Advances in Therapy

, Volume 27, Issue 11, pp 796–813 | Cite as

Jet lag, circadian rhythm sleep disturbances, and depression: the role of melatonin and its analogs

  • Venkatramanujam Srinivasan
  • Jarnail Singh
  • Seithikurippu R. Pandi-Perumal
  • Gregory M. Brown
  • David Warren Spence
  • Daniel P. CardinaliEmail author


Traveling through several time zones results in a constellation of symptoms known as jet lag. These include reduced alertness, daytime fatigue, loss of appetite, reduced cognitive skills, and disruption of the sleep/wake cycle. In susceptible air travel passengers, jet lag may exacerbate affective illness and result in psychiatric morbidity. Dysregulation of circadian rhythms and melatonin secretion represent the common underlying factor in jet lag and other circadian disorders. Recent studies have established the effectiveness of strategically timed administration of melatonin and appropriate timed exposure to environmental schedules including light in counteracting the dysregulation (chronobiologic actions). With the introduction of melatonergic agonists such as ramelteon and tasimelteon, which have both a stronger affinity for MT1 and MT2 melatonin receptors and a longer half-life, new therapeutic options now exist for treating the sleep disturbances associated with jet lag. The melatonin analogs are unique inasmuch as they can also enhance daytime alertness. The recently introduced melatonergic antidepressant agomelatine, which has established its supremacy over other antidepressants in having a significant chronobiologic activity, represents a good choice for treating depressive symptoms that are associated with jet lag.


agomelatine chronobiotic fatigue insomnia jet lag melatonin mood disorders ramelteon tasimelteon 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Czeisler CA, Duffy JF, Shanahan TL, et al. Stability, precision, and near-24-hour period of the human circadian pacemaker. Science. 1999;284:2177–2181.PubMedCrossRefGoogle Scholar
  2. 2.
    Hastings MH, Best JD, Ebling FJ, et al. Entrainment of the circadian clock. Prog Brain Res. 1996;111:147–174.PubMedCrossRefGoogle Scholar
  3. 3.
    Lewy AJ, Emens J, Sack RL, et al. Zeitgeber hierarchy in humans: resetting the circadian phase positions of blind people using melatonin. Chronobiol Int. 2003;20:837–852.PubMedCrossRefGoogle Scholar
  4. 4.
    Zisapel N. Circadian rhythm sleep disorders: pathophysiology and potential approaches to management. CNS Drugs. 2001;15:311–328.PubMedCrossRefGoogle Scholar
  5. 5.
    Pandi-Perumal SR, Trakht I, Spence DW, et al. The roles of melatonin and light in the pathophysiology and treatment of circadian rhythm sleep disorders. Nat Clin Pract Neurol. 2008;4:436–447.PubMedCrossRefGoogle Scholar
  6. 6.
    Zee PC, Manthena P. The brain’s master circadian clock: implications and opportunities for therapy of sleep disorders. Sleep Med Rev. 2007;11:59–70.PubMedCrossRefGoogle Scholar
  7. 7.
    Samuels C. Sleep, recovery, and performance: the new frontier in high-performance athletics. Phys Med Rehabil Clin N Am. 2009;20:149–159,ix.PubMedGoogle Scholar
  8. 8.
    Sack RL. Clinical practice. Jet lag. N Engl J Med. 2010;362:440–447.CrossRefGoogle Scholar
  9. 9.
    Waterhouse J, Reilly T. Managing jet lag. Sleep Med Rev. 2009;13:247–248.PubMedCrossRefGoogle Scholar
  10. 10.
    Arendt J, Marks V. Physiological changes underlying jet lag. Br Med J (Clin Res Ed). 1982;284:144–146.CrossRefGoogle Scholar
  11. 11.
    Kyriacou CP, Hastings MH. Circadian clocks: genes, sleep, and cognition. Trends Cogn Sci. 2010; 14:259–267.PubMedCrossRefGoogle Scholar
  12. 12.
    Arendt J. Managing jet lag: some of the problems and possible new solutions. Sleep Med Rev. 2009;13:249–256.PubMedCrossRefGoogle Scholar
  13. 13.
    Auger RR, Morgenthaler TI. Jet 13. lag and other sleep disorders relevant to the traveler. Travel Med Infect Dis. 2009;7:60–68.PubMedCrossRefGoogle Scholar
  14. 14.
