Skip to main content
Log in

Management of Retinitis Pigmentosa via Platelet-Rich Plasma or Combination with Electromagnetic Stimulation: Retrospective Analysis of 1-Year Results

  • Original Research
  • Published:
Advances in Therapy Aims and scope Submit manuscript

Abstract

Purpose

To investigate whether the natural progression rate of retinitis pigmentosa can be decreased by subtenon autologous platelet-rich plasma application alone or combination with retinal electromagnetic stimulation.

Methods

The study includes retrospective analysis of 60 patients with retinitis pigmentosa. Patients constitute three groups with similar demographic characteristics: the combined management group (group 1) consists of 20 patients with retinitis pigmentosa (40 eyes) who received combined retinal electromagnetic stimulation and subtenon platelet-rich plasma; the subtenon platelet-rich plasma-only group (group 2) consisted of 20 patients with retinitis pigmentosa (40 eyes); the natural course (control) group (group 3) consists of 20 patients with retinitis pigmentosa (40 eyes) who did not receive any treatment. Horizontal and vertical ellipsoid zone width, fundus perimetry deviation index, and best corrected visual acuity changes were compared within and between groups after a 1-year follow-up period.

Results

Detected horizontal ellipsoid zone percentage changes were + 1% in group 1, − 2.85% in group 2, and − 9.36% in group 3 (Δp 1 > 2 > 3). Detected vertical ellipsoid zone percentage changes were + 0.34% in group 1, − 3.05% in group 2, and − 9.09% in group 3 (Δp 1 > 2 > 3). Detected fundus perimetry deviation index percentage changes were + 0.05% in group 1, − 2.68% in group 2, and − 8.78% in group 3 (Δp 1 > 2 > 3).

Conclusion

Platelet-rich plasma is a good source of growth factors, but its half-life is 4–6 months. Subtenon autologous platelet-rich plasma might more effectively slow down photoreceptor loss when repeated as booster injections and combined with retinal electromagnetic stimulation.

Trial Registration

ClinicalTrials.gov identifier, NCT04252534.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ali MU, Rahman MSU, Cao J, Yuan PX. Genetic characterization and disease mechanism of retinitis pigmentosa; current scenario. 3 Biotech. 2017;7(4):251–2.

    Article  Google Scholar 

  2. Wang AL, Knight DK, Vu TT, Mehta MC. Retinitis pigmentosa: review of current treatment. Int Ophthalmol Clin. 2019;59:263–80. https://doi.org/10.1097/IIO.0000000000000256.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang Q. Retinitis pigmentosa. Asia-Pac J Ophthalmol. 2016;5:265–71. https://doi.org/10.1097/apo.0000000000000227.

  4. Hartong DT, Berson EL, Dryja TP. Retinitis pigmentosa. Lancet. 2006;368:1795–809. https://doi.org/10.1016/s0140-6736(06)69740-7.

  5. Yoshida N, Ikeda Y, Notomi S, et al. Clinical evidence of sustained chronic inflammatory reaction in retinitis pigmentosa. Ophthalmology. 2013;120:100–5. https://doi.org/10.1016/j.ophtha.2012.07.006.

    Article  PubMed  Google Scholar 

  6. Poornachandra B, Khurana AK, Sridharan P, et al. Quantifying microstructural changes in retinitis pigmentosa using spectral domain—optical coherence tomography. Eye Vis (Lond). 2019;15(6):13. https://doi.org/10.1186/s40662-019-0139-0.

    Article  Google Scholar 

  7. Lima LH, Sallum JM, Spaide RF. Outer retina analysis by optical coherence tomography in cone-rod dystrophy patients. Retina. 2013;33:1877–80. https://doi.org/10.1097/IAE.0b013e31829234e6.

    Article  PubMed  Google Scholar 

  8. Anitua E, Muruzabal F, Tayebba A, et al. Autologous serum and plasma rich in growth factors in ophthalmology: preclinical and clinical studies. Acta Ophthalmol. 2015;93(8):e605–e614614.

    Article  Google Scholar 

  9. Amable PR, Carias RB, Teixeira MV, et al. Platelet-rich plasma preparation for regenerative medicine: optimization and quantification of cytokines and growth factors. Stem Cell Res Ther. 2013;4(3):67.

    Article  CAS  Google Scholar 

  10. Arslan U, Özmert E, Demirel S, Örnek F, Şermet F. Effects of subtenon-injected autologous platelet-rich plasma on visual functions in eyes with retinitis pigmentosa: preliminary clinical results. Graefes Arch Clin Exp Ophthalmol. 2018;256(5):893–908. https://doi.org/10.1007/s00417-018-3953-5.

    Article  PubMed  Google Scholar 

  11. Özmert E, Arslan U. Management of deep retinal capillary ischemia by electromagnetic stimulation and platelet-rich plasma: preliminary clinical results. Adv Ther. 2019. https://doi.org/10.1007/s12325-019-01040-2.

