Skip to main content
Log in

On Existence and Continuity Results of Solution for Multi-time Scale Fractional Stochastic Differential Equation

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, we study four critical aspects of a new class of multi-time scale nonlinear fractional stochastic differential equations with fractional integral in the sense of Riemann Liouville. A primary goal of this paper is to investigate the existence, uniqueness, Ulam-Hyers stability, and continuity of the solutions under sufficient assumptions using the Banach contraction theorem. At the end of the paper, a specific example is provided to demonstrate the efficiency and effectiveness of the new results of this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, S.: The uniqueness result of solution to initial value problems of differential equations of variable-order. RACSAM 112, 407–423 (2018)

    MathSciNet  MATH  Google Scholar 

  2. Zhang, S., Hu, L.: Unique existence result of approximate solution to initial value problem for fractional differential equation of variable order involving the derivative arguments on the half-axis. J. Math. 7, 1–23 (2019)

    Google Scholar 

  3. Atangana, A., Algahtani, R.: Stability analysis of nonlinear thin viscous fluid sheet flow equation with local fractional variable order derivative. J. Comput. Theor. Nanosci. 13, 1–8 (2016)

    Google Scholar 

  4. Zheng, X., Wang, H.: An optimal-order numerical approximation to variable-order space-fractional diffusion equations on uniform or graded meshes. SIAM J. Numer. Anal. 58, 330–352 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Khan, H., Gómez-Aguilar, J.F., Alkhazzan, A., Khan, A.: A fractional order HIV-TB coinfection model with nonsingular Mittag-Leffler Law. Math. Meth. Appl. Sci. 43, 3786–3806 (2020)

    MathSciNet  MATH  Google Scholar 

  6. Kheiri, H., Jafari, M.: Stability analysis of a fractional order model for the HIV/AIDS epidemic in a patchy environment. J Comput. Appl. Math. 346, 323–339 (2019)

    MathSciNet  MATH  Google Scholar 

  7. Prashant, P., Yu-Ming, C., G’omez, A., Hadi, J., Ayman, A.: A novel fractional mathematical model of COVID-19 epidemic considering quarantine and latent time. Results Phys. 26, 104286 (2021)

    Google Scholar 

  8. Shaikh, A.S., Shaikh, I.N., Nisar, K.S.: A mathematical model of COVID-19 using fractional derivative: outbreak in India with dynamics of transmission and control. Adv. Differ. Equ. 20, 373 (2020)

    MathSciNet  MATH  Google Scholar 

  9. Anuj, B., Anjali, W.: Medical image enhancement using fractional derivatives. In: Advancements in Mathematics and its Emerging Areas. 2214, (2020)

  10. Manuel, H., Duarte, V., Paulo, G., Rui, M.: Fractional-order colour image processing. Mathematics 9, 457 (2021)

    Google Scholar 

  11. HongGuang, S., Yong, Z., Baleanu, D., et al.: A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear. Sci. Numer. Simulat. 64, 213–231 (2018)

    MATH  Google Scholar 

  12. Kumar, D., Baleanu, D.: Fractional calculus and its applications in physics. Front. Phys. 7, 81 (2019)

    Google Scholar 

  13. Anastassiou, George A.: Generalized fractional calculus-new advancements and applications. Springer, Cham (2021)

    MATH  Google Scholar 

  14. Anastassiou, G.A., Argyros, I.K.: Intelligent numerical methods: applications to fractional calculus. Springer, Cham (2016)

    MATH  Google Scholar 

  15. Georgiev, S.G.: Fractional dynamic calculus and fractional dynamic equations on time scales. Springer, Cham (2018)

    MATH  Google Scholar 

  16. Zhu, T.: Existence and uniqueness of positive solutions for fractional differential equations. Bound. Value Probl. 2019, 1–11 (2019)

    MathSciNet  Google Scholar 

  17. Zhang, K.: Positive solution of nonlinear fractional differential equations with Caputo-like counterpart hyper-Bessel operators. Math. Methods Appl. Sci. 43, 2845–2857 (2020)

    MathSciNet  MATH  Google Scholar 

  18. Aziz, K., Ramsha, S., Azmat, U.K.N.: Existence results of fuzzy delay impulsive fractional differential equation by fixed point theory approach. J. Function Spaces 2022, 13 (2022)

    MathSciNet  MATH  Google Scholar 

  19. Khan, H., Tunç, C., Baleanu, D., et al.: Inequalities for n-class of functions using the Saigo fractional integral operator. RACSAM 113, 2407–2420 (2019)

    MathSciNet  MATH  Google Scholar 

  20. Khan, H., Khan, A., Abdeljawad, T., Alkhazzan, A.: Existence results in Banach space for a nonlinear impulsive system. Adv. Differ. Equ. 2019, 1–16 (2019)

    MathSciNet  MATH  Google Scholar 

  21. Gambo, Y.Y., Ameen, R., Jarad, F., Abdeljawad, T.: Existence and uniqueness of solutions to fractional differential equations in the frame of generalized Caputo fractional derivatives. Adv. Differ. Equ. 2018, 1–13 (2018)

    MathSciNet  MATH  Google Scholar 

  22. von Renesse, M.K., Scheutzow, M.: Existence and uniqueness of solutions of stochastic functional differential equations. Random Oper. Stoch. Equ. 18, 267–284 (2010)

    MathSciNet  MATH  Google Scholar 

  23. Ahmadova, A., Mahmudov, N.I.: Ulam-Hyers stability of Caputo type fractional stochastic neutral differential equations. Statist. Probab. Lett. 168, 108949 (2021)

    MathSciNet  MATH  Google Scholar 

  24. Kinda, A., Ramsha, S.: Fractional Brownian motion for a system of fuzzy fractional stochastic differential equation. J. Math. 2022, 14 (2022)

