aligned} \Psi (t) = \frac{\eta _6}{1-4^{\textsf{p}-1}M_{\mathcal {L}}^*}\int _0^t\big (\vartheta +\hat{\vartheta }\big )(\Psi (\varsigma ))d\varsigma . \end{aligned}$$

Now, applying the Lemma 2.4., it says that \(\Psi (t) =0\) for any \(t \in \hat{J}\). Thus, \(\{x^n(t), n \in N\}\) is a Cauchy sequence in \(L^\textsf{p}(\Omega , \mathcal {H})\). So there is an \(x \in L^\textsf{p}(\Omega , \mathcal {H})\) such that

$$\begin{aligned} \lim \limits _{n \rightarrow \infty }\int _0^{\tilde{T}}\sup \limits _{0\le \varsigma \le t} E\left\| x_\varsigma ^n -x_\varsigma \right\| ^\textsf{p} dt =0. \end{aligned}$$

Then \(E\left\| x(t)\right\| ^\textsf{p} \le \eta _5\). Further, setting \(n \rightarrow \infty \), for \( t \in \hat{J}\), one can have

$$\begin{aligned} E\left\| T_q(t-\varsigma )\big [\int _0^t\mathfrak {f}(t,x_\varsigma ^{n-1},y_\varsigma ^{n-1})-\mathfrak {f}(t,x_\varsigma ,y_\varsigma )\big ]d\varsigma \right\| ^\textsf{p}&\rightarrow 0,\\ E\left\| \int _{0}^{t}T_q(t-\varsigma )\big [\Lambda (t,x_\varsigma ^{n-1},y_\varsigma ^{n-1})-\Lambda (t,x_\varsigma ,y_\varsigma )\big ]d\tilde{Z}_Q^{\mathbb {H}}\varsigma \right\| ^\textsf{p}&\rightarrow 0. \end{aligned}$$

Hence, taking limits on both sides of (11),

$$\begin{aligned} x(t)&=S_q(t)\big [\varphi _0-\mathcal {N}(0,0,\varphi _0)\big ]+\mathcal {N}(t,x_t,y_t) +\int _0^tT_q(t-\varsigma )\mathfrak {f}(\varsigma ,x_\varsigma ,y_\varsigma )d\varsigma \\ {}&\qquad +\int _0^tT_q(t-\varsigma )\Lambda (\varsigma ,x_\varsigma ,y_\varsigma )d\tilde{Z}_Q^{\mathbb {H}}(\varsigma ). \end{aligned}$$

Thus x(t) is a mild solution of (1) on the interval \(\hat{J}\) and similarly one can prove that y(t) is also a mild solution.

Step 3. Uniqueness of the solution

Set \(x,z \in L^\textsf{p}(\Omega ,\mathcal {H})\) are solutions of (1) on some interval \(\hat{J}\) and \(M_{\mathcal {L}}^* < \frac{1}{3^{\textsf{p}-1}}\). Thus uniqueness is obvious for \(t \in \hat{J}\), one can have

$$\begin{aligned} E\left\| x_t-z_t\right\| ^\textsf{p} \le \frac{\eta _6}{1-4^{\textsf{p}-1}M_{\mathcal {L}}^*}\int _0^t \vartheta (E\left\| x_\varsigma -z_\varsigma \right\| ^\textsf{p})d\varsigma . \end{aligned}$$

By utilizing Bihari’s inequality, one can obtain

$$\begin{aligned} \sup \limits _{t\in [0,\tilde{T}]}E\left\| x_t-z_t\right\| ^\textsf{p} =0, 0\le t \le \tilde{T}. \end{aligned}$$

Similarly uniqueness has also exist for the solution y(t). Hence, the proof. This shows the existence of stochastic disturbance in the visual perception trajectory of fish robot and robot driver.

Proof of second Theorem 3.2: From (12) and (14) one can compute the difference

$$\begin{aligned} x_{\epsilon }(t) - z_{\epsilon }(t)&=\big [\mathcal {N}^1(t,x_{\epsilon ,t},y_{\epsilon ,t})-\mathcal {N}^1(t,x_{\epsilon ,t},z_{\epsilon ,t})\big ]\\&\qquad +\epsilon \int _0^tT_q(t-\varsigma )\big [\mathfrak {f}^1(\varsigma ,x_{\epsilon ,\varsigma },y_{\epsilon ,\varsigma })-\tilde{\mathfrak {f}}(x_{\epsilon ,\varsigma },z_{\epsilon ,\varsigma })]d\varsigma \\ {}&\qquad +\epsilon ^{\mathbb {H}}\int _0^tT_q(t-\varsigma )\big [\Lambda ^1(\varsigma ,x_{\epsilon ,\varsigma },y_{\epsilon ,\varsigma })-\tilde{\Lambda }(x_{\epsilon ,\varsigma },z_{\epsilon ,\varsigma })\big ]d\tilde{Z}_Q^{\mathbb {H}}(\varsigma ). \end{aligned}$$

Thus, for \(\tilde{u} \in \hat{J}\), we acquired

$$\begin{aligned}&\sup \limits _{0 \le t \le \tilde{u}}\left\| x_{\epsilon }(t) - z_{\epsilon }(t)\right\| ^\textsf{p} \\&\quad \le \ 3^{\textsf{p}-1}\Bigg \{ \left\| \mathcal {N}^1(t,x_{\epsilon ,t},y_{\epsilon ,t})-\mathcal {N}^1(t,x_{\epsilon ,t}, z_{\epsilon ,t})\right\| ^\textsf{p}\\&\qquad +\epsilon ^\textsf{p} \sup \limits _{0 \le t \le \tilde{u}} \left\| \int _0^tT_q(t-\varsigma )\big [\mathfrak {f}^1(\varsigma ,x_{\epsilon ,\varsigma },y_{\epsilon ,\varsigma }) - \tilde{\mathfrak {f}}^1(x_{\epsilon ,\varsigma },z_{\epsilon ,\varsigma })\big ]d\varsigma \right\| ^\textsf{p}\\&\qquad +\epsilon ^{\textsf{p}\mathbb {H}} \sup \limits _{0 \le t \le \tilde{u}} \left\| \int _0^t T_q(t-\varsigma )\big [\Lambda ^1(\varsigma ,x_{\epsilon ,\varsigma },y_{\epsilon ,\varsigma }) - \tilde{\Lambda }^1(x_{\epsilon ,\varsigma },z_{\epsilon ,\varsigma })\big ]d\tilde{Z}_Q^{\mathbb {H}}(\varsigma )\right\| ^\textsf{p}\Bigg \}\\&\quad \le \ 3^{\textsf{p}-1}\Bigg \{ \left\| \mathcal {N}^1(t,x_{\epsilon ,t},y_{\epsilon ,t})-\mathcal {N}^1(t,x_{\epsilon ,t},z_{\epsilon ,t})\right\| ^\textsf{p}+ \pi _1+\pi _2\Bigg \}, \end{aligned}$$

where \(\pi _1\) is given below and subsequent estimation follows.

