Skip to main content
Log in

Drug evaluation: Vildagliptin-metformin single-tablet combination

  • Review
  • Published:
Advances in Therapy Aims and scope Submit manuscript

Abstract

The single-tablet combination of vildagliptin and metformin addresses key defects of type 2 diabetes for improved glycemic control. By inhibiting the dipeptidyl peptidase-4 (DPP-4) enzyme, vildagliptin raises the levels of the active incretin hormones, glucagonl ike peptide 1 and glucose-dependent insul inot ropic peptide. This leads to increased synthesis and release of insulin from the pancreatic beta cells and decreased release of glucagon from the pancreatic alpha cells. The combination tablet also contains metformin, which addresses insulin resistance. The complementary mechanisms of action of the two agents in combination have been shown to provide additive and sustained reductions in hemoglobin A1c compared with metformin monotherapy. In active-controlled trials, the vildagliptin-metformin combination has been shown to produce equivalent reductions in hemoglobin A1c to pioglitazone-metformin and glimepiride-metformin combinations, without significant risk of hypoglycemia and without causing weight gain. In clinical trials, the overall incidence of any adverse event was similar in patients randomized to vildagliptin plus metformin and placebo plus metformin. Available data support the use of vildagliptin in combination with metformin as a promising second-line treatment for the management of type 2 diabetes and this is reflected in the latest UK National Institute for Health and Clinical Excellence draft guideline for consultation on new agents for blood glucose control in type 2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. International Diabetes Federation. Diabetes Atlas. 3rd edition. Brussels, Belgium: International Diabetes Federation; 2006.

    Google Scholar 

  2. Schulze MB, Hu FB. Primary prevention of diabetes: what can be done and how much can be prevented? Annu Rev Public Health. 2005;26:445–467.

    Article  PubMed  Google Scholar 

  3. Fox KM, Gerber Pharmd RA, Bolinder B, Chen J, Kumar S. Prevalence of inadequate glycemic control among patients with type 2 diabetes in the United Kingdom general practice research database: a series of retrospective analyses of data from 1998 through 2002. Clin Ther, 2006;28:388–395.

    Article  PubMed  Google Scholar 

  4. Yurgin N, Secnik K, Lage MJ. Antidiabetic prescriptions and glycemic control in German patients with type 2 diabetes mellitus: a retrospective database study. Clin. Ther. 2007;29:316–325.

    Article  PubMed  CAS  Google Scholar 

  5. Del Prato S, Felton AM, Munro N, et al. Improving glucose management: ten steps to get more patients with type 2 diabetes to glycaemic goal. Recommendations from the Global Partnership for Effective Diabetes Management. Int J Clin Pract. 2005;59:1345–1355.

    Article  PubMed  Google Scholar 

  6. National Institute for Health and Clinical Excellence (NICE). Type 2 diabetes: the management of type 2 diabetes (update). Available at: www.nice.org.uk/CG66. Accessed December 2008.

  7. Nathan DM, Buse JB, Davidson MB, et al. Medical management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy. A consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care. 2009;32:193–203.

    Article  PubMed  CAS  Google Scholar 

  8. Brown JB, Nichols GA, Perry A. The burden of treatment failure in type 2 diabetes. Diabetes Care, 2004;27:1535–1540.

    Article  PubMed  Google Scholar 

  9. UK Prospective Diabetes Study Group. United Kingdom Prospective Diabetes Study 24: a 6-year, randomized, controlled trial comparing sulfonylurea, insulin, and metformin therapy in patients with newly diagnosed type 2 diabetes that could not be controlled with diet therapy. Ann Intern Med. 1998;128:165–175.

    Google Scholar 

  10. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352:837–853.

    Article  Google Scholar 

  11. Turner RC, Cull CA, Frighi V, Holman RR. Glycemic control with diet, sulfonylurea, metformin, or insulin in patients with type 2 diabetes mellitus: progressive requirement for multiple therapies (UKPDS 49). UK Prospective Diabetes Study (UKPDS) Group. JAMA. 1999;281:2005–2012.

    Article  PubMed  CAS  Google Scholar 

  12. Nathan DM, Buse JB, Davidson MB, et al. Management of hyperglycaemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy. A consensus statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetologia. 2006; 49:1711–1721.