    MathSciNet  MATH  Google Scholar 

  25. Abdulwasea, A., Jungang, W., Yufeng, N., Khalid, H.: A new stochastic split-step theta-nonstandard finite difference method for the developed svir epidemic model with temporary immunities and general incidence rates. Vaccines 10, 1682 (2022)

    Google Scholar 

  26. Carletti, M.: Numerical solution of stochastic differential problems in the biosciences. J. Comput. Appl. Math. 185, 422–440 (2006)

    MathSciNet  MATH  Google Scholar 

  27. El Karoui, N., Peng, S., Quenez, M.C.: Backward stochastic differential equations in finance. Math. Finance 7, 1–71 (1997)

    MathSciNet  MATH  Google Scholar 

  28. Koichi, U., Osama, M., Erfaneh, S., Junichiro, T., Masayuki, F.: Stochastic modelling and control of rainwater harvesting systems for irrigation during dry spells. J. Clean. Product. 88, 185–195 (2015)

    Google Scholar 

  29. Suleyman, S., Zafer, B., Mehmet, M.: Wong-Zakai method for stochastic differential equations in engineering. Therm. Sci. 25, S131–S142 (2021)

    Google Scholar 

  30. Seyfeddine, M., Yong, X.: On the existence and uniqueness of solutions for multidimensional fractional stochastic differential equations with variable order. Mathematics 9, 2106 (2021)

    Google Scholar 

  31. Wang, W., Cheng, S., Guo, Z., et al.: A note on the continuity for Caputo fractional stochastic differential equations. Chaos 30(7), 073106 (2020)

    MathSciNet  MATH  Google Scholar 

  32. Dung, N.T.: Fractional stochastic differential equations with applications to finance. J. Math. Anal. Appl. 397, 334–348 (2013)

    MathSciNet  MATH  Google Scholar 

  33. Liu, J., Xu, W.: An averaging result for impulsive fractional neutral stochastic differential equations. Appl. Math. Lett. 114, 106892 (2021)

    MathSciNet  MATH  Google Scholar 

  34. Abouagwa, M., Cheng, F., Li, J.: Impulsive stochastic fractional differential equations driven by fractional Brownian motion. Adv. Differ, Equ (2020)

    MATH  Google Scholar 

  35. Ding, X.L., Nieto, J.J.: Analytical solutions for multi-time scale fractional stochastic differential equations driven by fractional Brownian motion and their applications. Entropy 20, 63 (2018)

    MathSciNet  Google Scholar 

  36. Wang, D., Ding, X.L., Ahmad, B.: Existence and stability results for multi-time scale stochastic fractional neural networks. Adv. Differ. Equ. 2019, 1–12 (2019)

    MathSciNet  MATH  Google Scholar 

  37. Pedjeu, J.C., Ladde, G.S.: Stochastic fractional differential equations: modeling, method and analysis. Chaos Solitons Fract. 45, 279–293 (2012)

    MathSciNet  MATH  Google Scholar 

  38. Alkhazzan, A., Jiang, P., Baleanu, D., et al.: Stability and existence results for a class of nonlinear fractional differential equations with singularity. Math. Meth. Appl. Sci. 41, 9321–9334 (2018)

    MathSciNet  MATH  Google Scholar 

  39. Kilbas, Anatoly A., Srivastava, Hari M., Trujillo, Juan J.: Theory and applications of fractional differential equations. North-Holland Math. Stud. 204, 1–523 (2006)

    MathSciNet  MATH  Google Scholar 

  40. Jumarie, G.: On the representation of fractional Brownian motion as an integral with respect to \((dt)^a\). Appl. Math. Lett. 18(7), 739–748 (2005)

    MathSciNet  MATH  Google Scholar 

  41. Zhang, Z., Wei, Z.: A generalized Gronwall inequality and its application to fractional neutral evolution inclusions. J. Inequal. Appl. 45, 18 (2016)

    MathSciNet  MATH  Google Scholar 

  42. Shapiro, Joel H.: A Fixed-Point Farrago. Springer, Cham (2016)

    MATH  Google Scholar 

  43. Amita, D., Anoop, K.: Hyers-Ulam stability and existence of solution for hybrid fractional differential equation with p-Laplacian operator. Chaos Solitons Fract. 156, 111859 (2022)

    MathSciNet  MATH  Google Scholar 

  44. Amita, D., Anoop, K., Thabet, A., Aziz, K.: Stability analysis of solutions and existence theory of fractional Lagevin equation. Alex. Eng. J. 60(4), 3641–3647 (2021)

    Google Scholar 

  45. Tunç, O., Tunç, C.: On the asymptotic stability of solutions of stochastic differential delay equations of second order. J. Taibah Univ. Sci. 13(1), 875–882 (2019)

    MATH  Google Scholar 

  46. Tunç, C., Golmankhaneh, A.K.: On stability of a class of second alpha-order fractal differential equations. AIMS Math. 5(3), 2126–2142 (2020)

    MathSciNet  MATH  Google Scholar 

  47. Tunç, O., Atan, Ö., Tunç, C., Yao, J.C.: Qualitative analyses of integro-fractional differential equations with Caputo derivatives and retardations via the Lyapunov-Razumikhin method. Axioms 10(2), 58 (2021)

    Google Scholar 

  48. Bohner, M., Tunç, O., Tunç, C., Yao, J.C.: Qualitative analysis of Caputo fractional Integro-differential equations with constant delays. Comput. Appl. Math. 40(6), 214 (2021)

    MathSciNet  MATH  Google Scholar 

  49. Tunç, O., Tunç, C., Yao, J.C.: On the new qualitative results in integro-differential equations with Caputo fractional derivative and multiple kernels and delays. J. Nonlinear Convex Anal. 23(11), 2577–2591 (2022)

    MathSciNet  MATH  Google Scholar 

  50. Tunc, O., Tunc, C.: Solution estimates to Caputo proportional fractional derivative delay integro-differential equations. Rev. Real. Acad. Cienc. Exactas. Fis. Nat. Ser. A Mat. 117(6), 12 (2023)

    MathSciNet  MATH  Google Scholar 

  51. Salim, A., Mesri, F., Benchohra, M., Tunç, C.: Controllability of second order semilinear random differential equations in Fréchet spaces. Mediterr. J. Math. 20, 84 (2023). https://doi.org/10.1007/s00009-023-02299-0

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We are very grateful to the editor and the reviewers for their very helpful comments and careful reading of our manuscript.