    Reilly T, Atkinson G, Waterhouse J. Travel fatigue and jet-lag. J Sports Sci. 1997;15:365–369.PubMedCrossRefGoogle Scholar
  15. 15.
    Nicholson AN. Intercontinental air travel: the cabin atmosphere and circadian realignment. Travel Med Infect Dis. 2009;7:57–59.PubMedCrossRefGoogle Scholar
  16. 16.
    Dibner C, Schibler U, Albrecht U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol. 2010;72:517–549.PubMedCrossRefGoogle Scholar
  17. 17.
    Morin LP, Allen CN. The circadian visual system, 2005. Brain Res Brain Res Rev. 2006;51:1–60.CrossRefGoogle Scholar
  18. 18.
    Kalsbeek A, Perreau-Lenz S, Buijs RM. A network of (autonomic) clock outputs. Chronobiol Int. 2006;23:201–215.PubMedCrossRefGoogle Scholar
  19. 19.
    Aschoff J, Wever R. The circadian system of man. In: Aschoff J, ed. Handbook of Behavioral Neurobiology. Volume 4. Biological Rhythms. New York: Plenum Press; 1981:311–331.Google Scholar
  20. 20.
    Monk TH. Aging human circadian rhythms: conventional wisdom may not always be right. J Biol Rhythms. 2005;20:366–374.PubMedCrossRefGoogle Scholar
  21. 21.
    Davidson AJ, Sellix MT, Daniel J, et al. Chronic jet-lag increases mortality in aged mice. Curr Biol. 2006;16:R914–R916.PubMedCrossRefGoogle Scholar
  22. 22.
    Tresguerres J, Ariznavarreta C, Granados B, et al. Circadian urinary 6-sulphatoxymelatonin, cortisol excretion and locomotor activity in airline pilots during transmeridian flights. J Pineal Res. 2001;31:16–22.PubMedCrossRefGoogle Scholar
  23. 23.
    Ariznavarreta C, Cardinali DP, Villanua M, et al. Circadian rhythms in airline pilots submitted to long-haul transmeridian flights. Aviat Space Environ Med. 2002;73:445–455.PubMedGoogle Scholar
  24. 24.
    Shanahan TL, Czeisler CA. Physiological effects of light on the human circadian pacemaker. Semin Perinatol. 2000;24:299–320.PubMedCrossRefGoogle Scholar
  25. 25.
    Takahashi T, Sasaki M, Itoh H, et al. Melatonin alleviates jet lag symptoms caused by an 11.hour eastward flight. Psychiatry Clin Neurosci. 2002;56:301–302.PubMedCrossRefGoogle Scholar
  26. 26.
    Nicholson AN. Sleep and intercontinental flights. Travel Med Infect Dis. 2006;4:336–339.PubMedCrossRefGoogle Scholar
  27. 27.
    Roehrs T, Turner L, Roth T. Effects of sleep loss on waking actigraphy. Sleep. 2000;23:793–797.PubMedGoogle Scholar
  28. 28.
    Wegmann HM, Gundel A, Naumann M, et al. Sleep, sleepiness, and circadian rhythmicity in aircrews operating on transatlantic routes. Aviat Space Environ Med. 1986;57:B53–B64.PubMedGoogle Scholar
  29. 29.
    Samel A, Wegmann HM, Vejvoda M. Jet lag and sleepiness in aircrew. J Sleep Res. 1995;4:30–36.PubMedCrossRefGoogle Scholar
  30. 30.
    Beaumont M, Batejat D, Pierard C, et al. Caffeine or melatonin effects on sleep and sleepiness after rapid eastward transmeridian travel. J Appl Physiol. 2004;96:50–58.PubMedCrossRefGoogle Scholar
  31. 31.
    Sack RL. The pathophysiology of jet lag. Travel Med Infect Dis. 2009;7:102–110.PubMedCrossRefGoogle Scholar
  32. 32.
    Costa G, Haus E, Stevens R. Shift work and cancer — considerations on rationale, mechanisms, and epidemiology. Scand J Work Environ Health. 2010;36:163–179.PubMedGoogle Scholar
  33. 33.
