Skip to main content
Log in

Periodic Structure of Transversal Maps on \(\mathbb{C }\)P\(^{n}\), \(\mathbb{H }\)P\(^{n}\) and \(\mathbb{S }^{p}\times \mathbb{S }^{q}\)

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

A \(\mathcal{C }^{1}\) map \(f:\mathbb{M }\rightarrow \mathbb{M }\) is called transversal if for all \(m\in \mathbb{N }\) the graph of \(f^{m}\) intersects transversally the diagonal of \(M\times M\) at each point \((x,x)\) being \(x\) a fixed point of \(f^m\). Let \(\mathbb{C }\)P\(^{n}\) be the \(n\)-dimensional complex projective space, \(\mathbb{H }\)P\(^{n}\) be the \(n\)-dimensional quaternion projective space and \(\mathbb{S }^{p}\times \mathbb{S }^{q}\) be the product space of the \(p\)-dimensional with the \(q\)-dimensional spheres, \(p\ne q\). Then for the cases \(\mathbb{M }\) equal to \(\mathbb{C }\)P\(^{n}\), \(\mathbb{H }\)P\(^{n}\) and \(\mathbb{S }^{p}\times \mathbb{S }^{q}\) we study the set of periods of \(f\) by using the Lefschetz numbers for periodic points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Apostol, T.M.: Introduction to Analytic Number Theory. Springer, New York (1976)

    Book  MATH  Google Scholar 

  2. Babenko, I.K., Bogatyi, S.A.: The behavior of the index of periodic points under iterations of a mapping. Math. USSR Izvestiya 38, 1–26 (1992)

    Article  MathSciNet  Google Scholar 

  3. Brown, R.F.: The Lefschetz Fixed Point Theorem. Foresman and Company, Glenview (1971)

    MATH  Google Scholar 

  4. Casasayas, J., Llibre, J., Nunes, A.: Periodic orbits of transversal maps. Math. Proc. Camb. Phil. Soc. 118, 161–181 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dold, A.: Fixed points indices of iterated maps. Invent. Math. 74, 419–435 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dodson, C.T., Parker, P.E.: A User’s Guide to Algebraic Topology. Kluwer Academic Publications, USA (1996)

    Google Scholar 

  7. Duan, H.: The Lefschetz number of iterated maps. Topol. Appl. 67, 71–79 (1995)

    Article  MATH  Google Scholar 

  8. Fagella, N., Llibre, J.: Periodic points of holomorphic maps via Lefschetz numbers. Trans. Am. Math. Soc. 352, 4711–4730 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Franks, J.: Homology and dynamical systems. CBSM Regional Conference Series in Mathematics, vol. 49, Amer. Math. Soc., Providence (1982)

  10. Franks, J.: Period doubling and the Leschetz formula. Trans. Am. Math. Soc. 287, 275–283 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  11. Graff, G.: Minimal periods of maps of rational exterior spaces. Fundam. Math. 163, 99–115 (2000)

    MathSciNet  MATH  Google Scholar 

  12. Guirao, J.L.G., Llibre, J.: On the Lefschetz periodic point free continuous self-maps on connected compact manifolds. Topol. Appl. 158, 2165–2169 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Guirao, J.L.G., Llibre, J.: \({C}^{1}\) self-maps on \({\mathbb{S}}^{n}\), \({\mathbb{S}}^{n}\times {\mathbb{S}}^{m}\), \({\mathbb{C}}\)P\(^{n}\) and \({\mathbb{H}}\)P\(^{n}\) with all their periodic orbits hyperbolic. Taiwan. J. Math. 16, 323–334 (2012)

    MATH  Google Scholar 

  14. Guillamón, A., Jarque, X., Llibre, J., Ortega, J., Torregrosa, J.: Periods for transversal maps via Lefschetz numbers for periodic points. Trans. Math. Soc. 347, 4779–4806 (1995)

    Article  MATH  Google Scholar 

  15. Jezierski, J., Marzantowicz, W.: Homotopy Methods in Topological Fixed and Periodic Points Theory, Series: Topological Fixed Point Theory and Its Applications, vol. 3. Springer, Berlin (2006)

    Google Scholar 

  16. Li, T.Y., Yorke, J.: Period three implies chaos. Am. Math. Monthly 82, 985–992 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  17. Llibre, J., Paraños, J., Rodriguez, J.A.: Periods for transversal maps on compact manifolds with a given homology. Hous. J. Math. 24, 397–407 (1998)

    MATH  Google Scholar 

  18. Llibre, J.: Lefschetz numbers for periodic points, Contemporary Math., vol. 152, pp. 215–227. Amer. Math. Soc. Providence (1993)

  19. Llibre, J., Swanson, R.: Periodic points for transversal maps on surfaces. Houst. J. Math. 19, 395–403 (1993)

    MathSciNet  MATH  Google Scholar 

  20. Matsuoka, T.: The number of periodic points of smooth maps. Erg. Th. Dyn. Sys 9, 153–163 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  21. Munkres, J.R.: Elements of Algebraic Topology. Addison-Wesley, Reading (1984)

    MATH  Google Scholar 

  22. Niven, I., Zuckerman, H.S.: An introduction to the theory of numbers, 4th edn. Wiley, New York (1980)

    MATH  Google Scholar 

  23. Vicks, J.W.: Homology theory. An introduction to algebraic topology. Springer, New York, 1994. Academic Press, New York (1973)

Download references

Acknowledgments

The first author was partially supported by MICIIN/FEDER grant number MTM2008-03679/MTM, Fundación Séneca de la Región de Murcia, grant number 08667/PI/08 and Junta de Comunidades de Castilla-La Mancha, grant number PEII09-0220-0222. The second author was partially supported by MICIIN/FEDER grant number MTM2008-03437, an AGAUR grant number 2009SGR-410, ICREA Academia and FP7-PEOPLE-2012-IRSES-316338.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Luis García Guirao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guirao, J.L.G., Llibre, J. Periodic Structure of Transversal Maps on \(\mathbb{C }\)P\(^{n}\), \(\mathbb{H }\)P\(^{n}\) and \(\mathbb{S }^{p}\times \mathbb{S }^{q}\) . Qual. Theory Dyn. Syst. 12, 417–425 (2013). https://doi.org/10.1007/s12346-013-0099-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12346-013-0099-z

Keywords

Mathematics Subject Classification (1991)

Navigation