Funding

This research was supported by National Natural Science Foundation of China (No.11971386), the National Key R &D Program of China (No.2020YFA0713603), and the NSF of Shaanxi Province (2020JM-153).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cemil Tunç.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of Theorem 3.3

In order to seek the existence and uniqueness of the solution to the system (1.2) in \({\mathcal {S}}\) for \(T>0\), we use the Banach fixed point theorem with the norm \(|{\mathcal {F}}(\tau )|=\underset{0<\tau \le T}{sup} E |{\mathcal {F}}(\tau )|^2<\infty \). Define the operator \({\mathcal {J}}X(\tau )\) as follows:

$$\begin{aligned} {\mathcal {J}}X(\tau )= & {} x_0+\frac{1}{\Gamma (\beta )}\int _{0}^{\tau }(\tau -\mu )^{\beta -1}{\mathcal {F}}(X_\mu ,\mu )d\mu \\{} & {} +\frac{1}{\Gamma (\beta )}\int _{0}^{\tau }(\tau -\mu )^{\beta -1}{\mathcal {U}}(X_\mu ,\mu )dB_\mu \\{} & {} +\frac{\Gamma (\alpha +1)}{\Gamma (\alpha +\beta -1)}\int _{0}^{\tau }(\tau -\mu )^{\alpha +\beta -2}\,\,{\mathcal {G}}(X_\mu ,\mu )d\mu . \end{aligned}$$

By Theorem 3.2, the operator \({\mathcal {J}}:{\mathcal {S}}\rightarrow {\mathcal {S}}\) is well defined. For \(X_\tau ,Y_\tau \in {\mathcal {S}}\) with \(x_0=y_0,\) we have

$$\begin{aligned} E |{\mathcal {J}}X_\tau -{\mathcal {J}}Y_\tau |^2\le & {} \frac{3}{\Gamma ^2(\beta )} E |\int _{0}^{\tau }(\tau -\mu )^{\beta -1}({\mathcal {F}}(X_\mu ,\mu )-{\mathcal {F}}(Y_\mu ,\mu ))d\mu |^2\nonumber \\{} & {} +\frac{3}{\Gamma ^2(\beta )} E |\int _{0}^{\tau }(\tau -\mu )^{\beta -1}({\mathcal {U}}(X_\mu ,\mu )-{\mathcal {U}}(Y_\mu ,\mu ))dB_\mu |^2\nonumber \\{} & {} +\frac{3\Gamma ^2(\alpha +1)}{\Gamma ^2(\alpha +\beta -1)} E |\int _{0}^{\tau }(\tau -\mu )^{\alpha +\beta -2}\,\,{\mathcal {G}}(X_\mu ,\mu )d\mu |^2\nonumber \\\le & {} \frac{3T{\mathcal {K}}}{\Gamma ^2(\beta )}\int _{0}^{\tau }(\tau -\mu )^{2\beta -2} E |X_\mu -Y_\mu |^2d\mu \nonumber \\{} & {} +\frac{3{\mathcal {K}}}{\Gamma ^2(\beta )}\int _{0}^{\tau }(\tau -\mu )^{2\beta -2} E |X_\mu -Y_\mu |^2d\mu \nonumber \\{} & {} +\frac{3T{\mathcal {K}}\Gamma ^2(\alpha +1)}{\Gamma ^2(\alpha +\beta -1)}\int _{0}^{\tau }(\tau -\mu )^{2\alpha +2\beta -4} E |X_\mu -Y_\mu |^2d\mu \nonumber \\\le & {} 3\lambda _1\int _{0}^{\tau }(\tau -\mu )^{\bar{\beta }_1-1} E |X_\mu -Y_\mu |^2d\mu \nonumber \\{} & {} +3\lambda _2\int _{0}^{\tau }(\tau -\mu )^{\bar{\beta }_2-1} E |X_\mu -Y_\mu |^2d\mu . \end{aligned}$$
(8.1)

Since, \(\alpha \in [\frac{1}{2},1), \beta \in (\frac{1}{2},1],\) hence, \(0<\bar{\beta }_1<1, -1<\bar{\beta }_2<1.\) Thus, we discuss the following two cases: Case 1: Let \( \bar{\beta }_1,\bar{\beta }_2\in (0,1).\) In this case, the two curves \(\frac{\tau ^{\bar{\beta }_1}}{\bar{\beta }_1},\frac{\tau ^{\bar{\beta }_2}}{\bar{\beta }_2},\) where \(0<\tau \le T<+\infty ,\) have the intersection \(T_*=(\frac{\bar{\beta }_1}{\bar{\beta }_2})^{\frac{1}{2-2\alpha }}, \frac{1}{2-2\alpha }\ge 1.\) Thus, we split [0, T] into two intervals \([0,T_*]\) and \([T_*,T],\) where \(0<T_*<T<+\infty .\) Now, if \(\tau \in [0,T_*],\) one can choose \(\bar{\beta }=\min \{\bar{\beta }_1,\bar{\beta }_2\}\) such that, for \(\lambda =\max \{\lambda _1,\lambda _2\},\) we have

