World Health Organization. Global report on diabetes. 2016. http://apps.who.int/iris/bitstream/10665/204871/1/9789241565257_eng.pdf?ua=1. Accessed 23 July 2018.
Inzucchi SE, Bergenstal RM, Buse JB, et al. Management of hyperglycaemia in type 2 diabetes: a patient-centered approach. Position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia. 2012;55:1577–96.
Article
CAS
PubMed
Google Scholar
International Diabetes Federation Guideline Development Group. Global guideline for type 2 diabetes. Diabetes Res Clin Pract. 2014;104:1–52.
Article
Google Scholar
Davies MJ, D’Alessio DA, Fradkin J, et al. Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia. 2018;61:2461–98.
Article
PubMed
Google Scholar
Garber AJ, Abrahamson MJ, Barzilay JI, et al. Consensus statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the comprehensive type 2 diabetes management algorithm—2018 executive summary. Endoc Practice. 2018;24:91–120.
Article
Google Scholar
American Diabetes Association. Standards of medical care in diabetes—2018. Diabetes Care. 2018;41(Suppl 1):S1–159.
Google Scholar
Stark Casagrande S, Fradkin JE, Saydah SH, Rust KF, Cowie CC. The prevalence of meeting A1C, blood pressure, and LDL goals among people with diabetes, 1988–2010. Diabetes Care. 2013;36:2271–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Strain WD, Blüher M, Paldánius P. Clinical inertia in individualising care for diabetes: is there time to do more in type 2 diabetes? Diabetes Ther. 2014;5:347–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khunti K, Wolden ML, Thorsted BL, Andersen M, Davies MJ. Clinical inertia in people with type 2 diabetes: a retrospective cohort study of more than 80,000 people. Diabetes Care. 2013;36:3411–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khunti K, Nikolajsen A, Thorsted BL, Andersen M, Davies MJ, Paul SK. Clinical inertia with regard to intensifying therapy in people with type 2 diabetes treated with basal insulin. Diabetes Obes Metab. 2016;18:401–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peyrot M, Barnett AH, Meneghini LF, Schumm-Draeger PM. Insulin adherence behaviours and barriers in the multinational Global Attitudes of Patients and Physicians in Insulin Therapy study. Diabet Med. 2012;29:682–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peyrot M, Rubin RR, Lauritzen T, et al. Resistance to insulin therapy among patients and providers: results of the cross-national Diabetes Attitudes, Wishes, and Needs (DAWN) study. Diabetes Care. 2005;28:2673–9.
Article
PubMed
Google Scholar
Ide L. Expanding pharmacist provider status can improve diabetes management. 2015. https://www.ajmc.com/contributor/lucienne-ide-md-phd/2015/12/expanding-pharmacist-provider-status-can-improve-diabetes-management. Accessed 23 July 2018.
Shane-McWhorter L. The scope and standards for the practice of diabetes education by pharmacists. American Association of Diabetes Educators. https://www.diabeteseducator.org/docs/default-source/legacy-docs/_resources/pdf/PharmDScopeStandards.pdf. Accessed 23 July 2018.
Weeks G, George J, Maclure K, Stewart D. Non-medical prescribing versus medical prescribing for acute and chronic disease management in primary and secondary care. Cochrane Datab Syst Rev. 2016;11:CD011227.
Google Scholar
Collins C, Limone BL, Scholle JM, Coleman CI. Effect of pharmacist intervention on glycemic control in diabetes. Diabet Res Clin Pract. 2011;92:145–52.
Article
Google Scholar
McCord AD. Clinical impact of a pharmacist-managed diabetes mellitus drug therapy management service. Pharmacotherapy. 2006;26:248–53.
Article
PubMed
Google Scholar
Morello CM, Zadvorny EB, Cording MA, Suemoto RT, Skog J, Harari A. Development and clinical outcomes of pharmacist-managed diabetes care clinics. Am J Health Syst Pharm. 2006;63:1325–31.
Article
PubMed
Google Scholar
Mehuys E, Van Bortel L, De Bolle L, et al. Effectiveness of a community pharmacist intervention in diabetes care: a randomized controlled trial. J Clin Pharm Ther. 2011;36:602–13.