    Stevens RG, Blask DE, Brainard GC, et al. Meeting report: the role of environmental lighting and circadian disruption in cancer and other diseases. Environ Health Perspect. 2007;115:1357–1362.PubMedCrossRefGoogle Scholar
  34. 34.
    Arendt J. Shift work: coping with the biological clock. Occup Med (Lond). 2010;60:10–20.CrossRefGoogle Scholar
  35. 35.
    Grundy A, Sanchez M, Richardson H, et al. Light intensity exposure, sleep duration, physical activity, and biomarkers of melatonin among rotating shift nurses. Chronobiol Int. 2009;26:1443–1461.PubMedCrossRefGoogle Scholar
  36. 36.
    Thorpy MJ. Managing the patient with shift-work disorder. J Fam Pract. 2010;59:S24–S31.PubMedGoogle Scholar
  37. 37.
    Lemmer B, Kern RI, Nold G, et al. Jet lag in athletes after eastward and westward time-zone transition. Chronobiol Int. 2002;19:743–764.PubMedCrossRefGoogle Scholar
  38. 38.
    Steenland K, Deddens JA. Effect of travel and rest on performance of professional basketball players. Sleep. 1997;20:366–369.PubMedGoogle Scholar
  39. 39.
    Schwartz JR. Pharmacologic management of daytime sleepiness. J Clin Psychiatry. 2004;65Suppl 16:46–49.PubMedGoogle Scholar
  40. 40.
    Caldwell JA. Fatigue in aviation. Travel Med Infect Dis. 2005;3:85–96.PubMedCrossRefGoogle Scholar
  41. 41.
    Pandi-Perumal SR, Srinivasan V, Maestroni GJM, et al. Melatonin: nature’s most versatile biological signal? FEBS Lett. 2006;273:2813–2838.Google Scholar
  42. 42.
    Srinivasan V, Pandi-Perumal SR, Spence DW, et al. Potential use of melatonergic drugs in analgesia: mechanisms of action. Brain Res Bull. 2010;81:362–371.PubMedCrossRefGoogle Scholar
  43. 43.
    Srinivasan V, Pandi-Perumal SR, Spence DW, et al. Melatonin in septic shock: some recent concepts. J Crit Care. In press.Google Scholar
  44. 44.
    Lewy AJ, Emens J, Jackman A, et al. Circadian uses of melatonin in humans. Chronobiol Int. 2006;23:403–412.PubMedCrossRefGoogle Scholar
  45. 45.
    Dawson D, Armstrong SM. Chronobiotics — drugs that shift rhythms. Pharmacol Ther. 1996;69:15–36X.PubMedCrossRefGoogle Scholar
  46. 46.
    Bartness TJ, Goldman BD. Mammalian pineal melatonin: a clock for all seasons. Experientia. 1989;45:939–945.PubMedCrossRefGoogle Scholar
  47. 47.
    Brown GM, Pandi-Perumal SR, Trakht I, et al. Melatonin and its relevance to jet lag. Travel Med Infect Dis. 2009;7:69–81.PubMedCrossRefGoogle Scholar
  48. 48.
    Claustrat B, Brun J, Chazot G. The basic physiology and pathophysiology of melatonin. Sleep Med Rev. 2005;9:11–24.PubMedCrossRefGoogle Scholar
  49. 49.
    Brown GM, Pandi-Perumal SR, Trakht I, et al. The role of melatonin in seasonal affective disorder.In: Partonen T and Pandi-Perumal SR, eds. Seasonal Affective Disorder Practice and Research. 2nd ed. Oxford: Oxford University Press; 2010:149–162.Google Scholar
  50. 50.
    Zhdanova IV, Wurtman RJ, Lynch HJ, et al. Sleep-inducing effects of low doses of melatonin ingested in the evening. Clin Pharmacol Ther. 1995;57:552–558.PubMedCrossRefGoogle Scholar
  51. 51.
    Dollins AB, Zhdanova IV, Wurtman RJ, et al. Effect of inducing nocturnal serum melatonin concentrations in daytime on sleep, mood, body temperature, and performance. Proc Natl Acad Sci U S A. 1994;91:1824–1828.PubMedCrossRefGoogle Scholar
  52. 52.
    Arendt J, Skene DJ. Melatonin as a chronobiotic. Sleep Med Rev. 2005;9:25–39.PubMedCrossRefGoogle Scholar
  53. 53.