    Article  PubMed  CAS  Google Scholar 

  13. Barnett AH. New treatments in type 2 diabetes — a focus on the incretin-based therapies. Clin Endocrinol, 2009;70:343–353

    Article  Google Scholar 

  14. Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet. 2006;368:1696–1705.

    Article  PubMed  CAS  Google Scholar 

  15. Novartis. Eucreas. Summary of Product Characteristics (UK). Available at: emc.medicines.org.uk/medicine/20735/SPC/Eucreas+50+mg+850+mg+an d+50+mg+1000+mg+film-coated+tablets/. Accessed February 2009.

  16. Halimi S, Schweizer A, Minic B, Foley J, Dejager S. Combination treatment in the management of type 2 diabetes: focus on vildagliptin and metformin as a single tablet. Vasc Health Risk Manag, 2008;4:481–492.

    PubMed  CAS  Google Scholar 

  17. National Institute for Health and Clinical Excellence (NICE). Type 2 Diabetes: Newer Agents for Blood Glucose Control in Type 2 Diabetes. Full guideline. Draft for consultation. October 2008. Available at: www.nice.org.uk/nicemedia/pdf/T2DDraftGudeline. pdf. Accessed February 2009.

  18. Wulffelé MG, Kooy A, de Zeeuw D, Stehouwer CD, Gansevoort RT. The effect of metformin on blood pressure, plasma cholesterol and triglycerides in type 2 diabetes mellitus: a systematic review. J Intern Med, 2004;256:1–14.

    Article  PubMed  Google Scholar 

  19. UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1998;352:854–865.

    Article  Google Scholar 

  20. Novartis. Galvus. Summary of Product Characterisitics (UK). Available at: emc.medicines.org.uk/medicine/20734/SPC/Galvus+50+mg+Tablets/. Accessed February 2009.

  21. Mari A, Sallas WM, He YL, et al. Vildagliptin, a dipeptidyl peptidase-IV inhibitor, improves modelassessed beta-cell function in patients with type 2 diabetes. J Clin Endocrinol Metab, 2005;90:4888–4894.

    Article  PubMed  CAS  Google Scholar 

  22. Abbott CA, Yu DM, Woollatt E, et al. Cloning, expression and chromosomal localization of a novel human dipeptidyl peptidase (DPP) IV homolog, DPP8. Eur J Biochem, 2000;267:6140–6150.

    Article  PubMed  CAS  Google Scholar 

  23. Olsen C, Wagtmann N. Identification and characterization of human DPP9, a novel homologue of dipeptidyl peptidase IV. Gene, 2002;299:185–193.

    Article  PubMed  CAS  Google Scholar 

  24. Bailey CJ, Turner RC. Metformin. N Engl J Med, 1996;334:574–579.

    Article  PubMed  CAS  Google Scholar 

  25. Setter SM, Iltz JL, Thams J, Campbell RK. Metformin hydrochloride in the treatment of type 2 diabetes mellitus: a clinical review with a focus on dual therapy. Clin Ther. 2003; 25: 2991–3026.

    Article  PubMed  CAS  Google Scholar 

  26. Tahrani AA, Varughese GI, Scarpello JH, Hanna FW. Metformin, heart failure, and lactic acidosis: is metformin absolutely contraindicated? BMJ. 2007; 335: 508–512.

    Article  PubMed  CAS  Google Scholar 

  27. Bodmer M, Meier C, Krähenbühl S, Jick SS, Meier CR. Metformin, sulfonylureas, or other antidiabetes drugs and the risk of lactic acidosis or hypoglycemia: a nested case-control analysis. Diabetes Care. 2008; 31: 2086–2091.

    Article  PubMed  CAS  Google Scholar 

  28. Mannucci E, Pierazzuoli E, Ognibene A, et al. Effect of metformin on glucagon-like peptide 1 (GLP-1) and leptin levels in obese nondiabetic subjects. Diabetes Care, 2001;24:489–494.

    Article  PubMed  CAS  Google Scholar 

  29. Lindsay JR, Duffy NA, McKillop AM, et al. Inhibition of dipeptidyl peptidase IV activity by oral metformin in type-2 diabetes. Diabet Med, 2005;22:654–657.

    Article  PubMed  CAS  Google Scholar 

  30. Hinke SA, Kühn-Wache K, Hoffmann T, Pederson RA, McIntosh CH, Demuth HU. Metformin effects on dipeptidylpeptidase IV degradation of glucagonlike peptide-1. Biochem Biophys Res Commun, 2002;291:1302–1308.