$$\begin{aligned} \pi _1&= 2^{\textsf{p}-1}\epsilon ^\textsf{p} \sup \limits _{0 \le t \le \tilde{u}} \left\| \int _0^t T_q(t-\varsigma )\big [\mathfrak {f}^1(\varsigma ,x_{\epsilon ,\varsigma },y_{\epsilon ,\varsigma })-\mathfrak {f}^1(\varsigma ,x_{\epsilon ,\varsigma },z_{\epsilon ,\varsigma })\right. \\&\quad +\left. \mathfrak {f}^1(\varsigma ,x_{\epsilon ,\varsigma },z_{\epsilon ,\varsigma }) - \tilde{\mathfrak {f}}^1(x_{\epsilon ,\varsigma },z_{\epsilon ,\varsigma })\big ]d\varsigma \right\| ^\textsf{p}\\ {}&\le 4^{\textsf{p}-1} \epsilon ^\textsf{p} \sup \limits _{0 \le t \le \tilde{u}}\Big [\int _0^t(t-\varsigma )^{\frac{\textsf{p} (q-1)}{\textsf{p}-1}}d\varsigma \Big ]^{\textsf{p}-1}\tilde{M}_T^\textsf{p} \left\| \int _0^t\big [\mathfrak {f}^1(\varsigma ,x_{\epsilon ,\varsigma },y_{\epsilon ,\varsigma })-\mathfrak {f}^1(\varsigma ,x_{\epsilon ,\varsigma },z_{\epsilon ,\varsigma })\big ]\right\| ^\textsf{p}d\varsigma \\ {}&\quad +4^{\textsf{p}-1}\epsilon ^\textsf{p}\sup \limits _{0 \le t \le \tilde{u}} \Big [\int _0^t(t-\varsigma )^{\frac{\textsf{p} (q-1)}{\textsf{p}-1}}d\varsigma \Big ]^{\textsf{p}-1} \tilde{M}_T^\textsf{p} \left\| \int _0^t \big [\mathfrak {f}^1(\varsigma ,x_{\epsilon ,\varsigma },z_{\epsilon ,\varsigma })-\tilde{\mathfrak {f}}^1(x_{\epsilon ,\varsigma },z_{\epsilon ,\varsigma })\big ]\right\| ^\textsf{p}d\varsigma . \end{aligned}$$

By Holder inequality and (\(A_1\)) & (\(A_4\)), one can have

$$\begin{aligned}&E(\pi _1)\\&\quad \le 4^{\textsf{p}-1} \epsilon ^\textsf{p}\! \sup \limits _{0 \le t \le \tilde{u}}\Big [\int _0^t(t\!-\!\varsigma )^{\frac{\textsf{p} (q-1)}{\textsf{p}-1}}d\varsigma \Big ]^{\textsf{p}-1}\tilde{M}_T^\textsf{p} E\left\| \int _0^t\big [\mathfrak {f}^1(\varsigma ,x_{\epsilon ,\varsigma },y_{\epsilon ,\varsigma })\!-\!\mathfrak {f}^1(\varsigma ,x_{\epsilon ,\varsigma },z_{\epsilon ,\varsigma })\big ]\right\| ^\textsf{p}d\varsigma \\&\qquad +4^{\textsf{p}-1}\epsilon ^\textsf{p}\!\sup \limits _{0 \le t \le \tilde{u}} \Big [\int _0^t(t\!-\!\varsigma )^{\frac{\textsf{p} (q-1)}{\textsf{p}-1}}d\varsigma \Big ]^{\textsf{p}-1} \tilde{M}_T^\textsf{p}E\left\| \int _0^t \big [\mathfrak {f}^1(\varsigma ,x_{\epsilon ,\varsigma },z_{\epsilon ,\varsigma })\!-\!\tilde{\mathfrak {f}}^1(x_{\epsilon ,\varsigma },z_{\epsilon ,\varsigma })\big ]\right\| ^\textsf{p}d\varsigma \\&\quad \le 4^{\textsf{p}-1} \epsilon ^\textsf{p} \tilde{u}^{\textsf{p}q-1}\Big (\frac{{\textsf{p}-1}}{\textsf{p}q-1}\Big )^{\textsf{p}-1} \tilde{M}_T^\textsf{p} \int _0^{\tilde{u}}\big (\vartheta \big [E\left\| x_{\epsilon ,\varsigma }\!-\!y_{\epsilon ,\varsigma }\big ]\right\| ^\textsf{p}+\hat{\vartheta } \big [E\left\| x_{\epsilon ,\varsigma }\!-\!z_{\epsilon ,\varsigma }\big ]\right\| ^\textsf{p}\big )d\varsigma \\&\qquad +\,4^{\textsf{p}-1}\epsilon ^\textsf{p} \tilde{u}^{\textsf{p}q}\Big (\frac{{\textsf{p}-1}}{\textsf{p}q-1}\Big )^{\textsf{p}-1}\tilde{M}_T^\textsf{p}E\sup \limits _{0 \le t \le \tilde{u}}\left\| \frac{1}{t}\int _0^t \big [\mathfrak {f}^1(\varsigma ,x_{\epsilon ,\varsigma },z_{\epsilon ,\varsigma })-\tilde{\mathfrak {f}}^1(x_{\epsilon ,\varsigma },z_{\epsilon ,\varsigma })\big ]\right\| ^\textsf{p}d\varsigma \\&\quad \le 4^{\textsf{p}-1} \epsilon ^\textsf{p} \tilde{u}^{\textsf{p}q-1}\Big (\frac{{\textsf{p}-1}}{\textsf{p}q-1}\Big )^{\textsf{p}-1} \tilde{M}_T^\textsf{p} \int _0^{\tilde{u}}\big (\vartheta \big [E\left\| x_{\epsilon ,\varsigma }-y_{\epsilon ,\varsigma }\big ]\right\| ^\textsf{p}+\hat{\vartheta } \big [E\left\| x_{\epsilon ,\varsigma }-y_{\epsilon ,\varsigma }\big ]\right\| ^\textsf{p}\big )d\varsigma \\&\qquad +\,4^{\textsf{p}-1}\epsilon ^\textsf{p} \tilde{u}^{\textsf{p}q}\Big (\frac{{\textsf{p}-1}}{\textsf{p}q-1}\Big )^{\textsf{p}-1}\tilde{M}_T^\textsf{p}\sup \limits _{0 \le t \le \tilde{u}}\Big \{a_1(t)\big [1+ \sup \limits _{0 \le \varsigma \le t}\big (\left\| x_{\epsilon ,\varsigma }\right\| ^\textsf{p}+\left\| z_{\epsilon .\varsigma }\right\| ^\textsf{p}\big )\big ]\Big \}\\&\quad \le 4^{\textsf{p}-1} \epsilon ^\textsf{p}\tilde{u}^{\textsf{p}q-1}\Big (\frac{{\textsf{p}-1}}{\textsf{p}q-1}\Big )^{\textsf{p}-1}\tilde{M}_T^\textsf{p} \int _0^{\tilde{u}}\big (\vartheta \big [E \left\| x_{\epsilon ,\varsigma }-y_{\epsilon ,\varsigma }\right\| ^\textsf{p}\big ]+\hat{\vartheta }\big [E \left\| x_{\epsilon ,\varsigma }-z_{\epsilon ,\varsigma }\right\| ^\textsf{p}\big ]\big )d\varsigma \\&\qquad +\,4^{\textsf{p}-1}\epsilon ^\textsf{p} \tilde{u}^{\textsf{p}q}\Big (\frac{{\textsf{p}-1}}{\textsf{p}q-1}\Big )^{\textsf{p}-1}\tilde{M}_T^\textsf{p}a_1(\tilde{u})\big [1+ \sup \limits _{0 \le t \le \tilde{u}}\big (\left\| x_{\epsilon ,\varsigma }\right\| ^\textsf{p}+\left\| z_{\epsilon .\varsigma }\right\| ^\textsf{p}\big )\big ]. \end{aligned}$$