    Burgess HJ, Sharkey KM, Eastman CI. Bright light, dark and melatonin can promote circadian adaptation in night shift workers. Sleep Med Rev. 2002;6:407–420.PubMedGoogle Scholar
  54. 54.
    Dubocovich ML, Delagrange P, Krause DN, et al. International Union of Basic and Clinical Pharmacology. LXXV. Nomenclature, classification, and pharmacology of G protein-coupled melatonin receptors. Nomenclature, classification and pharmacology of G proteincoupled melatonin receptors. Phamacol Rev. In press.Google Scholar
  55. 55.
    Dubocovich ML, Markowska M. Functional MT1 and MT2 melatonin receptors in mammals. Endocrine. 2005;27:101–110.PubMedCrossRefGoogle Scholar
  56. 56.
    Liu C, Weaver DR, Jin X, et al. Molecular dissection of two distinct actions of melatonin on the suprachiasmatic circadian clock. Neuron. 1997;19:91–102.PubMedCrossRefGoogle Scholar
  57. 57.
    von Gall C, Stehle JH, Weaver DR. Mammalian melatonin receptors: molecular biology and signal transduction. Cell Tissue Res. 2002;309:151–162.CrossRefGoogle Scholar
  58. 58.
    Hunt AE, Al Ghoul WM, Gillette MU, et al. Activation of MT(2) melatonin receptors in rat suprachiasmatic nucleus phase advances the circadian clock. Am J Physiol Cell Physiol. 2001;280:C110–C118.PubMedGoogle Scholar
  59. 59.
    Wan Q, Man HY, Liu F, et al. Differential modulation of GABAA receptor function by Mel1a and Mel1b receptors. Nat Neurosci. 1999;2:401–403.PubMedCrossRefGoogle Scholar
  60. 60.
    Liu C, Reppert SM. GABA synchronizes clock cells within the suprachiasmatic circadian clock. Neuron. 2000;25:123–128.PubMedCrossRefGoogle Scholar
  61. 61.
    Gherardin T. Jet lag. A problem for ‘long haul’ travellers. Aust Fam Physician. 1999;28:833.PubMedGoogle Scholar
  62. 62.
    Arendt J. Jet-lag. Lancet. 1998;351:293–294.PubMedCrossRefGoogle Scholar
  63. 63.
    Kennaway DJ, Wright H. Melatonin and circadian rhythms. Curr Top Med Chem. 2002;2:199–209.PubMedCrossRefGoogle Scholar
  64. 64.
    Paul MA, Miller JC, Gray GW, et al. Melatonin treatment for eastward and westward travel preparation. Psychopharmacology (Berl). 2010;208:377–386.CrossRefGoogle Scholar
  65. 65.
    Cardinali DP, Bortman GP, Liotta G, et al. A multifactorial approach employing melatonin to accelerate resynchronization of sleep-wake cycle after a 12 time-zone westerly transmeridian flight in elite soccer athletes. J Pineal Res. 2002;32:41–46.PubMedCrossRefGoogle Scholar
  66. 66.
    Arendt J, Aldhous M, Marks V. Alleviation of jet lag by melatonin: preliminary results of controlled double blind trial. Br Med J (Clin Res Ed). 1986;292:1170.CrossRefGoogle Scholar
  67. 67.
    Petrie K, Dawson AG, Thompson L, et al. A double-blind trial of melatonin as a treatment for jet lag in international cabin crew. Biol Psychiatry. 1993;33:526–530.PubMedCrossRefGoogle Scholar
  68. 68.
    Claustrat B, Brun J, David M, et al. Melatonin and jet lag: confirmatory result using a simplified protocol. Biol Psychiatry. 1992;32:705–711.PubMedCrossRefGoogle Scholar
  69. 69.
    Lino A, Silvy S, Condorelli L, et al. Melatonin and jet lag: treatment schedule. Biol Psychiatry. 1993;34:587.PubMedCrossRefGoogle Scholar
  70. 70.
    Spitzer RL, Terman M, Williams JB, et al. Jet lag: clinical features, validation of a new syndromespecific scale, and lack of response to melatonin in a randomized, double-blind trial. Am J Psychiatry. 1999;156:1392–1396.PubMedGoogle Scholar
  71. 71.