Article
CAS
PubMed
Google Scholar
Ourth H, Groppi J, Morreale AP, Quicci-Roberts K. Clinical pharmacist prescribing activities in the Veterans Health Administration. Am J Health Syst Pharm. 2016;73:1406–15.
Article
PubMed
Google Scholar
Sullivan J, Jett BP, Cradick M, Zuber J. Effect of clinical pharmacist intervention on A1C reduction in veteran patients with type 2 diabetes in a rural setting. Ann Pharmacother. 2016;50:1023–7.
Article
CAS
PubMed
Google Scholar
Maxwell LG, McFarland MS, Baker JW, Cassidy RF. Evaluation of the impact of a pharmacist-led telehealth clinic on diabetes-related goals of therapy in a veteran population. Pharmacotherapy. 2016;36:348–56.
Article
CAS
PubMed
Google Scholar
Deters MA, Laven A, Castejon A, et al. Effective interventions for diabetes patients by community pharmacists: a meta-analysis of pharmaceutical care components. Ann Pharmcother. 2018;52:198–211.
Article
Google Scholar
Salvo MC, Brooks AM. Glycemic control and preventive care measures of indigent diabetes patients within a pharmacist-managed insulin titration program vs standard care. Ann Pharmacother. 2012;46:29–34.
Article
PubMed
Google Scholar
Rochester CD, Leon N, Dombrowski R, Haines ST. Collaborative drug therapy management for initiating and adjusting insulin therapy in patients with type 2 diabetes mellitus. Am J Health Syst Pharm. 2010;67:42–8.
Article
CAS
PubMed
Google Scholar
Al Hamarneh YN, Charrois T, Lewanczuk R, Tsuyuki RT. Pharmacist intervention for glycaemic control in the community (the RxING study). BMJ Open. 2013;3:e003154.
Article
PubMed
PubMed Central
Google Scholar
Pitlick JM, Brooks AD. Glycemic control in pharmacist-managed insulin titration versus standard care in an indigent population. Diabetes Spectrum. 2011;24:211–7.
Article
Google Scholar
Weidman-Evans E, Evans J, Eastwood R, Fort A. Implementation of a pharmacist-run telephonic insulin titration service. J Am Pharm Assoc. 2003;2012(52):e266–72.
Google Scholar
American Pharmacists Association. Understanding insulin management: role of the pharmacist. Pharmacy Today. 2014;20:85–96.
Article
Google Scholar
Lantus. US prescribing information (PI). http://www.accessdata.fda.gov/drugsatfda_docs/label/2009/021081s034lbl.pdf. Accessed 23 July 2018.
Basaglar. US prescribing information (PI). http://uspl.lilly.com/basaglar/basaglar.html#pi. Accessed 4 Mar 2019.
Toujeo. US prescribing information (PI). http://products.sanofi.us/toujeo/toujeo.pdf. Accessed 30 Aug 2018.
Tresiba. US prescribing information (PI). https://www.novo-pi.com/tresiba.pdf. Accessed 4 Mar 2019.
Levemir. US prescribing information (PI). http://www.accessdata.fda.gov/drugsatfda_docs/label/2012/021536s037lbl.pdf. Accessed 23 July 2018.
Heise T, Pieber TR. Towards peakless, reproducible and long-acting insulins. An assessment of the basal analogues based on isoglycaemic clamp studies. Diabetes Obes Metab. 2007;9:648–59.
Article
CAS
PubMed
Google Scholar
Jehle PM, Micheler C, Jehle DR, Breitig D, Boehm BO. Inadequate suspension of neutral protamine Hagendorn (NPH) insulin in pens. Lancet. 1999;354:1604–7.
Article
CAS
PubMed
Google Scholar
Reutrakul S, Wroblewski K, Brown RL. Clinical use of U-500 regular insulin: review and meta-analysis. J Diabetes Sci Technol. 2012;6:412–20.
Article
PubMed
PubMed Central
Google Scholar
Meneghini L. New insulin preparations: a primer for the clinician. Cleve Clin J Med. 2016;83(5 Suppl 1):S27–33.
Article
PubMed
Google Scholar
Reid T, Reid T, Gao L, et al. How much is too much? Outcomes in patients using high-dose insulin glargine. Int J Clin Pract. 2016;70:56–65.