Through the properties of solutions, we know that \(\left\| x_0(t)\right\| ^\textsf{p} < \infty \), then for every \(t \ge 0\), \(\left\| x(t)\right\| ^\textsf{p} < \infty \). This is coupled with the reality that \(\lim \nolimits _{\tilde{T}_1 \rightarrow \infty }a_1(\tilde{T}_1) =0\).Hence,

$$\begin{aligned} E(\pi _1)&\le 4^{\textsf{p}-1} \epsilon ^\textsf{p}\tilde{u}^{\textsf{p}q-1}\Big (\frac{{\textsf{p}-1}}{\textsf{p}q-1}\Big )^{\textsf{p}-1}\tilde{M}_T^\textsf{p} \int _0^{\tilde{u}}\big (\vartheta \big [E\left\| x_{\epsilon ,\varsigma }-y_{\epsilon ,\varsigma }\right\| ^\textsf{p}\big ]\nonumber \\&\qquad +\hat{\vartheta }\big [E\left\| x_{\epsilon ,\varsigma }-z_{\epsilon ,\varsigma }\right\| ^\textsf{p}\big ]\big )d\varsigma +4^{\textsf{p}-1}\epsilon ^\textsf{p}\tilde{M}_T^\textsf{p} \eta _7, \end{aligned}$$
(26)

where \(\eta _7 =\tilde{u}^{\textsf{p}q}\Big (\frac{{\textsf{p}-1}}{\textsf{p}q-1}\Big )^{\textsf{p}-1}a_1(\tilde{u})\big [1+ \sup \limits _{0 \le t \le \tilde{u}}\) \(\big [1+ \sup \limits _{0 \le t \le \tilde{u}}\big (\left\| x_{\epsilon ,\varsigma }\right\| ^\textsf{p}+\left\| z_{\epsilon .\varsigma }\right\| ^\textsf{p}\big )\big ]\). Following the above procedure, one can get