    Samel A. Melatonin and jet-lag. Eur J Med Res. 1999;4:385–388.PubMedGoogle Scholar
  72. 72.
    Edwards BJ, Atkinson G, Waterhouse J, et al. Use of melatonin in recovery from jet-lag following an eastward flight across 10 time-zones. Ergonomics. 2000;43:1501–1513.PubMedCrossRefGoogle Scholar
  73. 73.
    Revell VL, Burgess HJ, Gazda CJ, et al. Advancing human circadian rhythms with afternoon melatonin and morning intermittent bright light. J Clin Endocrinol Metab. 2006;91:54–59.PubMedCrossRefGoogle Scholar
  74. 74.
    Arendt J, Aldhous M. Further evaluation of the treatment of jet-lag by melatonin: a double-blind crossover study. Annu Rev Chronopharmacol. 1986;5:53–55.Google Scholar
  75. 75.
    Petrie K, Conaglen JV, Thompson L, et al. Effect of melatonin on jet lag after long haul flights. BMJ. 1989;298:705–707.PubMedCrossRefGoogle Scholar
  76. 76.
    Nickelsen I, Lang A, Bergau I. The effect of 6, 9, and 11-hour time shifts on circadian rhythms: adaptation of sleep parameters and hormonal patterns following the intake of melatonin or placebo. Adv Pineal Res. 1991;5:303–306.Google Scholar
  77. 77.
    Comperatore CA, Lieberman HR, Kirby AW, et al. Melatonin efficacy in aviation missions requiring rapid deployment and night operations. Aviat Space Environ Med. 1996;67:520–524.PubMedGoogle Scholar
  78. 78.
    Suhner A, Schlagenhauf P, Johnson R, et al. Comparative study to determine the optimal melatonin dosage form for the alleviation of jet lag. Chronobiol Int. 1998;15:655–666.PubMedCrossRefGoogle Scholar
  79. 79.
    Suhner A, Schlagenhauf P, Hofer I, et al. Effectiveness and tolerability of melatonin and zolpidem for the alleviation of jet lag. Aviat Space Environ Med. 2001;72:638–646.PubMedGoogle Scholar
  80. 80.
    Pierard C, Beaumont M, Enslen M, et al. Resynchronization of hormonal rhythms after an eastbound flight in humans: effects of slow-release caffeine and melatonin. Eur J Appl Physiol. 2001;85:144–150.PubMedCrossRefGoogle Scholar
  81. 81.
    Paul MA, Gray G, Sardana TM, et al. Melatonin and zopiclone as facilitators of early circadian sleep in operational air transport crews. Aviat Space Environ Med. 2004;75:439–443.PubMedGoogle Scholar
  82. 82.
    Cardinali DP, Furio AM, Reyes MP, et al. The use of chronobiotics in the resynchronization of the sleep/wake cycle. Cancer Causes Control. 2006;17:601–609.PubMedCrossRefGoogle Scholar
  83. 83.
    Arendt J, Skene DJ, Middleton B, et al. Efficacy of melatonin treatment in jet lag, shift work, and blindness. J Biol Rhythms. 1997;12:604–617.PubMedCrossRefGoogle Scholar
  84. 84.
    Herxheimer A, Petrie KJ. Melatonin for the prevention and treatment of jet lag. Cochrane Database Syst Rev. 2002;(2):CD001520.Google Scholar
  85. 85.
    Czeisler CA, Kronauer RE, Allan JS, et al. Bright light induction of strong (type 0) resetting of the human circadian pacemaker. Science. 1989;244:1328–1333.PubMedCrossRefGoogle Scholar
  86. 86.
    Paul MA, Miller JC, Love RJ, et al. Timing light treatment for eastward and westward travel preparation. Chronobiol Int. 2009;26:867–890.PubMedCrossRefGoogle Scholar
  87. 87.
    Berson DM. Phototransduction in ganglion-cell photoreceptors. Pflugers Arch. 2007;454:849–855.PubMedCrossRefGoogle Scholar
  88. 88.
    Sack RL, Auckley D, Auger RR, et al. Circadian rhythm sleep disorders: part I, basic principles, shift work and jet lag disorders. An American Academy of Sleep Medicine review. Sleep. 2007;30:1460–1483.PubMedGoogle Scholar
  89. 89.