$$\begin{aligned} \lambda _1\int _{0}^{\tau }(\tau -\mu )^{\bar{\beta }_1-1} E |X_\mu -Y_\mu |^2d\mu \le \lambda \int _{0}^{\tau }(\tau -\mu )^{\bar{\beta }-1} E |X_\mu -Y_\mu |^2d\mu ,\\ \lambda _2\int _{0}^{\tau }(\tau -\mu )^{\bar{\beta }_2-1} E |X_\mu -Y_\mu |^2d\mu \le \lambda \int _{0}^{\tau }(\tau -\mu )^{\bar{\beta }-1} E |X_\mu -Y_\mu |^2d\mu . \end{aligned}$$

Consequently, (8.1) can be written as

$$\begin{aligned} E |{\mathcal {J}}X_\tau -{\mathcal {J}}Y_\tau |^2\le & {} 6\lambda \int _{0}^{\tau }(\tau -\mu )^{\bar{\beta }-1} E |X_\mu -Y_\mu |^2d\mu \nonumber \\\le & {} 6\lambda \int _{0}^{\tau }(\tau -\mu )^{\bar{\beta }-1}\underset{0\le \mu \le T_*}{sup} E |X_\mu -Y_\mu |^2d\mu \nonumber \\\le & {} \frac{6\lambda T_*^{\bar{\beta }}}{\bar{\beta }}|X_\tau -Y_\tau |. \end{aligned}$$
(8.2)

Then, we directly get

$$\begin{aligned} E |{\mathcal {J}}^2X_\tau -{\mathcal {J}}^2Y_\tau |^2\le & {} 6\lambda \int _{0}^{\tau }(\tau -\mu )^{\bar{\beta }-1} E |{\mathcal {J}}X_\mu -{\mathcal {J}}Y_\mu |^2d\mu \\\le & {} 6\lambda \int _{0}^{\tau }(\tau -\mu )^{\bar{\beta }-1}\frac{6\lambda \,\mu ^{\bar{\beta }}}{\bar{\beta }}|X_\mu -Y_\mu | d\mu \\\le & {} \frac{(6\lambda )^2}{\bar{\beta }}|X_\tau -Y_\tau |\int _{0}^{\tau }(\tau -\mu )^{\bar{\beta }-1}\mu ^{\bar{\beta }}d\mu . \end{aligned}$$

To evaluate the integral on the right hand side, let \(\mu =\tau z\). Then,

$$\begin{aligned} \int _{0}^{\tau }(\tau -\mu )^{\bar{\beta }-1}\mu ^{\bar{\beta }}d\mu =\tau ^{2\bar{\beta }}\int _{0}^{1}(1-z)^{\bar{\beta }-1} z^{\bar{\beta }}dz=\frac{\tau ^{2\bar{\beta }}\,\Gamma (\bar{\beta })\Gamma (\bar{\beta }+1)}{\Gamma (2\bar{\beta }+1)}, \end{aligned}$$

where \(\int _{0}^{1}(1-z)^{\bar{\beta }-1} z^{\bar{\alpha }-1}dz=\frac{\Gamma (\bar{\beta })\Gamma (\bar{\alpha })}{\Gamma (\bar{\alpha }+\bar{\beta })},\) which leads to

$$\begin{aligned} E |{\mathcal {J}}^2X_\tau -{\mathcal {J}}^2Y_\tau |^2\le \frac{(6\lambda \,\Gamma (\bar{\beta }))^2\,T_*^{2\bar{\beta }}}{\Gamma (2\bar{\beta }+1)}|X_\tau -Y_\tau |. \end{aligned}$$
(8.3)

Repeating the same procedure, we get

$$\begin{aligned} E |{\mathcal {J}}^3X_\tau -{\mathcal {J}}^3Y_\tau |^2\le \frac{(6\lambda \,\Gamma (\bar{\beta }))^3\,T_*^{3\bar{\beta }}}{\Gamma (3\bar{\beta }+1)}|X_\tau -Y_\tau |. \end{aligned}$$
(8.4)

From (8.28.4), for \( m\ge 1, m\in \mathbb {N},\) we have

$$\begin{aligned} E |{\mathcal {J}}^mX_\tau -{\mathcal {J}}^mY_\tau |^2\le \frac{(6\lambda \,\Gamma (\bar{\beta }))^m\,T_*^{m\bar{\beta }}}{\Gamma (m\bar{\beta }+1)}|X_\tau -Y_\tau |. \end{aligned}$$
(8.5)

However, we have

$$\begin{aligned} \underset{0<\tau \le T_*}{sup} E |{\mathcal {J}}^mX_\tau -{\mathcal {J}}^mY_\tau |^2\le {\mathfrak {C}}_1\underset{0<\tau \le T_*}{sup} E |X_\tau -Y_\tau |^2, \end{aligned}$$

where \({\mathfrak {C}}_1=\frac{(6\lambda \,\Gamma (\bar{\beta }))^m\,T_*^{m\bar{\beta }}}{\Gamma (m\bar{\beta }+1)}.\) This means that

$$\begin{aligned} |{\mathcal {J}}^mX_\tau -{\mathcal {J}}^mY_\tau |\le {\mathfrak {C}}_1|X_\tau -Y_\tau |. \end{aligned}$$
(8.6)