$$\begin{aligned} E(\pi _2)&\le 4^{\textsf{p}-1}\epsilon ^{\textsf{p}\mathbb {H}}\tilde{K}C_\mathbb {H}^{\frac{\textsf{p}}{2}} \tilde{u}^{\textsf{p}\mathbb {H}- \frac{\textsf{p}}{2}} \tilde{M}_T^\textsf{p}\tilde{u}^{\frac{2\textsf{p}q-\textsf{p}-1}{2}}\Big (\frac{{\textsf{p}-2}}{2\textsf{p}q-\textsf{p}-2}\Big )^{\frac{\textsf{p}-2}{2}}\\&\qquad \times \, \sup \limits _{0 \le t \le \tilde{u} }E\left\| \int _0^{\tilde{u}}\big [\Lambda ^1(\varsigma ,x_{\epsilon ,\varsigma },y_{\epsilon ,\varsigma })-\Lambda ^1(\varsigma ,x_{\epsilon ,\varsigma },z_{\epsilon ,\varsigma })\big ]\right\| ^\textsf{p}d\varsigma \\&\qquad +\,4^{\textsf{p}-1}\epsilon ^{\textsf{p}\mathbb {H}}a_2(\tilde{u}) \tilde{K} C_\mathbb {H}^{\frac{\textsf{p}}{2}} \tilde{u}^{\textsf{p}\mathbb {H} - \frac{\textsf{p}}{2}} \tilde{M}_T^\textsf{p}\tilde{u}^{\frac{2\textsf{p}q-\textsf{p}-1}{2}}\Big (\frac{{\textsf{p}-2}}{2\textsf{p}q-\textsf{p}-2}\Big )^{\frac{\textsf{p}-2}{2}}\\&\qquad \times \, \sup \limits _{0 \le t \le \tilde{u}}E\left\| \int _0^{\tilde{u}}\big [\Lambda ^1(\varsigma ,x_{\epsilon ,\varsigma },z_{\epsilon ,\varsigma })-\tilde{\Lambda }^1(x_{\epsilon ,\varsigma },z_{\epsilon ,\varsigma })\big ]\right\| ^\textsf{p}d\varsigma \\&= 4^{\textsf{p}-1} \epsilon ^{\textsf{p}\mathbb {H}}\tilde{K} C_\mathbb {H}^{\frac{\textsf{p}}{2}} \tilde{u}^{\textsf{p}\mathbb {H} - \frac{\textsf{p}}{2}} \tilde{M}_T^\textsf{p}\tilde{u}^{\frac{2\textsf{p}q-\textsf{p}-1}{2}}\Big (\frac{{\textsf{p}-2}}{2\textsf{p}q-\textsf{p}-2}\Big )^{\frac{\textsf{p}-2}{2}}\\&\qquad \times \, \sup \limits _{0 \le t \le \tilde{u} }E\left\| \int _0^{\tilde{u}}\big [\Lambda ^1(\varsigma ,x_{\epsilon ,\varsigma },y_{\epsilon ,\varsigma })-\Lambda ^1(\varsigma ,x_{\epsilon ,\varsigma },z_{\epsilon ,\varsigma })\big ]\right\| ^\textsf{p}d\varsigma \\&\qquad +\,4^{\textsf{p}-1}\epsilon ^{\textsf{p}\mathbb {H}}a_2(\tilde{u}) \tilde{K} C_\mathbb {H}^{\frac{\textsf{p}}{2}} \tilde{u}^{\textsf{p}\mathbb {H} - \frac{\textsf{p}}{2}} \tilde{M}_T^\textsf{p}\tilde{u}^{\frac{2\textsf{p}q-\textsf{p}+1}{2}}\Big (\frac{{\textsf{p}-2}}{2\textsf{p}q-\textsf{p}-2}\Big )^{\frac{\textsf{p}-2}{2}}\Big )\\&\qquad \times \, \sup \limits _{0 \le t \le \tilde{u} }E\left\| \frac{1}{t}\int _0^{\tilde{u}} \big [\Lambda ^1(\varsigma ,x_{\epsilon ,\varsigma },z_{\epsilon ,\varsigma })-\tilde{\Lambda }^1(x_{\epsilon ,\varsigma },z_{\epsilon ,\varsigma })\big ]\right\| ^\textsf{p}d\varsigma \\&\le 4^{\textsf{p}-1} \epsilon ^{\textsf{p}\mathbb {H}}\tilde{K} C_\mathbb {H}^{\frac{\textsf{p}}{2}} \tilde{u}^{\textsf{p}\mathbb {H} - \frac{\textsf{p}}{2}} \tilde{M}_T^\textsf{p}\\&\qquad \times \,\tilde{u}^{\frac{2\textsf{p}q-\textsf{p}-1}{2}}\Big (\frac{{\textsf{p}-2}}{2\textsf{p}q-\textsf{p}-2}\Big )^{\frac{\textsf{p}-2}{2}}\Big )\int _0^{\tilde{u}}\big (\vartheta \big [ E\left\| x_{\epsilon ,\varsigma }-y_{\epsilon ,\varsigma }\right\| ^\textsf{p}\big ]\\&\qquad +\,\hat{\vartheta }\big [ E\left\| x_{\epsilon ,\varsigma }-z_{\epsilon ,\varsigma }\right\| ^\textsf{p}\big ]\big )d\varsigma \\&\qquad +\,4^{\textsf{p}-1}\epsilon ^{\textsf{p}\mathbb {H}} \tilde{K} C_\mathbb {H}^{\frac{\textsf{p}}{2}} \tilde{u}^{\textsf{p}\mathbb {H} - \frac{\textsf{p}}{2}} \tilde{M}_T^\textsf{p}\tilde{u}^{\frac{2\textsf{p}q-\textsf{p}+1}{2}}\Big (\frac{{\textsf{p}-2}}{2\textsf{p}q-\textsf{p}-2}\Big )^{\frac{\textsf{p}-2}{2}}\Big )\\&\qquad \times \, a_2(\tilde{u})\big [1+ \sup \limits _{0 \le t \le \tilde{u}}\big (E\left\| x_{\epsilon ,\varsigma }\right\| ^\textsf{p}+E\left\| z_{\epsilon ,\varsigma }\right\| ^\textsf{p}\big )\big ]. \end{aligned}$$

Through the properties of solutions, we know that \(\left\| x_0(t)\right\| ^\textsf{p} < \infty \), then for any \(t \ge 0\), \(\left\| x(t)\right\| ^\textsf{p} < \infty \). This is coupled with the reality that \(\lim \limits _{\tilde{T}_1 \rightarrow \infty }a_2(\tilde{T}_1) =0\). Hence,

$$\begin{aligned} E(\pi _2)&\le 4^{\textsf{p}-1} \epsilon ^{\textsf{p}\mathbb {H}}\tilde{K} C_\mathbb {H}^{\frac{\textsf{p}}{2}} \tilde{u}^{\textsf{p}\mathbb {H} - \frac{\textsf{p}}{2}} \tilde{M}_T^\textsf{p}\tilde{u}^{\frac{2\textsf{p}q-\textsf{p}-1}{2}}\Big (\frac{{\textsf{p}-2}}{2\textsf{p}q-\textsf{p}-2}\Big )^{\frac{\textsf{p}-2}{2}}\Big )\nonumber \\ {}&\qquad \times \int _0^{\tilde{u}}\big (\vartheta \big [E \left\| x_{\epsilon ,\varsigma }-y_{\epsilon ,\varsigma }\right\| ^\textsf{p}+\hat{\vartheta }\big [E \left\| x_{\epsilon ,\varsigma }-z_{\epsilon ,\varsigma }\right\| ^\textsf{p}\big ]\big )d\varsigma \!+\!4^{\textsf{p}-1}\tilde{M}_T^\textsf{p}\epsilon ^{\textsf{p}\mathbb {H}} \eta _8, \end{aligned}$$
(27)