    Bellon A. Searching for new options for treating insomnia: are melatonin and ramelteon beneficial? J Psychiatr Pract. 2006;12:229–243.PubMedCrossRefGoogle Scholar
  90. 90.
    Dobkin RD, Menza M, Bienfait KL, et al. Ramelteon for the treatment of insomnia in menopausal women. Menopause Int. 2009;15:13–18.PubMedCrossRefGoogle Scholar
  91. 91.
    Gross PK, Nourse R, Wasser TE. Ramelteon for insomnia symptoms in a community sample of adults with generalized anxiety disorder: an open label study. J Clin Sleep Med. 2009;5:28–33.PubMedGoogle Scholar
  92. 92.
    Hirai K, Kita M, Ohta H, et al. Ramelteon (TAK- 375) accelerates reentrainment of circadian rhythm after a phase advance of the light-dark cycle in rats. J Biol Rhythms. 2005;20:27–37.PubMedCrossRefGoogle Scholar
  93. 93.
    Kato K, Hirai K, Nishiyama K, et al. Neurochemical properties of ramelteon (TAK-375), a selective MT1/MT2 receptor agonist. Neuropharmacology. 2005;48:301–310.PubMedCrossRefGoogle Scholar
  94. 94.
    Erman M, Seiden D, Zammit G, et al. An efficacy, safety, and dose-response study of ramelteon in patients with chronic primary insomnia. Sleep Med. 2006;7:17–24.PubMedCrossRefGoogle Scholar
  95. 95.
    Roth T, Seiden D, Wang-Weigand S, et al. A 2-night, 3-period, crossover study of ramelteon’s efficacy and safety in older adults with chronic insomnia. Curr Med Res Opin. 2007;23:1005–1014.PubMedCrossRefGoogle Scholar
  96. 96.
    Zammit G, Erman M, Wang-Weigand S, et al. Evaluation of the efficacy and safety of ramelteon in subjects with chronic insomnia. J Clin Sleep Med. 2007;3:495–504.PubMedGoogle Scholar
  97. 97.
    Mini L, Wang-Weigand S, Zhang J. Ramelteon 8 mg/d versus placebo in patients with chronic insomnia: post hoc analysis of a 5-week trial using 50% or greater reduction in latency to persistent sleep as a measure of treatment effect. Clin Ther. 2008;30:1316–1323.PubMedCrossRefGoogle Scholar
  98. 98.
    Richardson GS, Zee PC, Wang-Weigand S, et al. Circadian phase-shifting effects of repeated ramelteon administration in healthy adults. J Clin Sleep Med. 2008;4:456–461.PubMedGoogle Scholar
  99. 99.
    Zee PC, Wang-Weigand S, Wright KP Jr., et al. Effects of ramelteon on insomnia symptoms induced by rapid, eastward travel. Sleep Med. 2010;11:525–533.PubMedCrossRefGoogle Scholar
  100. 100.
    Minors DS, Waterhouse JM, Wirz-Justice A. A human phase-response curve to light. Neurosci Lett. 1991;133:36–40.PubMedCrossRefGoogle Scholar
  101. 101.
    Rajaratnam SM, Polymeropoulos MH, Fisher DM, et al. Melatonin agonist tasimelteon (VEC-162) for transient insomnia after sleep-time shift: two randomised controlled multicentre trials. Lancet. 2009;373:482–491.PubMedCrossRefGoogle Scholar
  102. 102.
    Jauhar P, Weller MP. Psychiatric morbidity and time zone changes: a study of patients from Heathrow airport. Br J Psychiatry. 1982;140:231–235.PubMedCrossRefGoogle Scholar
  103. 103.
    Young DM. Psychiatric morbidity in travelers to Honolulu, Hawaii. Compr Psychiatry. 1995;36:224–228.PubMedCrossRefGoogle Scholar
  104. 104.
    Katz G, Knobler HY, Laibel Z, et al. Time zone change and major psychiatric morbidity: the results of a 6-year study in Jerusalem. Compr Psychiatry. 2002;43:37–40.PubMedCrossRefGoogle Scholar
  105. 105.
    Srinivasan V, Spence DW, Pandi-Perumal SR, et al. Jet lag: therapeutic use of melatonin and possible application of melatonin analogues. Travel Med Infect Dis. 2008;6:17–28.PubMedCrossRefGoogle Scholar
  106. 106.