Article
CAS
PubMed
Google Scholar
Rys P, Wojciechowski P, Siejka S, Małecki P, Hak Ł, Malecki MT. A comparison of biphasic insulin aspart and insulin glargine administered with oral antidiabetic drugs in type 2 diabetes mellitus—a systematic review and meta-analysis. Int J Clin Pract. 2014;68:304–13.
Article
CAS
PubMed
Google Scholar
Aschner P, Sethi B, Gomez-Peralta F, et al. Insulin glargine compared with premixed insulin for management of insulin-naïve type 2 diabetes patients uncontrolled on oral antidiabetic drugs: the open-label, randomized GALAPAGOS study. J Diabetes Complications. 2015;29:838–45.
Article
PubMed
Google Scholar
Riddle MC, Rosenstock J, Gerich J. The treat-to-target trial: randomized addition of glargine or human NPH insulin to oral therapy of type 2 diabetic patients. Diabetes Care. 2003;26:3080–6.
Article
CAS
PubMed
Google Scholar
Philis-Tsimikas A, Charpentier G, Clauson P, Ravn GM, Roberts VL, Thorsteinsson B. Comparison of once-daily insulin detemir with NPH insulin added to a regimen of oral antidiabetic drugs in poorly controlled type 2 diabetes. Clin Ther. 2006;28:1569–81.
Article
CAS
PubMed
Google Scholar
Heise T, Nosek L, Rønn BB, et al. Lower within-subject variability of insulin detemir in comparison to NPH insulin and insulin glargine in people with type 1 diabetes. Diabetes. 2004;53:1614–20.
Article
CAS
PubMed
Google Scholar
Hartman I. Insulin analogs: impact on treatment success, satisfaction, quality of life, and adherence. Clin Med Res. 2008;6:54–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rosenstock J, Hollander P, Bhargava A, et al. Similar efficacy and safety of LY2963016 insulin glargine and insulin glargine (Lantus) in patients with type 2 diabetes who were insulin-naïve or previously treated with insulin glargine: a randomized, double-blind controlled trial (the ELEMENT 2 study). Diabetes Obes Metab. 2015;17:734–41.
Article
CAS
PubMed
Google Scholar
Hadjiyianni I, Dahl D, Lacaya LB, Pollom RK, Chang CL, Ilag LL. Efficacy and safety of LY2963016 insulin glargine in patients with type 1 and type 2 diabetes previously treated with insulin glargine. Diabetes Obes Metab. 2016;18:425–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Plank J, Bodenlenz M, Sinner F, et al. A double-blind, randomized, dose-response study investigating the pharmacodynamic and pharmacokinetic properties of the long-acting insulin analog detemir. Diabetes Care. 2005;28:1107–12.
Article
CAS
PubMed
Google Scholar
Swinnen SG, Simon AC, Holleman F, Hoekstra JB, Devries JH. Insulin detemir versus insulin glargine for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2011;7:CD006383.
Google Scholar
Hermansen K, Davies M, Derezinski T, Martinez Ravn G, Clauson P, Home P. A 26-week, randomized, parallel, treat-to-target trial comparing insulin detemir with NPH insulin as add-on therapy to oral glucose-lowering drugs in insulin-naive people with type 2 diabetes. Diabetes Care. 2006;29:1269–74.
Article
CAS
PubMed
Google Scholar
Becker RH, Dahmen R, Bergmann K, Lehmann A, Jax T, Heise T. New insulin glargine 300 units mL−1 provides a more even activity profile and prolonged glycemic control at steady state compared with insulin glargine 100 units mL−1. Diabetes Care. 2015;38:637–43.
CAS
PubMed
Google Scholar
Heller S, Mathieu C, Kapur R, Wolden ML, Zinman B. A meta-analysis of rate ratios for nocturnal confirmed hypoglycaemia with insulin degludec vs. insulin glargine using different definitions for hypoglycaemia. Diabet Med. 2016;33:478–87.
Article
CAS
PubMed
Google Scholar
Zinman B, DeVries JH, Bode B, et al. Efficacy and safety of insulin degludec three times a week versus insulin glargine once a day in insulin-naive patients with type 2 diabetes: results of two phase 3, 26 weeks, randomised, open-label, treat-to-target, non-inferiority trials. Lancet Diabetes Endocrinol. 2013;1:123–31.