where \(\eta _8 = \tilde{K} C_\mathbb {H}^{\frac{\textsf{p}}{2}} \tilde{u}^{\textsf{p}\mathbb {H} - \frac{\textsf{p}}{2}} \tilde{u}^{\frac{2\textsf{p}q-\textsf{p}+1}{2}}\Big (\frac{{\textsf{p}-2}}{2\textsf{p}q-\textsf{p}-2}\Big )^{\frac{\textsf{p}-2}{2}}\Big ) a_2(\tilde{u})\big [1+ E\sup \limits _{0 \le t \le \tilde{u}} \big (\left\| x_{\epsilon ,\varsigma }\right\| ^\textsf{p}+\left\| z_{\epsilon ,\varsigma }\right\| ^\textsf{p}\big )\big ]\). From (23) and (24), one can find that

$$\begin{aligned}&\sup \limits _{0\le t \le \tilde{u}}E\left\| x_{\epsilon }(t)-z_{\epsilon }(t)\right\| ^\textsf{p}\\&\quad \le 3^{\textsf{p}-1}\Bigg \{M_{\mathcal {L}}\sup \limits _{0\le t \le \tilde{u}}E\left\| x_{\epsilon }(t)-z_{\epsilon }(t)\right\| ^\textsf{p}+ \Big [\epsilon ^{\textsf{p}}\tilde{u}^{\textsf{p}q-1}\Big (\frac{{\textsf{p}-1}}{\textsf{p}q-1}\Big ) ^{\textsf{p}-1}\tilde{M}_T^\textsf{p}\\&\qquad +\,\epsilon ^{\textsf{p}\mathbb {H}}\tilde{K} C_\mathbb {H}^{\frac{\textsf{p}}{2}} \tilde{u}^{\textsf{p}\mathbb {H} - \frac{\textsf{p}}{2}} \tilde{M}_T^\textsf{p}\tilde{u}^{\frac{2\textsf{p}q-\textsf{p}+1}{2}}\Big ]\\&\qquad \times \, \Big (\frac{{\textsf{p}-2}}{2\textsf{p}q-\textsf{p}-2}\Big )^{\frac{\textsf{p}-2}{2}}\Big ) \int _0^{\tilde{u}}\vartheta \big [E\left\| x_{\epsilon ,\varsigma }-y_{\epsilon ,\varsigma }\right\| ^\textsf{p}\big ]\\&\qquad +\,\hat{\vartheta }\big [E\left\| x_{\epsilon ,\varsigma }-z_{\epsilon ,\varsigma }\right\| ^\textsf{p}\big ]d\varsigma +\, 4^{\textsf{p}-1}\tilde{M}_T^\textsf{p}\Bigg (\epsilon ^{\textsf{p}}\eta _7+\epsilon ^{\textsf{p}\mathbb {H}}\eta _8\Bigg ) \Bigg \}. \end{aligned}$$
$$\begin{aligned}&\big (1-3^{\textsf{p}-1}M_{\mathcal {L}}\big )\sup \limits _{0\le t \le \tilde{u}}E\left\| x_{\epsilon }(t)-z_{\epsilon }(t)\right\| ^\textsf{p}\\&\quad \le 3^{\textsf{p}-1}\Bigg \{ \Big [\epsilon ^{\textsf{p}}\tilde{u}^{\textsf{p}q-1}\Big (\frac{{\textsf{p}-1}}{\textsf{p}q-1}\Big )^{\textsf{p}-1}\tilde{M}_T^\textsf{p}+\epsilon ^{\textsf{p}\mathbb {H}}\tilde{K} C_\mathbb {H}^{\frac{\textsf{p}}{2}} \tilde{u}^{\textsf{p}\mathbb {H} - \frac{\textsf{p}}{2}} \tilde{M}_T^\textsf{p}\\&\qquad \times \,\tilde{u}^{\frac{2\textsf{p}q-\textsf{p}+1}{2}}\Big (\frac{{\textsf{p}-2}}{2\textsf{p}q-\textsf{p}-2}\Big )^{\frac{\textsf{p}-2}{2}}\Big )\Big ]\int _0^{\tilde{u}}\big (\vartheta \big [E\left\| x_{\epsilon ,\varsigma }-y_{\epsilon ,\varsigma }\right\| ^\textsf{p}\\&\qquad +\hat{\vartheta }\big [E\left\| x_{\epsilon ,\varsigma }-z_{\epsilon ,\varsigma }\right\| ^\textsf{p}\big ]\big )d\varsigma +\,4^{\textsf{p}-1}\tilde{M}_T^\textsf{p}\Bigg (\epsilon ^{\textsf{p}}\eta _7+\epsilon ^{\textsf{p}\mathbb {H}}\eta _8\Bigg ) \Bigg \}.\\&\sup \limits _{0\le t \le \tilde{u}}E\left\| x_{\epsilon }(t)-z_{\epsilon }(t)\right\| ^\textsf{p}\\&\quad \le \frac{3^{\textsf{p}-1}}{\big (1-3^{\textsf{p}-1}M_{\mathcal {L}}\big )}\Bigg \{ \Big [\epsilon ^{\textsf{p}}\tilde{u}^{\textsf{p}q-1}\Big (\frac{{\textsf{p}-1}}{\textsf{p}q-1}\Big )^{\textsf{p}-1}\tilde{M}_T^\textsf{p}+\epsilon ^{\textsf{p}\mathbb {H}}\tilde{K} C_\mathbb {H}^{\frac{\textsf{p}}{2}}\\&\qquad \times \, \tilde{u}^{\textsf{p}\mathbb {H} - \frac{\textsf{p}}{2}} \tilde{M}_T^\textsf{p}\tilde{u}^{\frac{2\textsf{p}q-\textsf{p}-1}{2}}\Big (\frac{{\textsf{p}-2}}{2\textsf{p}q-\textsf{p}-2} \Big )^{\frac{\textsf{p}-2}{2}}\Big )\Big ] \int _0^{\tilde{u}}\big (\vartheta \big [E\left\| x_{\epsilon ,\varsigma }-y_{\epsilon ,\varsigma }\right\| ^\textsf{p}\big ] \\&\qquad +\,\hat{\vartheta }\big [E\left\| x_{\epsilon ,\varsigma }-y_{\epsilon ,\varsigma }\right\| ^\textsf{p}\big ]\big )d\varsigma +\,4^{\textsf{p}-1}\tilde{M}_T^\textsf{p}\Bigg (\epsilon ^{\textsf{p}}\eta _7+\epsilon ^{\textsf{p}\mathbb {H}}\eta _8\Bigg ) \Bigg \}. \end{aligned}$$

