Skip to main content
Log in

A Note on the Ergodic Theorem

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

Given a space \(X\), a \(\sigma \)-algebra \(\mathfrak {B}\) on \(X\) and a measurable map \(T:X \rightarrow X\), we say that a measure \(\mu \) is half-invariant by \(T\) if, for any \(B \in \mathfrak {B}\), we have \(\mu \left( T^{-1}(B)\right) \le \mu (B)\). We will present a generalization of Birkhoff ergodic theorem to \(\sigma \)-finite half-invariant measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Otherwise, \(\alpha <0\) and we may take \(-f\), \(-\alpha \) and \(-\beta \) instead.

References

  1. Aaronson, J.: An introduction to infinite ergodic theory. Mathematical surveys and monographs, vol. 50. AMS (1997)

  2. Aaronson, J., Meyerovitch, T.: Absolutely continuous, invariant measures for dissipative, ergodic transformations. Colloq. Math. 110(1), 193–199 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chacon, R.V.: A class of linear transformations. Proc. Am. Math. Soc. 15, 560–564 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chacon, R.V., Ornstein, D.S.: A general ergodic theorem. Ill. J. Math. 4, 153–160 (1960)

    MathSciNet  MATH  Google Scholar 

  5. Garsia, A.: A simple proof of E. Hopf maximal ergodic theorem. J. Math. Mech. 14, 381–382 (1965)

    MathSciNet  MATH  Google Scholar 

  6. Gaunersdorfer, A.: Time averages for heteroclinic attractors. SIAM J. Appl. Math. 52, 1476–1489 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Halmos, P.R.: An ergodic theorem. Proc. Natl. Acad. Sci. USA 32, 156–161 (1946)

    Article  MathSciNet  MATH  Google Scholar 

  8. Halmos, P.R.: Lectures on Ergodic Theory. Chelsea Publishing Company, New York (1956)

    MATH  Google Scholar 

  9. Helmberg, G.: On the converse of Hopf’s ergodic theorem. Z. Wahrscheinlichkeitstheorie verw. Gebiete 21, 77–80 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hopf, E.: The general temporally discrete Markoff process. J. Rat. Mech. Anal. 3, 13–45 (1954)

    MathSciNet  MATH  Google Scholar 

  11. Hurewicz, W.: Ergodic theorem without invariant measure. Ann. Math. 45(1), 192–206 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kamae, T.: A simple proof of the ergodic theorem using nonstandard analysis. Isr. J. Math. 42, 284–290 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  13. Khintchine, A.: Fourierkoeffizienten längs einer Bahn im Phasenraum. Rec. Math. (Mat. Sbornik) 41, 14–15 (1934)

    Google Scholar 

  14. Kopf, C.: Negative nonsingular transformations. Ann. Inst. H. Poincaré Sect. B (N.S.) 18(1), 811–902 (1982)

    MathSciNet  Google Scholar 

  15. Katznelson, Y., Weiss, B.: The construction of quasi-invariant measures. Isr. J. Math. 12, 1–4 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  16. Katznelson, Y., Weiss, B.: A simple proof of some ergodic theorems. Isr. J. Math. 42, 291–296 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  17. Keane, M., Petersen, K.: Easy and Nearly Simultaneous Proofs of the Ergodic Theorem and Maximal Ergodic Theorem, IMS Lecture Notes—Monograph Series, Dynamics & Stochastics, vol. 48, pp. 248–251 (2006)

  18. Krengel, U.: Ergodic theorems. De Gruyter studies in mathematics, vol. 6. Walter de Gruyter (1985)

  19. Krieger, W.: On quasi-invariant measures in uniquely ergodic systems. Invent. Math. 14, 184–196 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lin, M., Sine, R.: The individual ergodic theorem for non-invariant measures. Z. Wahrscheinlichkeitstheorie verw. Gebiete 38, 329–331 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  21. Petersen, K.: Ergodic theory, Cambridge Studies in Advanced Mathematics 2. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  22. Rudnicki, R.: Markov operators: applications to diffusion processes and population dynamics. Appl. Math. 27(1), 67–69 (2000)

    MathSciNet  MATH  Google Scholar 

  23. Takens, F.: Heteroclinic attractors: time averages and moduli of topological conjugacy. Bol. Soc. Bras. Mat. (N.S.) 25(1), 107–120 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wiener, N., Wintner, A.: Harmonic analysis and ergodic theory. Am. J. Math. 63, 415–426 (1941)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Pires de Carvalho.

Additional information

The authors were partially funded by the European Regional Development Fund through the program COMPETE and by the Portuguese Government through the FCT—Fundação para a Ciência e a Tecnologia under the project PEst-C/MAT/UI0144/2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Carvalho, M.P., Moreira, F.J. A Note on the Ergodic Theorem. Qual. Theory Dyn. Syst. 13, 253–268 (2014). https://doi.org/10.1007/s12346-014-0116-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12346-014-0116-x

Keywords

Mathematics Subject Classification (2000)

Navigation