Next, if \(\tau \in [T_*,T],\) one can choose \(\bar{\beta }=\max \{\bar{\beta }_1,\bar{\beta }_2\}\) such that, for \(\lambda =\max \{\lambda _1,\lambda _2\},\) we have

$$\begin{aligned} \lambda _1\int _{T_*}^{\tau }(\tau -\mu )^{\bar{\beta }_1-1} E |X_\mu -Y_\mu |^2d\mu \le \lambda \int _{T_*}^{\tau }(\tau -\mu )^{\bar{\beta }-1} E |X_\mu -Y_\mu |^2d\mu ,\\ \lambda _2\int _{T_*}^{\tau }(\tau -\mu )^{\bar{\beta }_2-1} E |X_\mu -Y_\mu |^2d\mu \le \lambda \int _{T_*}^{\tau }(\tau -\mu )^{\bar{\beta }-1} E |X_\mu -Y_\mu |^2d\mu . \end{aligned}$$

Consequently, (8.1) can be written as

$$\begin{aligned} E |{\mathcal {J}}X_\tau -{\mathcal {J}}Y_\tau |^2\le & {} 6\lambda \int _{T_*}^{\tau }(\tau -\mu )^{\bar{\beta }-1} E |X_\mu -Y_\mu |^2d\mu \\\le & {} 6\lambda \int _{T_*}^{\tau }(\tau -\mu )^{\bar{\beta }-1}\underset{T_*\le \mu \le T}{sup} E |X_\mu -Y_\mu |^2d\mu \\\le & {} \frac{6\lambda (T-T_*)^{\bar{\beta }}}{\bar{\beta }}|X_\tau -Y_\tau |. \end{aligned}$$

Then, we directly get

$$\begin{aligned} E |{\mathcal {J}}^2X_\tau -{\mathcal {J}}^2Y_\tau |^2\le & {} 6\lambda \int _{T_*}^{\tau }(\tau -\mu )^{\bar{\beta }-1} E |{\mathcal {J}}X_\mu -{\mathcal {J}}Y_\mu |^2d\mu \\\le & {} 6\lambda \int _{T_*}^{\tau }(\tau -\mu )^{\bar{\beta }-1}\frac{6\lambda \,(\mu -T_*)^{\bar{\beta }}}{\bar{\beta }}|X_\mu -Y_\mu |d\mu \\\le & {} \frac{(6\lambda )^2}{\bar{\beta }}|X_\tau -Y_\tau |\int _{T_*}^{\tau }(\tau -\mu )^{\bar{\beta }-1}(\mu -T_*)^{\bar{\beta }}d\mu . \end{aligned}$$

In order to evaluate the integral on the right hand side, let \(\mu -T_*=(\tau -T_*) z\). Then, we have

$$\begin{aligned} \int _{T_*}^{\tau }(\tau -\mu )^{\bar{\beta }-1}(\mu -T_*)^{\bar{\beta }}d\mu= & {} (\tau -T_*)^{2\bar{\beta }}\int _{0}^{1}(1-z)^{\bar{\beta }-1} z^{\bar{\beta }}dz\\= & {} \frac{(\tau -T_*)^{2\bar{\beta }}\,\Gamma (\bar{\beta })\Gamma (\bar{\beta }+1)}{\Gamma (2\bar{\beta }+1)}, \end{aligned}$$

which leads to

$$\begin{aligned} E |{\mathcal {J}}^2X_\tau -{\mathcal {J}}^2Y_\tau |^2\le \frac{(6\lambda \,\Gamma (\bar{\beta }))^2\,(T-T_*)^{2\bar{\beta }}}{\Gamma (2\bar{\beta }+1)}|X_\tau -Y_\tau |. \end{aligned}$$

Repeating the same calculations, for \( m\ge 1, m\in \mathbb {N},\) following is valid:

$$\begin{aligned} |{\mathcal {J}}^mX_\tau -{\mathcal {J}}^mY_\tau |\le {\mathfrak {C}}_2|X_\tau -Y_\tau |, \end{aligned}$$
(8.7)

where, \({\mathfrak {C}}_2=\frac{(6\lambda \,\Gamma (\bar{\beta }))^m\,(T-T_*)^{m\bar{\beta }}}{\Gamma (m\bar{\beta }+1)}.\) Case 2: Let \(\bar{\beta }_2\in (-1,0], \bar{\beta }_1\in (0,1).\) In this case, there is no an intersection point between the curves. Thus, for \(\tau \in [0,T],\) where \(T>0\) is arbitrary, we have

$$\begin{aligned} \lambda _1\int _{0}^{\tau }(\tau -\mu )^{\bar{\beta }_1-1} E |X_\mu -Y_\mu |^2d\mu \le \lambda \int _{0}^{\tau }(\tau -\mu )^{\bar{\beta }-1} E |X_\mu -Y_\mu |^2d\mu ,\\ \lambda _2\int _{0}^{\tau }(\tau -\mu )^{\bar{\beta }_2-1} E |X_\mu -Y_\mu |^2d\mu \le \lambda \int _{0}^{\tau }(\tau -\mu )^{\bar{\beta }-1} E |X_\mu -Y_\mu |^2d\mu , \end{aligned}$$

where \(\bar{\beta }=\bar{\beta }_1,\) and \(\lambda =\max \{\lambda _1,\lambda _2\}.\) Consequently, (8.1) can be written as

$$\begin{aligned} E |{\mathcal {J}}X_\tau -{\mathcal {J}}Y_\tau |^2\le & {} 6\lambda \int _{0}^{\tau }(\tau -\mu )^{\bar{\beta }-1} E |X_\mu -Y_\mu |^2d\mu \\\le & {} 6\lambda \int _{0}^{\tau }(\tau -\mu )^{\bar{\beta }-1}\underset{0\le \mu \le T}{sup} E |X_\mu -Y_\mu |^2d\mu \\\le & {} \frac{6\lambda T^{\bar{\beta }}}{\bar{\beta }}|X_\tau -Y_\tau |. \end{aligned}$$