Article
CAS
PubMed
Google Scholar
Bailey TS, Pettus B, Roussel R, et al. Morning administration of 0.4 U/kg/day insulin glargine 300 U/mL provides less fluctuating 24-h pharmacodynamics and more even pharmacokinetic profiles compared with insulin degludec 100 U/mL in type 1 diabetes. Diabetes Metab. 2018;44:15–21.
Article
CAS
PubMed
Google Scholar
Bolli GB, Riddle MC, Bergenstal RM, et al. New insulin glargine 300 U/ml compared with glargine 100 U/ml in insulin-naïve people with type 2 diabetes on oral glucose-lowering drugs: a randomized controlled trial (EDITION 3). Diabetes Obes Metab. 2015;17:386–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ritzel R, Roussel R, Bolli GB, et al. Patient-level meta-analysis of the EDITION 1, 2 and 3 studies: glycaemic control and hypoglycaemia with new insulin glargine 300 U/ml versus glargine 100 U/ml in people with type 2 diabetes. Diabetes Obes Metab. 2015;17:859–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heise T, Nosek L, Bøttcher SG, Hastrup H, Haahr H. Ultra-long-acting insulin degludec has a flat and stable glucose-lowering effect in type 2 diabetes. Diabetes Obes Metab. 2012;14:944–50.
Article
CAS
PubMed
Google Scholar
Haahr H, Heise T. A review of the pharmacological properties of insulin degludec and their clinical relevance. Clin Pharmacokinet. 2014;53:787–800.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thuillier P, Alavi Z, Kerlan V. Long-term safety and efficacy of insulin degludec in the management of type 2 diabetes. Diabetes Metab Syndr Obes. 2015;8:483–93.
CAS
PubMed
PubMed Central
Google Scholar
Korsatko S, Deller S, Koehler G, et al. A comparison of the steady-state pharmacokinetic and pharmacodynamic profiles of 100 and 200 U/mL formulations of ultra-long-acting insulin degludec. Clin Drug Investig. 2013;33:515–21.
Article
CAS
PubMed
Google Scholar
Zinman B, Philis-Tsimikas A, Cariou B, et al. Insulin degludec versus insulin glargine in insulin-naive patients with type 2 diabetes: a 1-year, randomized, treat-to-target trial (BEGIN Once Long). Diabetes Care. 2012;35:2464–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gough SC, Bhargava A, Jain R, Mersebach H, Rasmussen S, Bergenstal RM. Low-volume insulin degludec 200 units/ml once daily improves glycemic control similarly to insulin glargine with a low risk of hypoglycemia in insulin-naïve patients with type 2 diabetes: a 26-week, randomized, controlled, multinational, treat-to-target trial: the BEGIN LOW VOLUME trial. Diabetes Care. 2013;36:2536–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meneghini L, Atkin SL, Gough SC, et al. The efficacy and safety of insulin degludec given in variable once-daily dosing intervals compared with insulin glargine and insulin degludec dosed at the same time daily: a 26-week, randomized, open-label, parallel-group, treat-to-target trial in individuals with type 2 diabetes. Diabetes Care. 2013;36:858–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Onishi Y, Iwamoto Y, Yoo SJ, Clauson P, Tamer SC, Park S. Insulin degludec compared with insulin glargine in insulin-naïve patients with type 2 diabetes: a 26-week, randomized, controlled, Pan-Asian, treat-to-target trial. J Diabetes Investig. 2013;4:605–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wysham C, Bhargava A, Chaykin L, et al. Effect of insulin degludec vs insulin glargine U100 on hypoglycemia in patients with type 2 diabetes: the SWITCH 2 randomized clinical trial. JAMA. 2017;318:45–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yki-Järvinen H, Kauppinen-Mäkelin R, Tiikkainen M, et al. Insulin glargine or NPH combined with metformin in type 2 diabetes: the LANMET study. Diabetologia. 2006;49:442–51.
Article
CAS
PubMed
Google Scholar
Rosenstock J, Davies M, Home PD, Larsen J, Koenen C, Schernthaner G. A randomised, 52-week, treat-to-target trial comparing insulin detemir with insulin glargine when administered as add-on to glucose-lowering drugs in insulin-naïve people with type 2 diabetes. Diabetologia. 2008;51:408–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meneghini L, Kesavadev J, Demissie M, Nazeri A, Hollander P. Once-daily initiation of basal insulin as add-on to metformin: a 26-week, randomized, treat-to-target trial comparing insulin detemir with insulin glargine in patients with type 2 diabetes. Diabetes Obes Metab. 2013;15:729–36.