    Article  PubMed  CAS  Google Scholar 

  31. Dunning BE, Ligueros-Saylan M, D’Alessio DA, et al. Differential effects of DPP-4 inhibition on incretin hormone levels in drug-naive and metformintreated patients with type 2 diabetes. Diabetologia, 2006;49(suppl. 1):110.

    Google Scholar 

  32. Pospisilik JA, Martin J, Doty T, et al. Dipeptidyl peptidase IV inhibitor treatment stimulates betacell survival and islet neogenesis in streptozotocininduced diabetic rats. Diabetes, 2003;52:741–750.

    Article  PubMed  CAS  Google Scholar 

  33. Duttaroy A, Voelker F, Merriam K, et al. The DPP-4 inhibitor vildagliptin increases pancreatic beta cell neogenesis and decreases apoptosis. Diabetes, 2005;54(suppl. 1):A141.

    Google Scholar 

  34. Ahrén B, Foley JE, Pacini G, et al. Improved mealrelated beta-cell function and insulin sensitivity by the dipeptidyl peptidase-IV inhibitor vildagliptin in metformin-treated patients with type 2 diabetes over 1 year. Diabetes Care, 2005;28:1936–1940.

    Article  PubMed  Google Scholar 

  35. Charbonnel B, Wu M, Karasik A, et al. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin added to ongoing metformin therapy in patients with type 2 diabetes inadequately controlled with metformin alone. Diabetes Care. 29:2638–2643.

  36. Goldstein BJ, Feinglos MN, Lunceford JK, et al. Effect of initial combination therapy with sitagliptin, a dipeptidyl peptidase-4 inhibitor, and metformin on glycemic control in patients with type 2 diabetes. Diabetes Care, 2007;30:1979–1987.

    Article  PubMed  CAS  Google Scholar 

  37. Bosi E, Camisasca RP, Collober C, Rochotte E, Garber AJ. Effects of vildagliptin on glucose control over 24 weeks in patients with type 2 diabetes inadequately controlled with metformin. Diabetes Care, 2007;30:890–895.

    Article  PubMed  CAS  Google Scholar 

  38. Kar P, Holt RI. The effect of sulphonylureas on the microvascular and macrovascular complications of diabetes. Cardiovasc Drugs Ther, 2008;22:207–213.

    Article  PubMed  CAS  Google Scholar 

  39. Singh SS, Manne N, Pal M. Synthesis of (S)-1-(2-chloroacetyl)pyrrolidine-2-carbonitrile: a key intermediate for dipeptidyl peptidase IV inhibitors. Beilstein J Organic Chem, 2008;4:20.

    Google Scholar 

  40. Villhauer EB, Brinkman JA, Naderi GB, et al. 1-[[(3-Hydroxy-1-adamantyl)amino]acetyl]-2-cyano-(S)-pyrrolidine: a potent, selective, and orally bioavailable dipeptidyl peptidase IV inhibitor with antihyperglycemic properties. J Med Chem, 2003;46:2774–2789.

    Article  PubMed  CAS  Google Scholar 

  41. He YL, Serra D, Wang Y, et al. Pharmacokinetics and pharmacodynamics of vildagliptin in patients with type 2 diabetes mellitus. Clin Pharmacokinet, 2007;46:577–588.

    Article  PubMed  CAS  Google Scholar 

  42. He YL, Flannery B, Campestrini J, et al. Effect of food on the pharmacokinetics of a vildagliptin/metformin (50/1000 mg) fixed-dose combination tablet in healthy volunteers. Curr Med Res Opin, 2008;24:1703–1709.

    Article  PubMed  CAS  Google Scholar 

  43. He YL, Sabo R, Campestrini J, et al. The effect of age, gender, and body mass index on the pharmacokinetics and pharmacodynamics of vildagliptin in healthy volunteers. Br J Clin Pharmacol, 2008;65:338–346.

    Article  PubMed  CAS  Google Scholar 

  44. European Medicines Association. Eucreas, vildagliptin/metformin hydrochloride. Available at: www.emea.europa.eu/humandocs/PDFs/EPAR/eucreas/H-807-en6.pdf. Accessed December 2008.