Similarly, for \( m\ge 1, m\in \mathbb {N},\) we can obtain

$$\begin{aligned} |{\mathcal {J}}^mX_\tau -{\mathcal {J}}^mY_\tau |\le {\mathfrak {C}}_3|X_\tau -Y_\tau |, \end{aligned}$$
(8.8)

where \({\mathfrak {C}}_3=\frac{(6\lambda \,\Gamma (\bar{\beta }))^m\,T^{m\bar{\beta }}}{\Gamma (m\bar{\beta }+1)}.\) From (8.6), (8.7) and (8.8), as long as the chosen \(\bar{\beta }>0,\) we find \({\mathfrak {C}}_i\rightarrow 0\) as \(m\rightarrow \infty ,\) for \(i\in \mathbb {N}_1^3.\) Consequently, for sufficiently large m, we have \({\mathfrak {C}}_i<1,\) for any \(i\in \mathbb {N}_1^3,\) which proves that \({\mathcal {J}}\) is contraction mapping on \({\mathcal {S}}.\) In view of Theorem 2.5, the operator \({\mathcal {J}}\) has fixed point in \({\mathcal {S}},\) which means that the system (1.2) has a unique mild solution, and this terminates the proof.

Appendix B: Proof of Theorem 5.1

In view of Theorem 3.3, (5.1) and (5.2) have unique solutions, which are given by

$$\begin{aligned} X^{\beta _1}(\tau )= & {} x_0+\frac{1}{\Gamma (\beta _1)}\int _{0}^{\tau }(\tau -\mu )^{\beta _1-1}{\mathcal {F}}(X^{\beta _1}_\mu ,\mu )d\mu \\{} & {} +\frac{1}{\Gamma (\beta _1)}\int _{0}^{\tau }(\tau -\mu )^{\beta _1-1}{\mathcal {U}}(X^{\beta _1}_\mu ,\mu )dB_\mu \\{} & {} +\frac{\Gamma (\alpha +1)}{\Gamma (\alpha +\beta _1-1)}\int _{0}^{\tau }(\tau -\mu )^{\alpha +\beta _1-2}\,\,{\mathcal {G}}(X^{\beta _1}_\mu ,\mu )d\mu ,\\ X^{\beta _2}(\tau )= & {} x_0+\frac{1}{\Gamma (\beta _2)}\int _{0}^{\tau }(\tau -\mu )^{\beta _2-1}{\mathcal {F}}(X^{\beta _2}_\mu ,\mu )d\mu \\{} & {} +\frac{1}{\Gamma (\beta _2)}\int _{0}^{\tau }(\tau -\mu )^{\beta _2-1}{\mathcal {U}}(X^{\beta _2}_\mu ,\mu )dB_\mu \\{} & {} +\frac{\Gamma (\alpha +1)}{\Gamma (\alpha +\beta _2-1)}\int _{0}^{\tau }(\tau -\mu )^{\alpha +\beta _2-2}\,\,{\mathcal {G}}(X^{\beta _2}_\mu ,\mu )d\mu , \end{aligned}$$

respectively. Then, we have

$$\begin{aligned} E |X_\tau ^{\beta _1}-X_\tau ^{\beta _2}|^2\le & {} 3 E \big |\int _{0}^{\tau }\frac{(\tau -\mu )^{\beta _1-1}}{\Gamma (\beta _1)}{\mathcal {F}}(X_\mu ^{\beta _1},\mu )d\mu \nonumber \\{} & {} -\int _{0}^{\tau }\frac{(\tau -\mu )^{\beta _2-1}}{\Gamma (\beta _2)}{\mathcal {F}}(X_\mu ^{\beta _2},\mu )d\mu \big |^2\nonumber \\{} & {} +3 E \big |\int _{0}^{\tau }\frac{(\tau -\mu )^{\beta _1-1}}{\Gamma (\beta _1)}{\mathcal {U}}(X^{\beta _1}_\mu ,\mu )dB\nonumber \\{} & {} -\int _{0}^{\tau }\frac{(\tau -\mu )^{\beta _2-1}}{\Gamma (\beta _2)}{\mathcal {U}}(X^{\beta _2}_\mu ,\mu )dB\big |^2\nonumber \\{} & {} +3 E \big |\int _{0}^{\tau }\frac{\Gamma (\alpha +1)\,(\tau -\mu )^{\alpha +\beta _1-2}}{\Gamma (\alpha +\beta _1-1)}{\mathcal {G}}(X^{\beta _1}_\mu ,\mu )d\mu \nonumber \\{} & {} -\int _{0}^{\tau }\frac{\Gamma (\alpha +1)\,(\tau -\mu )^{\alpha +\beta _2-2}}{\Gamma (\alpha +\beta _2-1)}{\mathcal {G}}(X^{\beta _2}_\mu ,\mu )d\mu \big |^2\nonumber \\:= & {} 3({\mathcal {I}}_1+{\mathcal {I}}_2+{\mathcal {I}}_3), \end{aligned}$$
(8.9)