By the condition of concavity of \(\vartheta \), two constants \(\alpha \) and \(\beta \) such that \(\vartheta (x) \le \alpha x+\beta \), \(\forall x >0\) and \(\vartheta (0)=0\) are got. From that, one can obtain

$$\begin{aligned}&\sup \limits _{0\le t\le \tilde{u}}E\left\| x_{\epsilon }(t)-z_{\epsilon }(t)\right\| ^\textsf{p}\\&\quad \le \frac{3^{\textsf{p}-1}}{\big (1-3^{\textsf{p}-1}M_{\mathcal {L}}\big )}\Bigg \{ \Big [\epsilon ^{\textsf{p}}\tilde{u}^{\textsf{p}q-1}\Big (\frac{{\textsf{p}-1}}{\textsf{p}q-1}\Big )^{\textsf{p}-1}\tilde{M}_T^\textsf{p}\\&\qquad +\,\epsilon ^{\textsf{p}\mathbb {H}}\tilde{K} C_\mathbb {H}^{\frac{\textsf{p}}{2}} \tilde{u}^{\textsf{p}\mathbb {H} - \frac{\textsf{p}}{2}} \tilde{M}_T^\textsf{p}\tilde{u}^{\frac{2\textsf{p}q-\textsf{p}+1}{2}}\Big (\frac{{\textsf{p}-2}}{2\textsf{p}q-\textsf{p}-2} \Big )^{\frac{\textsf{p}-2}{2}}\Big )\Big ]\\&\qquad \times \,\alpha \int _0^{\tilde{u}}\big (\vartheta \big [E\left\| x_{\epsilon ,\varsigma } -y_{\epsilon ,\varsigma }\right\| ^\textsf{p}\big ]\\&\qquad +\,\hat{\vartheta }\big [E\left\| x_{\epsilon ,\varsigma } -y_{\epsilon ,\varsigma }\right\| ^\textsf{p}\big ]\big )d\varsigma +4^{\textsf{p}-1} \Big [\epsilon ^{\textsf{p}}\tilde{u}^{\textsf{p}q-1}\Big (\frac{{\textsf{p}-1}}{\textsf{p}q-1}\Big )^{\textsf{p}-1}\tilde{M}_T^\textsf{p}\\&\qquad +\,\epsilon ^{\textsf{p}\mathbb {H}}\tilde{K} C_\mathbb {H}^{\frac{\textsf{p}}{2}} \tilde{u}^{\textsf{p}\mathbb {H} - \frac{\textsf{p}}{2}} \tilde{M}_T^\textsf{p}\tilde{u}^{\frac{2\textsf{p}q-\textsf{p}+1}{2}}\Big (\frac{{\textsf{p}-2}}{2\textsf{p}q-\textsf{p}-2}\Big )^{\frac{\textsf{p}-2}{2}}\Big ]\beta + \tilde{M}_T^\textsf{p}\Bigg (\epsilon ^{\textsf{p}}\eta _7+\epsilon ^{\textsf{p}\mathbb {H}}\eta _8\Bigg )\Bigg \}.\\&\quad =\frac{3^{\textsf{p}-1}}{\big (1-3^{\textsf{p}-1}M_{\mathcal {L}}\big )}\Bigg \{\tilde{M}_T^\textsf{p} \Big [\epsilon ^{\textsf{p}}\tilde{u}^{\textsf{p}q-1}\Big (\frac{{\textsf{p}-1}}{\textsf{p}q-1}\Big )^{\textsf{p}-1}+\epsilon ^{\textsf{p}\mathbb {H}}\tilde{K} C_\mathbb {H}^{\frac{\textsf{p}}{2}}\\&\qquad \times \, \tilde{u}^{\textsf{p}\mathbb {H} - \frac{\textsf{p}}{2}} \tilde{u}^{\frac{2\textsf{p}q-\textsf{p}+1}{2}}\Big (\frac{{\textsf{p}-2}}{2\textsf{p}q-\textsf{p}-2}\Big )^{\frac{\textsf{p}-2}{2}}\Big )\Big ]\alpha \int _0^{\tilde{u}}\big (\vartheta \big [E\left\| x_{\epsilon ,\varsigma }-y_{\epsilon ,\varsigma }\right\| ^\textsf{p}\big ]\\&\qquad +\hat{\vartheta }\big [E\left\| x_{\epsilon ,\varsigma }-y_{\epsilon ,\varsigma }\right\| ^\textsf{p}\big ]\big )d\varsigma \\&\quad +\,4^{\textsf{p}-1}\tilde{M}_T^\textsf{p}\Big [\Big \{\epsilon ^{\textsf{p}}\tilde{u}^{\textsf{p}q-1}\Big (\frac{{\textsf{p}-1}}{\textsf{p}q-1}\Big )^{\textsf{p}-1}+\epsilon ^{\textsf{p}\mathbb {H}}\tilde{K} C_\mathbb {H}^{\frac{\textsf{p}}{2}}\\&\quad \times \, \tilde{u}^{\textsf{p}\mathbb {H} - \frac{\textsf{p}}{2}} \tilde{u}^{\frac{2\textsf{p}q-\textsf{p}+1}{2}}\Big (\frac{{\textsf{p}-2}}{2\textsf{p}q-\textsf{p}-2}\Big ) ^{\frac{\textsf{p}-2}{2}} \Big \}\beta + \Bigg (\epsilon ^{\textsf{p}}\eta _7+\epsilon ^{\textsf{p}\mathbb {H}}\eta _8\Bigg )\Big ]\Bigg \}. \end{aligned}$$