    Halberg F, Vestergaard P, Sakai M. Rhythmometry on urinary 17-ketosteroid excretion by healthy men and women and patients with chronic schizophrenia; possible chronopathology in depressive illness. Arch Anat Histol Embryol. 1968;51:299–311.PubMedGoogle Scholar
  107. 107.
    Wehr TA, Wirz-Justice A. Circadian rhythm mechanisms in affective illness and in antidepressant drug action. Pharmacopsychiatria. 1982;15:31–39.PubMedCrossRefGoogle Scholar
  108. 108.
    Healy D, Waterhouse JM. The circadian system and the therapeutics of the affective disorders. Pharmacol Ther. 1995;65:241–263.PubMedCrossRefGoogle Scholar
  109. 109.
    Lustberg L, Reynolds CF. Depression and insomnia: questions of cause and effect. Sleep Med Rev. 2000;4:253–262.PubMedCrossRefGoogle Scholar
  110. 110.
    Reynolds CF, III, Monk TH, Hoch CC, et al. Electroencephalographic sleep in the healthy “old old”: a comparison with the “young old” in visually scored and automated measures. J Gerontol. 1991;46:M39–M46.PubMedGoogle Scholar
  111. 111.
    Bunney JN, Potkin SG. Circadian abnormalities, molecular clock genes and chronobiological treatments in depression. Br Med Bull. 2008;86:23–32.PubMedCrossRefGoogle Scholar
  112. 112.
    Quera-Salva MA, Lemoine P, Guilleminault C. Impact of the novel antidepressant agomelatine on disturbed sleep-wake cycles in depressed patients. Hum Psychopharmacol. 2010;25:222–229.PubMedCrossRefGoogle Scholar
  113. 113.
    Riemann D, Berger M, Voderholzer U. Sleep and depression — results from psychobiological studies: an overview. Biol Psychol. 2001;57:67–103.PubMedCrossRefGoogle Scholar
  114. 114.
    Lam RW. Sleep disturbances and depression: a challenge for antidepressants. Int Clin Psychopharmacol. 2006;21(suppl. 1):S25–S29.PubMedCrossRefGoogle Scholar
  115. 115.
    Moltzen EK, Bang-Andersen B. Serotonin reuptake inhibitors: the corner stone in treatment of depression for half a century — a medicinal chemistry survey. Curr Top Med Chem. 2006;6:1801–1823.PubMedCrossRefGoogle Scholar
  116. 116.
    Yous S, Andrieux J, Howell HE, et al. Novel naphthalenic ligands with high affinity for the melatonin receptor. J Med Chem. 1992;35:1484–1486.PubMedCrossRefGoogle Scholar
  117. 117.
    Millan MJ, Gobert A, Lejeune F, et al. The novel melatonin agonist agomelatine (S20098) is an antagonist at 5-hydroxytryptamine2C receptors, blockade of which enhances the activity of frontocortical dopaminergic and adrenergic pathways. J Pharmacol Exp Ther. 2003;306:954–964.PubMedCrossRefGoogle Scholar
  118. 118.
    Loo H, Hale A, D’haenen H. Determination of the dose of agomelatine, a melatoninergic agonist and selective 5-HT(2C) antagonist, in the treatment of major depressive disorder: a placebo-controlled dose range study. Int Clin Psychopharmacol. 2002;17:239–247.PubMedCrossRefGoogle Scholar
  119. 119.
    Kennedy SH, Emsley R. Placebo-controlled trial of agomelatine in the treatment of major depressive disorder. Eur Neuropsychopharmacol. 2006;16:93–100.PubMedCrossRefGoogle Scholar
  120. 120.
    Montgomery SA. Major depressive disorders: clinical efficacy and tolerability of agomelatine, a new melatonergic agonist. Eur Neuropsychopharmacol. 2006;16(suppl. 5):S633–S638.CrossRefGoogle Scholar
  121. 121.
    Kupfer DJ. Depression and associated sleep disturbances: patient benefits with agomelatine. Eur Neuropsychopharmacol. 2006;16(suppl. 5):S639–S643.CrossRefGoogle Scholar
  122. 122.
    Srinivasan V, Smits M, Spence W, et al. Melatonin in mood disorders. 2006;7:138–151.Google Scholar
  123. 123.
