Skip to main content
Log in

Fifty New Invariants of N-Periodics in the Elliptic Billiard

  • Problem Contribution
  • Published:
Arnold Mathematical Journal Aims and scope Submit manuscript

Abstract

We introduce 50+ new invariants manifested by the dynamic geometry of N-periodics in the Elliptic Billiard, detected with an experimental/interactive toolbox. These involve sums, products and ratios of distances, areas, angles, etc. Though curious in their manifestation, said invariants do all depend upon the two fundamental conserved quantities in the Elliptic Billiard: perimeter and Joachimsthal’s constant. Several proofs have already been contributed (references are provided); these have mainly relied on algebraic geometry. We very much welcome new proofs and contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Antipedals can be self-intersecting.

  2. J. Steiner (following a similar result by J. Sturm in 1823 for triangles) proved in 1825 that the area of pedal polygons of a polygon R with respect to points on any given circumference centered on K [25] is invariant.

  3. The evolute of a smooth curve is the envelope of the normals [27, Evolute]. The perpendicular bisector is its discrete version.

References

  1. Akopyan, A.: Angles \(\phi =\pi -\theta _i\) (resp. \(\phi ^{\prime }=\phi -\theta _i^{\prime }\)), so equivalent to invariant sum (resp. product) of cosines. Private Communication (2020)

  2. Akopyan, A.: Corollary of Theorem 6 in Akopyan et al., Billiards in Ellipses Revisited (2020). Private Communication (2020)

  3. Akopyan, A.: Follows from previous results: the construction is affine and holds for any two concentric conics. Private (2020). Communication

  4. Akopyan, A.: Perpendicular feet to N-periodic or its tangential polygon are cyclic. Private (2020). Communication

  5. Akopyan, A., Schwartz, R., Tabachnikov, S.: Billiards in ellipses revisited. Eur. J. Math. (2020). https://doi.org/10.1007/s40879-020-00426-9

  6. Arnold, M., Fuchs, D., Izmestiev, I., Tabachnikov, S., Tsukerman, E.: Iterating evolutes and involutes. Discrete Comput. Geom. 58, 80–143 (2017). https://doi.org/10.1007/s00454-017-9890-y

  7. Bialy, M., Tabachnikov, S.: Dan Reznik’s identities and more. Eur. J. Math. (2020) https://doi.org/10.1007/s40879-020-00428-7

  8. Chavez-Caliz, A.: More about areas and centers of Poncelet polygons. Arnold Math J. (2020). https://doi.org/10.1007/s40598-020-00154-8

  9. Dragović, V., Radnović, M.: Poncelet Porisms and Beyond: Integrable Billiards, Hyperelliptic Jacobians and Pencils of Quadrics. Frontiers in Mathematics. Basel: Springer (2011)

  10. Garcia, R., Reznik, D., Koiller, J.: New properties of triangular orbits in elliptic billiards. Math. Monthly, to appear, Amer (2020)

    MATH  Google Scholar 

  11. Izmestiev, I., Tabachnikov, S.: Ivory’s theorem revisited. J. Integr. Syst. 2. (2017). https://doi.org/10.1093/integr/xyx006

  12. Kaloshin, V., Sorrentino, A.: On the integrability of Birkhoff billiards. Phil. Trans. R. Soc. A (376) (2018)

  13. Mangasarian, O.L.: Nonlinear Programming. SIAM, New York (1994)

    Book  Google Scholar 

  14. Nomizu, K., Sasaki, T.: Affine Differential Geometry. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  15. Preparata, F., Shamos, M.: Computational Geometry - An Introduction, 2nd edn. Springer, New York (1988)

    MATH  Google Scholar 

  16. Reznik, D.: Playlist for Invariants of 3- and 4-Periodics in the Elliptic Billiard. YouTube. (2020). www.bit.ly/3aNqgqU

  17. Reznik, D.: Playlist for Invariants of N-Periodics in the Elliptic Billiard. YouTube. (2020). www.bit.ly/2xeVGYw

  18. Reznik, D., Garcia, R., Koiller, J.: Can the elliptic billiard still surprise us? Math. Intell. 42, 6–17 (2020). www.rdcu.be/b2cg1

  19. Roitman, P.: Investigation of n-periodic invariants involving the curvature of the ellipse. Private (2020). Communication

  20. Rozikov, U.A.: An Introduction To Mathematical Billiards. World Scientific Publishing Company, Singapore (2018)

    Book  Google Scholar 

  21. Schwartz, R., Tabachnikov, S.: Centers of mass of Poncelet polygons, 200 years after. Math. Intell. 38(2), 29–34 (2016). https://doi.org/10.1007/s00283-016-9622-9

    Article  MathSciNet  MATH  Google Scholar 

  22. Stachel, H.: Closed form expression for \(k_{119}\). Private (2020). Communication

  23. Stachel, H.: Joachmisthal’s constant in terms of \(a\), \(b\) and \(a^{\prime \prime }\). Private (2020). Communication

  24. Stachel, H.: Proofs for \(k_{113}\) and \(k_{116}\). Private (2020). Communication

  25. Steiner, J.: Über den Krümmungs-Schwerpunkt ebener Curven. Abhandlungen der Königlichen Akademie der Wissenshaften zu Berlin 19–91 (1838)

  26. Tabachnikov, S.: Geometry and Billiards, vol. 30 of Student Mathematical Library. Providence, RI: American Mathematical Society. (2005). www.bit.ly/2RV04CK

  27. Weisstein, E.: Mathworld. (2019). www.mathworld.wolfram.com

  28. Wolfram, S.: Mathematica, version 10.0 (2019)

Download references

Acknowledgements

We would like to thank Olga Romaskevitch, Sergei Tabachnikov, Richard Schwartz, Arseniy Akopyan, Hellmuth Stachel, Alexey Glutsyuk, Corentin Fierobe, Maxim Arnold, and Pedro Roitman for useful discussions and insights.

The second author is fellow of CNPq and coordinator of Project PRONEX/CNPq/FAPEG 2017 10 26 7000 508.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Reznik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 11 Symbols used in the invariants. Note \(i=1,...,N\) and \(j=1,2\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reznik, D., Garcia, R. & Koiller, J. Fifty New Invariants of N-Periodics in the Elliptic Billiard. Arnold Math J. 7, 341–355 (2021). https://doi.org/10.1007/s40598-021-00174-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40598-021-00174-y

Keywords

Mathematics Subject Classification

Navigation