Let \(\hat{r} = \epsilon ^{\textsf{p}}\tilde{u}^{\textsf{p}q-1}\Big (\frac{{\textsf{p}-1}}{\textsf{p}q-1}\Big )^{\textsf{p}-1}+\epsilon ^{\textsf{p}\mathbb {H}}\tilde{K} C_\mathbb {H}^{\frac{\textsf{p}}{2}} \tilde{u}^{\textsf{p}\mathbb {H} - \frac{\textsf{p}}{2}} \tilde{u}^{\frac{2\textsf{p}q-\textsf{p}+1}{2}}\Big (\frac{{\textsf{p}-2}}{2\textsf{p}q-\textsf{p}-2}\Big )^{\frac{\textsf{p}-2}{2}}\Big ).\) By Gronwall inequality,

$$\begin{aligned}&\sup \limits _{0\le t \le \tilde{u}}E\left\| x_{\epsilon }(t)-z_{\epsilon }(t)\right\| ^\textsf{p}\\&\quad \le \tilde{M}_T^\textsf{p}\frac{3^{\textsf{p}-1}}{\big (1-3^{\textsf{p}-1}M_{\mathcal {L}}\big )}\Bigg [(\hat{r}\beta +\Bigg (\epsilon ^{\textsf{p}}\eta _7+\epsilon ^{\textsf{p}\mathbb {H}}\eta _8\Bigg )\Bigg ]ex\textsf{p}\left( \frac{3^{\textsf{p}-1}}{\big (1-3^{\textsf{p}-1}M_{\mathcal {L}}\big )}\tilde{M}_T^\textsf{p}\frac{\hat{r}}{t}\alpha \right) . \end{aligned}$$

Set \(0<b <1\) and \(\mathcal {L} >0\) such that for each \(t\in [0,\mathcal {L}\epsilon ^{-b}] \subset \hat{J}\),

$$\begin{aligned} \sup \limits _{0\le t \le \tilde{u}}E\left\| x_{\epsilon }(t)-z_{\epsilon }(t)\right\| ^\textsf{p} \le \eta _9 \mathcal {L}\epsilon ^{1-b}, \end{aligned}$$
$$\begin{aligned} \text {where the constant} \ \ \eta _9\!&=\!\tilde{M}_T^\textsf{p}\frac{3^{\textsf{p}\!-\!1}}{\big (1\!-\!3^{\textsf{p}\!-\!1}M_{\mathcal {L}}\big )}\Bigg [\left( \frac{\hat{r}}{\epsilon ^{1\!-\!b}}\beta \right) \!+\!\Bigg (\epsilon ^{\textsf{p}(1\!-\!b)}\eta _7\!+\!\epsilon ^{\textsf{p}\mathbb {H}(1\!-\!b)}\eta _8\Bigg )\Bigg ]\\&\quad \times \,\exp \left( \frac{3^{\textsf{p}-1}}{\big (1-3^{\textsf{p}-1}M_{\mathcal {L}}\big )}\tilde{M}_T^\textsf{p}\frac{\hat{r}}{t\epsilon ^{b-1}}\alpha \right) . \end{aligned}$$

i.e., \(\tau _1 >0\) and \(\tau _2 >0\) are the given number, put \(\epsilon _1 \in (0,\epsilon _0]\) such that for every \(\epsilon \in (0,\epsilon _1]\) and for each \(t \in [0,\mathcal {L}\epsilon ^{-b}]\),

$$\begin{aligned} \sup \limits _{0 \le t \le \tilde{u}}E\left\| x_{\epsilon }(t) - z_{\epsilon }(t)\right\| ^\textsf{p} \le \tau _1. \end{aligned}$$
(28)

Similarly one can get,

$$\begin{aligned} \sup \limits _{0 \le t \le \tilde{u}}E\left\| y_{\epsilon }(t) - \tilde{z}_{\epsilon }(t)\right\| ^\textsf{p} \le \tau _2. \end{aligned}$$
(29)

Hence the proof.

Proof of Theorem 3.6

For \(0 \le t \le \tilde{T}\), by assumption for x(t) and y(t), one can get

$$\begin{aligned} x(t)&= S_q(t)\big [(\phi _0-\mathcal {N}(0,0,\varphi _0))\big ]+\mathcal {N}^1(t,x_t,y_t)+\int _0^tT_q(t-\varsigma \mathfrak {f}^1(\varsigma ,x_\varsigma ,y_\varsigma )d\varsigma \\ {}&\qquad +\int _0^tT_q(t-\varsigma )\Lambda ^1(\varsigma ,x_\varsigma ,y_\varsigma )d\tilde{Z}_Q^{\mathbb {H}}(\varsigma ).\\ y(t)&= S_q(t)\big [(\hat{\phi }_0-\mathcal {N}(0,0,\hat{\varphi }_0))\big ]+\mathcal {N}^2(t,x_t,y_t)+\int _0^tT_q(t-\varsigma \mathfrak {f}^2(\varsigma ,x_\varsigma ,y_\varsigma )d\varsigma \\&\qquad +\int _0^tT_q(t-\varsigma )\Lambda ^2(\varsigma ,x_\varsigma ,y_\varsigma )d\tilde{Z}_Q^{\mathbb {H}}(\varsigma ). \end{aligned}$$