where

$$\begin{aligned} {\mathcal {I}}_1= & {} E \big |\int _{0}^{\tau }\frac{(\tau -\mu )^{\beta _1-1}}{\Gamma (\beta _1)}{\mathcal {F}}(X_\mu ^{\beta _1},\mu )d\mu -\int _{0}^{\tau }\frac{(\tau -\mu )^{\beta _2-1}}{\Gamma (\beta _2)}{\mathcal {F}}(X_\mu ^{\beta _2},\mu )d\mu \big |^2,\\ {\mathcal {I}}_2= & {} E \big |\int _{0}^{\tau }\frac{(\tau -\mu )^{\beta _1-1}}{\Gamma (\beta _1)}{\mathcal {U}}(X^{\beta _1}_\mu ,\mu )dB-\int _{0}^{\tau }\frac{(\tau -\mu )^{\beta _2-1}}{\Gamma (\beta _2)}{\mathcal {U}}(X^{\beta _2}_\mu ,\mu )dB\big |^2,\\ {\mathcal {I}}_3= & {} E \big |\int _{0}^{\tau }\frac{\Gamma (\alpha +1)\,(\tau -\mu )^{\alpha +\beta _1-2}}{\Gamma (\alpha +\beta _1-1)}{\mathcal {G}}(X^{\beta _1}_\mu ,\mu )d\mu \\{} & {} -\int _{0}^{\tau }\frac{\Gamma (\alpha +1)\,(\tau -\mu )^{\alpha +\beta _2-2}}{\Gamma (\alpha +\beta _2-1)}{\mathcal {G}}(X^{\beta _2}_\mu ,\mu )d\mu \big |^2. \end{aligned}$$

We start estimating \({\mathcal {I}}_1\) as follows:

$$\begin{aligned} {\mathcal {I}}_1= & {} E \big |\int _{0}^{\tau }\left( \frac{(\tau -\mu )^{\beta _1-1}}{\Gamma (\beta _1)}{\mathcal {F}}(X^{\beta _1}_\mu ,\mu ) -\frac{(\tau -\mu )^{\beta _1-1}}{\Gamma (\beta _1)}{\mathcal {F}}(X^{\beta _2}_\mu ,\mu )\right. \\{} & {} \left. +\frac{(\tau -\mu )^{\beta _1-1}}{\Gamma (\beta _1)}{\mathcal {F}}(X^{\beta _2}_\mu ,\mu ) -\frac{(\tau -\mu )^{\beta _2-1}}{\Gamma (\beta _2)}{\mathcal {F}}(X^{\beta _2}_\mu ,\mu )\right) d\mu \big |^2\\\le & {} \frac{T}{\Gamma ^2(\beta _1)}\int _{0}^{\tau }(\tau -\mu )^{2\beta _1-2} E |{\mathcal {F}}(X_\mu ^{\beta _1},\mu )-{\mathcal {F}}(X_\mu ^{\beta _2},\mu )|^2d\mu \\{} & {} +T\int _{0}^{\tau }\left( \frac{(\tau -\mu )^{\beta _1-1}}{\Gamma (\beta _1)}-\frac{(\tau -\mu )^{\beta _2-1}}{\Gamma (\beta _2)}\right) ^2d\mu \int _{0}^{\tau } E |{\mathcal {F}}(X_\mu ^{\beta _2},\mu )|^2d\mu \\\le & {} \frac{T{\mathcal {K}} }{\Gamma ^2(\beta _1)}\int _{0}^{\tau }(\tau -\mu )^{2\beta _1-2} E |X_\mu ^{\beta _1}-X_\mu ^{\beta _2}|^2d\mu \\{} & {} +T\,{\mathcal {K}}\int _{0}^{\tau }\left( \frac{(\tau -\mu )^{2\beta _1-2}}{\Gamma ^2(\beta _1)} -\frac{2(\tau -\mu )^{\beta _1+\beta _1-2}}{\Gamma ^(\beta _1)\Gamma (\beta _2)}+\frac{(\tau -\mu )^{2\beta _2-2}}{\Gamma ^2(\beta _2)}\right) d\mu \\{} & {} \int _{0}^{\tau }(1+ E |X_\mu ^{\beta _2}|^2)d\mu \\\le & {} \frac{T{\mathcal {K}} }{\Gamma ^2(\beta _1)}\int _{0}^{\tau }(\tau -\mu )^{2\beta _1-2} E |X_\mu ^{\beta _1}-X_\mu ^{\beta _2}|^2d\mu \\{} & {} +{\mathcal {K}}\,C\left( \frac{T^{2\beta _1}}{(2\beta _1-1)\Gamma ^2(\beta _1)}-\frac{2T^{\beta _1+\beta _2}}{(\beta _1+\beta _2-1)\Gamma (\beta _1)\Gamma (\beta _2)}+\frac{T^{2\beta _2}}{(2\beta _2-1)\Gamma ^2(\beta _2)}\right) . \end{aligned}$$

We define a continuous function \({\mathfrak {B}}_1(\beta _1, \beta _2)\) as follows:

$$\begin{aligned} {\mathfrak {B}}_1(\beta _1, \beta _2)= & {} {\mathcal {K}}\,C\left( \frac{T^{2\beta _1}}{(2\beta _1-1)\Gamma ^2(\beta _1)}-\frac{2T^{\beta _1+\beta _2}}{(\beta _1+\beta _2-1)\Gamma (\beta _1)\Gamma (\beta _2)}\right. \\{} & {} \left. +\frac{T^{2\beta _2}}{(2\beta _2-1)\Gamma ^2(\beta _2)}\right) \end{aligned}$$

such that \({\mathfrak {B}}_1(\beta _1, \beta _2)\rightarrow 0\) as \(\beta _1\rightarrow \beta _2.\) Then, we have the following inequality:

$$\begin{aligned} {\mathcal {I}}_1\le \frac{T{\mathcal {K}} }{\Gamma ^2(\beta _1)}\int _{0}^{\tau }(\tau -\mu )^{2\beta _1-2} E |X_\mu ^{\beta _1}-X_\mu ^{\beta _2}|^2d\mu +{\mathfrak {B}}_1(\beta _1, \beta _2). \end{aligned}$$
(8.10)