    Article  PubMed  Google Scholar 

  12. Maziarz A, Kocan B, Bester M, et al. How electromagnetic fields can influence adult stem cells: positive and negative impacts. Stem Cell Res Ther. 2016;7:54. https://doi.org/10.1186/s13287-016-0312-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Parate D, Kadir ND, Celik C, et al. Pulsed electromagnetic fields potentiate the paracrine function of mesenchymal stem cells. Stem Cell Res Ther. 2020;11:46. https://doi.org/10.1186/s13287-020-1566-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Patruno A, Ferrone A, Costantini E, et al. Extremely low-frequency electromagnetic fields accelerates wound healing modulating MMP-9 and inflammatory cytokines. Cell Prolif. 2018;51(2):e12432. https://doi.org/10.1111/cpr.12432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Demetriades AM, Deering T, Liu H, et al. Transscleral delivery of antiangiogenic proteins. J Ocul Pharmacol Ther. 2008;24(1):70–9. https://doi.org/10.1089/jop.2007.0061.

    Article  CAS  PubMed  Google Scholar 

  16. Meng T, Kulkarni V, Simmers R, Brar V, Xu Q. Therapeutic implications of nanomedicine for ocular drug delivery. Drug Discov Today. 2019. https://doi.org/10.1016/j.drudis.2019.05.00.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Li SK, Hao J. Transscleral passive and iontophoretic transport: theory and analysis. Expert Opin Drug Deliv. 2017;15(3):283–99. https://doi.org/10.1080/17425247.2018.1406918.

    Article  CAS  PubMed  Google Scholar 

  18. Luo J, Zheng H, Zhang L, et al. High-frequency repetitive transcranial magnetic stimulation (rTMS) improves functional recovery by enhancing neurogenesis and activating BDNF/TrkB signaling in ischemic rats. Int J Mol Sci. 2017;18(2):455. https://doi.org/10.3390/ijms18020455.

    Article  CAS  PubMed Central  Google Scholar 

  19. Mysona BA, Zhao J, Bollinger KE. Role of BDNF/TrkB pathway in the visual system: therapeutic implications for glaucoma. Expert Rev Ophthalmol. 2017;12(1):69–81.

    Article  CAS  Google Scholar 

  20. Takahashi VKL, Takiuti JT, Carvalho-Jr JRL, et al. Fundus autofluorescence and ellipsoid zone (EZ) line width can be an outcome measurement in RHO-associated autosomal dominant retinitis pigmentosa. Graefes Arch Clin Exp Ophthalmol. 2019;257:725–31. https://doi.org/10.1007/s00417-018-04234-6.

    Article  PubMed  Google Scholar 

  21. Cai CX, Locke KG, Ramachandran R, Birch DG, Hood DC. A comparison of progressive loss of the ellipsoid zone (EZ) band in autosomal dominant and x-linked retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2014;23(55):7417–22. https://doi.org/10.1167/iovs.14-15013.

    Article  Google Scholar 

  22. Sandberg MA, Rosner B, Weigel-DiFranco C, Dryja TP, Berson EL. Disease course of patients with X-linked retinitis pigmentosa due to RPGR gene mutations. Invest Ophthalmol Vis Sci. 2007;48:1298–304.

    Article  Google Scholar 

  23. Takahashi VKL, Xu CL, Takiuti JT, et al. Comparison of structural progression between ciliopathy and non-ciliopathy associated with autosomal recessive retinitis pigmentosa. Orphanet J Rare Dis. 2019;14:187. https://doi.org/10.1186/s13023-019-1163-9.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Friberg TR. Natural course of retinitis pigmentosa over a three-year interval. Am J Ophthalmol. 1985;100(4):621–2.

    Article  CAS  Google Scholar 

  25. Birch DG, Anderson JL, Fish GE. Yearly rates of rod and cone functional loss in retinitis pigmentosa and cone-rod dystrophy. Ophthalmology. 1999;106:258–68.

    Article  CAS  Google Scholar 

  26. Fuhrmann S, Zou CJ, Levine EM. Retinal pigment epithelium development, plasticity, and tissue homeostasis (Invited review for Experimental Eye Research). Exp Eye Res. 2014;123:141–50. https://doi.org/10.1016/j.exer.2013.09.003.

  27. Strauss O. The retinal pigment epithelium in visual function. Physiol Rev. 2005;85:845–81. https://doi.org/10.1152/physrev.00021.2004.

    Article  CAS  PubMed  Google Scholar 

  28. Cacares PS, Boulan ER. Retinal pigment epithelium polarity in health and blinding diseases. Curr Opin Cell Biol. 2020;62:37–45.

    Article  Google Scholar 

  29. Dalvi S, Galloway CA, Singh R. Pluripotent stem cells to model degenerative retinal diseases: the RPE perspective. In: Bharti K, editor. Pluripotent stem cells in eye disease therapy, advances in experimental medicine and biology. Cham: Springer Nature Switzerland; 2019. p. 1186. https://doi.org/10.1007/978-3-030-28471-8.