Article
CAS
PubMed
Google Scholar
Davies M, Storms F, Shutler S, Bianchi-Biscay M, Gomis R. Improvement of glycemic control in subjects with poorly controlled type 2 diabetes: comparison of two treatment algorithms using insulin glargine. Diabetes Care. 2005;28:1282–8.
Article
CAS
PubMed
Google Scholar
Kennedy L, Herman WH, Strange P, Harris A. Impact of active versus usual algorithmic titration of basal insulin and point-of-care versus laboratory measurement of HbA1c on glycemic control in patients with type 2 diabetes: the Glycemic Optimization with Algorithms and Labs at Point of Care (GOAL A1C) trial. Diabetes Care. 2006;29:1–8.
Article
CAS
PubMed
Google Scholar
Meneghini L, Koenen C, Weng W, Selam JL. The usage of a simplified self-titration dosing guideline (303 Algorithm) for insulin detemir in patients with type 2 diabetes—results of the randomized, controlled PREDICTIVE™ 303 study. Diabetes Obes Metab. 2007;9:902–13.
Article
CAS
PubMed
Google Scholar
Blonde L, Merilainen M, Karwe V, Raskin P. Patient-directed titration for achieving glycaemic goals using a once-daily basal insulin analogue: an assessment of two different fasting plasma glucose targets—the TITRATE study. Diabetes Obes Metab. 2009;11:623–31.
Article
CAS
PubMed
Google Scholar
Philis-Tsimikas A, Brod M, Niemeyer M, Ocampo Francisco AM, Rothman J. Insulin degludec once-daily in type 2 diabetes: simple or step-wise titration (BEGIN: once simple use). Adv Ther. 2013;30:607–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dailey G, Aurand L, Stewart J, Ameer B, Zhou R. Comparison of three algorithms for initiation and titration of insulin glargine in insulin-naive patients with type 2 diabetes mellitus. J Diabetes. 2014;6:176–83.
Article
CAS
PubMed
Google Scholar
Home PD, Bolli GB, Mathieu C, et al. Modulation of insulin dose titration using a hypoglycaemia-sensitive algorithm: insulin glargine versus neutral protamine Hagedorn insulin in insulin-naïve people with type 2 diabetes. Diabetes Obes Metab. 2015;17:15–22.
Article
CAS
PubMed
Google Scholar
Yale J-F, Harris SB, Berard L, Groleau M, JavadiP, Stewart J. Safety and efficacy of a pragmatic self-titration 1 unit/day (INSIGHT) algorithm for insulin glargine 300 U/mL (Gla-300). Poster presented at the 52nd European Association for the Study of Diabetes (EASD) annual meeting; September 12–16, 2016; Munich, Germany. https://www.easd.org/virtualmeeting/home.html#!resources/safety-and-efficacy-of-a-pragmatic-self-titration-1-unit-day-insight-algorithm-for-insulin-glargine-300-u-ml-gla-300-d617e461-efcf-4b97-b66f-f0d3171bb987. Accessed 23 July 2018.
Ollerton RL, Playle R, Ahmed K, Dunstan FD, Luzio SD, Owens DR. Day-to-day variability of fasting plasma glucose in newly diagnosed type 2 diabetic subjects. Diabetes Care. 1999;22:394–8.
Article
CAS
PubMed
Google Scholar
King AB. Misled by the morning “fasting” plasma glucose. J Diabetes Sci Technol. 2015;9:1342–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rosenstock J, Cheng A, Ritzel R, et al. More similarities than differences testing insulin glargine 300 units/mL versus insulin degludec units/mL in insulin-naive type 2 diabetes: the Randomized Head-to-Head BRIGHT Trial. Diabetes Care. 2018;4:2147–54.
Article
CAS
Google Scholar
FDA. Department of Health and Human Services Section review of 510(k). 2016. https://www.accessdata.fda.gov/cdrh_docs/pdf16/K161433.pdf. Accessed 23 July 2018.