    Branchey L, Weinberg U, Branchey M, et al. Simultaneous study of 24-hour patterns of melatonin and cortisol secretion in depressed patients. Neuropsychobiology. 1982;8:225–232.PubMedCrossRefGoogle Scholar
  124. 124.
    Claustrat B, Chazot G, Brun J, et al. A chronobiological study of melatonin and cortisol secretion in depressed subjects: plasma melatonin, a biochemical marker in major depression. Biol Psychiatry. 1984;19:1215–1228.PubMedGoogle Scholar
  125. 125.
    Nair NP, Hariharasubramanian N, Pilapil C. Circadian rhythm of plasma melatonin in endogenous depression. Prog Neuropsychopharmacol Biol Psychiatry. 1984;8:715–718.PubMedCrossRefGoogle Scholar
  126. 126.
    Beck-Friis J, Kjellman BF, Aperia B, et al. Serum melatonin in relation to clinical variables in patients with major depressive disorder and a hypothesis of a low melatonin syndrome. Acta Psychiatr Scand. 1985;71:319–330.PubMedCrossRefGoogle Scholar
  127. 127.
    Wehr TA, Sack DA, Rosenthal NE. Antidepressant effects of sleep deprivation and phototherapy. Acta Psychiatr Belg. 1985;85:593–602.PubMedGoogle Scholar
  128. 128.
    Rubin RT, Heist EK, McGeoy SS, et al. Neuroendocrine aspects of primary endogenous depression. XI. Serum melatonin measures in patients and matched control subjects. Arch Gen Psychiatry. 1992;49:558–567.PubMedGoogle Scholar
  129. 129.
    Sekula LK, Lucke JF, Heist EK, et al. Neuroendocrine aspects of primary endogenous depression. XV: mathematical modeling of nocturnal melatonin secretion in major depressives and normal controls. Psychiatry Res. 1997;69:143–153.PubMedCrossRefGoogle Scholar
  130. 130.
    Crasson M, Kjiri S, Colin A, et al. Serum melatonin and urinary 6-sulfatoxymelatonin in major depression. Psychoneuroendocrinology. 2004;29:1–12.PubMedCrossRefGoogle Scholar
  131. 131.
    Tuunainen A, Kripke DF, Elliott JA, et al. Depression and endogenous melatonin in postmenopausal women. J Affect Disord. 2002;69:149–158.PubMedCrossRefGoogle Scholar
  132. 132.
    Hardeland R, Poeggeler B, Srinivasan V, et al. Melatonergic drugs in clinical practice. Arzneimittelforschung. 2008;58:1–10.PubMedGoogle Scholar
  133. 133.
    Leproult R, Van Onderbergen A, L’hermite-Baleriaux M, et al. Phase-shifts of 24-h rhythms of hormonal release and body temperature following early evening administration of the melatonin agonist agomelatine in healthy older men. Clin Endocrinol (Oxf). 2005;63:298–304.CrossRefGoogle Scholar
  134. 134.
    Pjrek E, Winkler D, Konstantinidis A, et al. Agomelatine in the treatment of seasonal affective disorder. Psychopharmacology (Berl). 2007;190:575–579.CrossRefGoogle Scholar

Copyright information

© Springer Healthcare 2010

Authors and Affiliations

  • Venkatramanujam Srinivasan
    • 1
    • 2
  • Jarnail Singh
    • 3
  • Seithikurippu R. Pandi-Perumal
    • 4
  • Gregory M. Brown
    • 5
  • David Warren Spence
    • 6
  • Daniel P. Cardinali
    • 7
    Email author
  1. 1.Sri Sathya Sai Medical Educational and Research FoundationPrasanthi NilayamKovai ThirunagarIndia
  2. 2.Department of Physiology, Faculty of MedicineKarpagam UniversityEachanariCoimbarotre, India
  3. 3.Civil Aviation Authority, Singapore Changi AirportSingaporeSingapore
  4. 4.Somnogen IncNew YorkUSA
  5. 5.Centre for Addiction and Mental HealthTorontoCanada
  6. 6.TorontoCanada
  7. 7.Facultad de Ciencias MedicasPontificia Universidad Catolica ArgentinaBuenas AiresArgentina

Personalised recommendations