  30. Collins MK, Perkins GR, Rodriguez-Tarduchy G, Nieto MA, López-Rivas A. Growth factors as survival factors: regulation of apoptosis. Bioessays. 1994;16(2):133–8.

    Article  CAS  Google Scholar 

  31. Julian JL, Bauer DE, Kong M, et al. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell. 2005;120(2):237–48.

    Article  Google Scholar 

  32. Munder MC, Midtvedt D, Franzmann T, et al. A pH-driven transition of the cytoplasm from a fluid- to a solid-like state promotes entry into dormancy. eLife. 2016;5:e09347.

  33. Koenekoop RK. Why some photoreceptors die, while others remain dormant: lessons from RPE65 and LRAT associated retinal dystrophies. Ophthalmic Genet. 2011;32:126–8.

    Article  Google Scholar 

  34. Wang W, Lee SJ, Scott PA, et al. Two-step reactivation of dormant cones in retinitis pigmentosa. Cell Rep. 2016;15:372–85.

    Article  CAS  Google Scholar 

  35. Papait A, Cancedda R, Mastrogiacomo M, Poggi A. Allogeneic platelet-rich plasma affects monocyte differentiation to dendritic cells causing an anti-inflammatory microenvironment, putatively fostering wound healing. Tissue Eng Regen Med. 2018;12(1):30–433. https://doi.org/10.1002/term.2361.

    Article  CAS  Google Scholar 

  36. Reed GL, Fitzgerald ML, Polgár J. Molecular mechanisms of platelet exocytosis: insights into the B secrete life of thrombocytes. Blood. 2000;96(10):3334–42.

    CAS  PubMed  Google Scholar 

  37. Anitua E, Muruzabal F, AlcaldeI M-L, Orive G. Plasma rich in growth factors (PRGFs-Endoret) stimulates corneal wound healing and reduces haze formation after PRK surgery. Exp Eye Res. 2013;115:153–61.

    Article  CAS  Google Scholar 

  38. Limoli PG, Limoli C, Vingolo EM, Scalinci SZ, Nebbioso M. Cell surgery and growth factors in dry age-related macular degeneration: visual prognosis and morphological study. Oncotarget. 2016;7(30):46913–23.

    Article  Google Scholar 

  39. Chandra T, Chavhan GB, Sze RW, et al. Practical considerations for establishing and maintaining a magnetic resonance imaging safety program in a pediatric practice. Pediatr Radiol. 2019;49(4):458–68. https://doi.org/10.1007/s00247-019-04359-8.

    Article  PubMed  Google Scholar 

  40. Wu Z, Medeiros FA. Recent developments in visual field testing for glaucoma. Curr Opin Ophthalmol. 2018;29(2):141–6. https://doi.org/10.1097/ICU.0000000000000461.

    Article  PubMed  Google Scholar 

  41. Michalakis S, Schäferhoff K, Spiwoks-Becker I, et al. Characterization of neurite outgrowth and ectopic synaptogenesis in response to photoreceptor dysfunction. Cell Mol Life Sci. 2013;70(10):1831–47.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the participants of the study. We thank Prof. Dr Figen ŞERMET and the staff members of Ankara University Faculty of Medicine, Department of Ophthalmology.

Funding

No funding or sponsorship was received for this study or publication of this article. The rapid service fee was funded by the Ankara University Tecnopolis Institute.

Medical Writing Assistance

Medical writing and editorial assistance were provided by American Manuscript Editors Company, funded by the authors.

Authorship

All named authors meet the International Committee of Medical Journal Editors (ICMJE) criteria for authorship for this article, take responsibility for the integrity of the work as a whole, and have given their approval for this version to be published.

Disclosures

All authors had full access to all of the data in this study and take complete responsibility for the integrity of the data and accuracy of the data analysis. Umut Arslan and Emin Özmert have nothing to disclose. Umut Arslan and Emin Özmert have no conflicts of interest to disclose.

Compliance with Ethics Guidelines

Ethics committee approval for the transcranial electromagnetic stimulation study was obtained from the Ankara University Faculty of Medicine Clinical Research Ethics Committee (17-1177-18). This committe had already approved the GFs work (19-1293-18). The study was performed in accordance with the tenets of the 2013 Declaration of Helsinki. Written informed consent was obtained from the patients prior to enrollment.

Data Availability

The datasets generated during and/or analyzed during the study are available from the corresponding author on reasonable request.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umut Arslan.

Additional information

Enhanced digital features

To view digital features for this article go to https://doi.org/10.6084/m9.figshare.11994795.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arslan, U., Özmert, E. Management of Retinitis Pigmentosa via Platelet-Rich Plasma or Combination with Electromagnetic Stimulation: Retrospective Analysis of 1-Year Results. Adv Ther 37, 2390–2412 (2020). https://doi.org/10.1007/s12325-020-01308-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12325-020-01308-y

Keywords

Navigation