Skip to main content
Log in

Persistence of Lower Dimensional Hyperbolic Invariant Tori for Nearly Integrable Symplectic Mappings

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper we consider a class of nearly integrable symplectic mappings with generating function and prove the persistence of lower dimensional hyperbolic invariant tori. Under a Rüssmann-type non-degenerate condition, by using the KAM theory, we proved that the nearly integrable twist symplectic mappings admit a family of lower dimensional invariant tori as long as the generating function is real analytic and the perturbation is sufficiently small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moser, J.: On invariant curves of area preserving mappings of an annulus. Nachr. Akad. Wiss. Gottingen. Math.-Phys. K1(2), 1–20 (1962)

    Google Scholar 

  2. Cheng, C.Q., Sun, Y.S.: Existence of invariant tori in three dimensional measure-preserving mappings. Celest. Mech. Dyn. Astron. 47, 275–292 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Xia, Z.H.: Existence of invariant tori in volume-preserving diffeomorphisms. Ergod. Theory Dyn. Syst. 12, 621–631 (1992)

    Article  MATH  Google Scholar 

  4. Cong, F.Z., Li, Y., Huang, M.Y.: Invariant tori for nearly twist mappings with intersection property. Northeast. Math. J. 12, 280–298 (1996)

    MathSciNet  MATH  Google Scholar 

  5. Shang, Z.J.: A note on the KAM theorem for symplectic mappings. J. Dyn. Differ. Equ. 12, 357–383 (2000)

    Article  MATH  Google Scholar 

  6. Zhu, W.Z., Liu, B.F., Liu, Z.X.: The hyperbolic invariant tori of symplectic mappings. Nonlinear Anal. 68, 109–126 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Graff, S.M.: On the continuation of hyperbolic invariant tori for Hamiltonian systems. J. Differ. Equ. 15, 1–69 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  8. Pöschel, J.: A Lecture on the Classical KAM Theorem. School on dynamical systems (1992)

  9. Pöschel, J.: Integrability of Hamiltonian systems on Cantor sets. Commun. Pure Appl. Math. 35, 653–695 (1982)

    Article  MATH  Google Scholar 

  10. Pöschel, J.: On elliptic lower dimensional tori in Hamiltonian systems. Math. Z. 202(4), 559–608 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. Rüssmann, H.: On twist Hamiltonian, Talk on the Colloque International: Mécanique Céleste et Systémes Hamiltoniens, Marseille (1990)

  12. Rüssmann, H.: Invariant tori in non-degenerate nearly integrable Hamiltonian systems. Regul. Chaot. Dyn. 6(2), 119–204 (2001)

    Article  MATH  Google Scholar 

  13. Xu, J. X.,Li, J.: Persistence of lower dimensional elliptic invariant tori for nearly integrable symplectic mappings. (2014) (preprint)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiaoyan Bi.

Additional information

J. Xu is supported by the NSFC Grant (11371090).

Appendix

Appendix

This part we will give several lemmas that describes properties of the norm \(\Vert \cdot \Vert _{s,r}\). The proofs are very similar to [10] and even simpler. Let \(\mathcal {A}_{s,r}\) denote the space of real analytic function defined on \(D(s,r)\). If \(f\in \mathcal {A}_{s,r}\), then we can write it as Fourier series \(f=\sum \nolimits _{k\in \mathbb {Z}^n}f_ke^{i\langle k,x\rangle }\). Let \(\mathcal {A}^0_{s,r}=\{f|f\in \mathcal {A}_{x,r},[f]=0\}\), where \([f]\) denotes the average of \(f\).

Lemma 2.6

(Cauchy’s estimate) Let \(f\in \mathcal {A}_{s,r}\). Then \(\forall \rho \in (0,s),\forall \sigma \in (0,r)\), we have

$$\begin{aligned} \begin{array}{cc} \Vert \partial _xf\Vert _{s,r}\leqslant \frac{1}{e\rho }\Vert f\Vert _{s,r}, &{} \Vert \partial _yf\Vert _{s,r-\sigma }\leqslant \frac{1}{\sigma ^2}\Vert f\Vert _{s,r}, \\ \Vert \partial _uf\Vert _{s,r-\sigma }\leqslant \frac{1}{\sigma }\Vert f\Vert _{s,r}, &{} \Vert \partial _vf\Vert _{s,r-\sigma }\leqslant \frac{1}{\sigma }\Vert f\Vert _{s,r}. \end{array} \end{aligned}$$

Lemma 2.7

Let \(f\in \mathcal {A}_{s,r}.\) We write it as Fourier series\(~~f=\sum _{k\in \mathbb {Z}^n}f_ke^{i\langle k,x\rangle }\). Then we have

$$\begin{aligned} |f_k|\leqslant \Vert f\Vert _{s,r}e^{-|k|s},\quad \forall k\in \mathbb {Z}^n, \end{aligned}$$

where\(|k|=|k_1|+|k_2|+\cdots +|k_n|.\)

Below we give a theorem of invertible mappings.

Lemma 2.8

Let \(f\in \mathcal {A}_{s,r}\),\(T_K(f)=\sum \nolimits _{|k|<K}f_ke^{i\langle k,x\rangle }\). Then we have

$$\begin{aligned} \Vert f-T_K(f)\Vert _{s-\rho ,r}\le c K^ne^{-K\rho }\Vert f\Vert _{s,r},~~~0<\rho <s, \end{aligned}$$

where the constant c only depends on n.

Lemma 2.9

Let \(\Omega _h\) is complex neighborhood of \(\Omega \) with the radius \(h>0.\) Suppose \( f:\Omega _h \rightarrow C^n \) is an analytic mapping and

$$\begin{aligned} |f-id |_{\Omega _h}\le \epsilon <h/2. \end{aligned}$$

where \(|\cdot |_{\Omega _h}\) indicates the super-norm on \(\Omega _h.\)

Then \(f\) has an analytic inverse \(\phi : \Omega _{h-2\epsilon } \rightarrow \Omega _h\) such that \(|\phi -id |_{\Omega _{h-2\epsilon }}\le \epsilon .\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, Q., Xu, J. Persistence of Lower Dimensional Hyperbolic Invariant Tori for Nearly Integrable Symplectic Mappings. Qual. Theory Dyn. Syst. 13, 269–288 (2014). https://doi.org/10.1007/s12346-014-0117-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12346-014-0117-9

Keywords

Mathematics Subject Classification

Navigation