Through the earlier evaluation,

$$\begin{aligned}&E\left\| x(t)\right\| ^\textsf{p}\\&\quad \le \frac{4^{\textsf{p}-1}}{\left( 1-4^{\textsf{p}-1}M_{\mathcal {L}}^*\right) }\Bigg \{\tilde{M}_RE\left\| \phi _0-\mathcal {N}^1(0,0,\phi _0)\right\| ^\textsf{p}+\tilde{M}_T^\textsf{p} \Bigg [t^{\textsf{p}q-1}\left( \frac{{\textsf{p}-1}}{\textsf{p}q-1}\right) ^{\textsf{p}-1}\\&\qquad +\tilde{K} C_\mathbb {H}^{\frac{\textsf{p}}{2}} t^{\textsf{p}\mathbb {H} \!-\! \frac{\textsf{p}}{2}} t^{\frac{2\textsf{p}q\!-\!\textsf{p}\!-\!1}{2}}\left( \frac{{\textsf{p}\!-\!2}}{2\textsf{p}q\!-\!\textsf{p}-2}\right) ^{\frac{\textsf{p}\!-\!2}{2}}\Bigg ]\int _0^t \big [\vartheta (E\left\| x_\varsigma \right\| ^\textsf{p})\!+\!\hat{\vartheta }(E\left\| y_\varsigma \right\| ^\textsf{p})\big ]d\varsigma \Bigg \}.\\&E\left\| y(t)\right\| ^\textsf{p}\\&\quad \le \frac{4^{\textsf{p}-1}}{\left( 1-4^{\textsf{p}-1}M_{\mathcal {L}}^*\right) }\Bigg \{\tilde{M}_RE\left\| \hat{\phi }_0-\mathcal {N}^2(0,0,\hat{\phi }i_0)\right\| ^\textsf{p}+\tilde{M}_T^\textsf{p} \Bigg [t^{\textsf{p}q-1}\left( \frac{{\textsf{p}-1}}{\textsf{p}q-1}\right) ^{\textsf{p}-1}\\&\qquad +\tilde{K} C_\mathbb {H}^{\frac{\textsf{p}}{2}} t^{\textsf{p}\mathbb {H} \!-\! \frac{\textsf{p}}{2}} t^{\frac{2\textsf{p}q\!-\!\textsf{p}\!-\!1}{2}}\left( \frac{{\textsf{p}\!-\!2}}{2\textsf{p}q\!-\!\textsf{p}\!-\!2}\right) ^{\frac{\textsf{p}\!-\!2}{2}}\Bigg ]\int _0^t \big [\vartheta (E\left\| x_\varsigma \right\| ^\textsf{p})\!+\!\hat{\vartheta }(E\left\| y_\varsigma \right\| ^\textsf{p})\big ]d\varsigma \Bigg \}. \end{aligned}$$

Let

$$\begin{aligned} \vartheta _1(\tilde{u})&=\frac{4^{\textsf{p}-1}}{\left( 1-4^{\textsf{p}-1}\right) }\tilde{M}_T^\textsf{p} \Bigg [t^{\textsf{p}q-1}\left( \frac{{\textsf{p}-1}}{\textsf{p}q-1}\right) ^{\textsf{p}-1}\\&\qquad +\,\tilde{K}C_\mathbb {H}^{\frac{\textsf{p}}{2}} t^{\textsf{p}\mathbb {H} - \frac{\textsf{p}}{2}}t^{\frac{2\textsf{p}q-\textsf{p}-1}{2}}\left( \frac{{\textsf{p}-2}}{2\textsf{p}q-\textsf{p}-2}\right) ^{\frac{\textsf{p}-2}{2}}\Bigg ]\vartheta (\tilde{u}), \end{aligned}$$

here \(\vartheta \) is concave increasing function from \(\mathcal {R}^{+}\) to \(\mathcal {R}^{+}\) satisfying \(\vartheta (0)=0, \vartheta (\tilde{u}) >0\) as \(\tilde{u} >0\) and \(\int _{0^{+}} \frac{d\tilde{u}}{\vartheta (\tilde{u})} = \infty \). Thus, \(\vartheta _1(\tilde{u})\) is clearly, a concave function from \(\mathcal {R}^{+}\) to \(\mathcal {R}^{+}\) for \(\vartheta _1(0)=0, \vartheta _1(\tilde{u}) >\vartheta (\tilde{u})\) as \(0\le \tilde{u} \le 1\) and \(\int _{0^{+}} \frac{d\tilde{u}}{\vartheta _1(\tilde{u})} = \infty \). Now for any \(\epsilon >0\), \(\epsilon _1 = \frac{1}{2} \epsilon \), we have \(\lim \nolimits _{\varsigma \rightarrow 0}\int _{\varsigma }^{\epsilon _1} \dfrac{d\tilde{u}}{\vartheta _1(\tilde{u})} = \infty .\) That is, \(\vartheta _1(\tilde{u})=0\) It is asymptotically if it is stable.

To analyse the stability: Consider there is a positive constant \(\hat{\delta } < \epsilon _1\), so that \(\int _{\varsigma }^{\epsilon _1} \dfrac{d\tilde{u}}{\vartheta _1(\tilde{u})} \ge \tilde{T}\).

$$\begin{aligned} \text { Let} \ \tilde{u}_0&= \frac{4^{\textsf{p}-1}}{\big (1-4^{\textsf{p}-1}\big )}\tilde{M}_RE\left\| \phi _0-\mathcal {N}(0,0,\phi _0)\right\| ^\textsf{p}\\ \tilde{u}(t)&=E\left\| x_t,y_t\right\| ^\textsf{p}, \ v(t) =1, \end{aligned}$$

when \(\tilde{u}_0 \le \hat{\delta } \le \epsilon _1\). (From Corollary 2.3 [47]), one can have

$$\begin{aligned} \int _{\tilde{u}_0}^{\epsilon _1}\frac{d\tilde{u}}{\vartheta _1(\tilde{u})}\ge \int _{\hat{\delta }}^{\epsilon _1}\frac{d\tilde{u}}{\vartheta _1(\tilde{u})}\ge \tilde{T} = \int _0^{\tilde{T}} \varrho (\varsigma )d\varsigma \end{aligned}$$

As, for each \(t \in \hat{J}\), we derived that \(\tilde{u}(t) \le \epsilon _1\) whenever \(\tilde{u}_0 \le \hat{\delta }\). Similarly one can prove the result for y(t) also. Hence, the proof. This result implies that stability of the visual trajectory of the robot driver exists.

Based on the previous analysis, one can drive that the stability of y(t) which represents the visual trajectory fish robot exists if the stability of the visual trajectory of the robot driver exists.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mattuvarkuzhali, C., Balasubramaniam, P. Existence and Stability Behaviour of FSDE Driven by Rosenblatt Process with the Application of Visual Perception of Fish Robot. Qual. Theory Dyn. Syst. 23, 96 (2024). https://doi.org/10.1007/s12346-023-00948-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00948-z

Keywords

Navigation