For estimating \({\mathcal {I}}_2\) and \({\mathcal {I}}_3,\) we follow the same procedure and define \({\mathfrak {B}}_2(\beta _1, \beta _2)\) and \({\mathfrak {B}}_3(\beta _1, \beta _2)\) as follows:

$$\begin{aligned} {\mathfrak {B}}_2(\beta _1, \beta _2)= & {} {\mathcal {K}}\,C\left( \frac{T^{2\beta _1-1}}{(2\beta _1-1)\Gamma ^2(\beta _1)}-\frac{2T^{\beta _1+\beta _2-1}}{(\beta _1+\beta _2-1)\Gamma (\beta _1)\Gamma (\beta _2)}+\frac{T^{2\beta _2-1}}{(2\beta _2-1)\Gamma ^2(\beta _2)}\right) ,\\ {\mathfrak {B}}_3(\beta _1, \beta _2)= & {} {\mathcal {K}}\,C\left( \frac{\Gamma ^2(\alpha +1)T^{2\alpha +2\beta _1-2}}{(2\alpha +2\beta _1-3)\Gamma ^2(\alpha +\beta _1-1)}+\frac{\Gamma ^2(\alpha +1)T^{2\alpha +2\beta _2-2}}{(2\alpha +2\beta _2-3)\Gamma ^2(\alpha +\beta _2-1)}\right. \\{} & {} \left. -\frac{2\Gamma ^2(\alpha +1)T^{2\alpha +\beta _1+\beta _2-2}}{(2\alpha +\beta _1+\beta _2-3)\Gamma (\alpha +\beta _1-1)\Gamma (\alpha +\beta _2-1)}\right) \end{aligned}$$

such that \({\mathfrak {B}}_2(\beta _1, \beta _2),{\mathfrak {B}}_3(\beta _1, \beta _2)\rightarrow 0\) as \(\beta _1\rightarrow \beta _2.\) Then, we get

$$\begin{aligned} {\mathcal {I}}_2\le & {} \frac{{\mathcal {K}} }{\Gamma ^2(\beta _1)}\int _{0}^{\tau }(\tau -\mu )^{2\beta _1-2} E |X_\mu ^{\beta _1}-X_\mu ^{\beta _2}|^2d\mu + {\mathfrak {B}}_2(\beta _1, \beta _2), \end{aligned}$$
(8.11)
$$\begin{aligned} {\mathcal {I}}_3\le & {} \frac{T{\mathcal {K}} \Gamma ^2(\alpha +1)}{\Gamma ^2(\alpha +\beta _1-1)}\int _{0}^{\tau }(\tau -\mu )^{2\alpha +2\beta _1-4} E |X_\mu ^{\beta _1}-X_\mu ^{\beta _2}|^2d\mu \nonumber \\{} & {} + {\mathfrak {B}}_3(\beta _1, \beta _2). \end{aligned}$$
(8.12)

Substituting (8.108.12) into (8.9), we get

$$\begin{aligned} E |X_\mu ^{\beta _1}-X_\mu ^{\beta _2}|^2\le & {} {\mathfrak {B}}(\beta _1, \beta _2)+{\bar{r}}_1\int _{0}^{\tau }(\tau -\mu )^{\varpi _1-1} E |X_\mu ^{\beta _1}-X_\mu ^{\beta _2}|^2d\mu \nonumber \\{} & {} +{\bar{r}}_2\int _{0}^{\tau }(\tau -\mu )^{\varpi _2-1} E |X_\mu ^{\beta _1}-X_\mu ^{\beta _2}|^2d\mu , \end{aligned}$$
(8.13)

where \( {\mathfrak {B}}(\beta _1, \beta _2)=\sum _{i=1}^{3}3 {\mathfrak {B}}_i(\beta _1, \beta _2), r_1=\frac{3{\mathcal {K}}(T+1) }{\Gamma ^2(\beta _1)}\) and \(r_2=\frac{3T{\mathcal {K}} \Gamma ^2(\alpha +1)}{\Gamma ^2(\alpha +\beta _1-1)}.\) In addition, \(\varpi _1=2\beta _1-1\) and \(\varpi _2=2\alpha +2\beta _1-3.\)

Applying Theorem 2.4, we obtain

$$\begin{aligned}{} & {} E |X_\tau ^{\beta _1}-X_\tau ^{\beta _2}|^2\nonumber \\{} & {} \le {\mathfrak {B}}(\beta _1, \beta _2)\left[ 1 +\sum _{m=1}^{\infty }\sum _{\ell =0}^{m}C_m^\ell \frac{({\bar{r}}_1\Gamma (\varpi _1))^{\ell }({\bar{r}}_2\Gamma (\varpi _2))^{m-\ell }\, T^{\ell \varpi _1+(m-\ell )\varpi _2)}}{\Gamma (\ell \varpi _1+(m-\ell )\varpi _2+1)}\right] .\nonumber \\ \end{aligned}$$
(8.14)

Based on (8.14), we notice that \({\mathfrak {B}}(\beta _1, \beta _2)\rightarrow 0\) as \(\beta _1\rightarrow \beta _2.\) Therefore, \( E |X_\tau ^{\beta _1}-X_\tau ^{\beta _2}|^2\rightarrow 0\) as \(\beta _1\rightarrow \beta _2,\) and this shows that \(X_\tau ^{\beta _1}\rightarrow X_\tau ^{\beta _2}\) as \(\beta _1\rightarrow \beta _2.\) Hence, the proof is complete.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alkhazzan, A., Wang, J., Tunç, C. et al. On Existence and Continuity Results of Solution for Multi-time Scale Fractional Stochastic Differential Equation. Qual. Theory Dyn. Syst. 22, 49 (2023). https://doi.org/10.1007/s12346-023-00750-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00750-x

Keywords

Navigation