  45. Ahrén B, Landin-Olsson M, Jansson PA. Inhibition of dipeptidyl peptidase-4 reduces glycemia, sustains insulin levels and reduces glucagons levels in type 2 diabetes. J Clin Endocrinol Metab, 2004;89:2078–2084.

    Article  PubMed  Google Scholar 

  46. Balas B, Baig MR, Watson C, et al. The dipeptidyl peptidase IV inhibitor vildagliptin suppresses endogenous glucose production and enhances islet function after single-dose administration in type 2 diabetic patients. J Clin Endocrinol Metab, 2007;92:1249–1255.

    Article  PubMed  CAS  Google Scholar 

  47. He YL, Sadler BM, Sabo R, et al. The absolute oral bioavailability and population-based pharmacokinetic modeling of a novel dipeptidylpeptidase-IV inhibitor, vildagliptin, in healthy volunteers. Clin Pharmacokinet, 2007;46:787–802.

    Article  PubMed  CAS  Google Scholar 

  48. Pratley RE, Salsali A, Matfin G. Inhibition of dipeptidyl peptidase-4 with vildagliptin: a potential new treatment for type 2 diabetes. Br J Diabetes Vasc Dis, 2006;6:150–156.

    Article  CAS  Google Scholar 

  49. He YL, Paladini S, Sabia H, et al. Bioequivalence of vildagliptin/metformin fixed-dose combination tablets and a free combination of vildagliptin and metformin in healthy subjects. Int J Clin Pharmacol Ther, 2008;46:259–267.

    PubMed  CAS  Google Scholar 

  50. Merck Sorono. Glucophage. Summary of Product Characterisitics (UK). Available at: emc.medicines. org.uk/document.aspx?documentId=1043. Accessed February 2009.

  51. Ahrén B, Gomis R, Standl E, et al. Twelve- and 52-week efficacy of the dipeptidyl peptidase IV inhibitor LAF237 in metformin-treated patients with type 2 diabetes. Diabetes Care, 2004;27:2874–2880.

    Article  PubMed  Google Scholar 

  52. Bolli G, Dotta F, Rochotte E, Cohen SE. Efficacy and tolerability of vildagliptin vs. pioglitazone when added to metformin: a 24-week, randomized, double-blind study, Diabetes Obes Metab. 2008;10:82–90.

    PubMed  CAS  Google Scholar 

  53. Ferrannini E, Fonseca V, Zinman B, et al. Fiftytwo-week efficacy and safety of vildagliptin vs. glimepiride in patients with type 2 diabetes mellitus inadequately controlled on metformin monotherapy, Diabetes Obes Metab. 2009;11:157–166.

    Article  PubMed  CAS  Google Scholar 

  54. Braceras R, Blonde L, Banerji M, et al. Vildagliptin is as effective as TZDs in metformin failures: results of GALIANT — a primary care diabetes study. Diabetologia, 2008;51(suppl. 1):S366.

    Google Scholar 

  55. Brandt I, Joossens J, Chen X, et al. Inhibition of dipeptidyl-peptidase IV catalyzed peptide truncation by Vildagliptin ((2S)-{[(3-hydroxyadamantan-1-yl)amino]acetyl}-pyrrolidine-2-carbonitrile). Biochem Pharmacol. 2005;70:134–143.

    Article  PubMed  CAS  Google Scholar 

  56. Richter B, Bandeira-Echtler E, Bergerhoff K, Lerch C. Emerging role of dipeptidyl peptidase-4 inhibitors in the management of type 2 diabetes. Vasc Health Risk Manag, 2008;4:753–768.

    PubMed  CAS  Google Scholar 

  57. Lambeir AM, Durinx C, Scharpe S, De Meester I. Dipeptidyl-peptidase IV from bench to bedside: an update on structural properties, functions, and clinical aspects of the enzyme DPP IV. Crit Rev Clin Lab Sci. 2003;40:209–294.

    Article  PubMed  CAS  Google Scholar 

  58. Dang NH, Morimoto C. CD26: an expanding role in immune regulation and cancer. Histol Histopathol. 2002;17:1213–1226.

    PubMed  CAS  Google Scholar 

  59. Drucker DJ. Dipeptidyl peptidase-4 inhibition and the treatment of type 2 diabetes: preclinical biology and mechanisms of action. Diabetes Care, 2007;30:1335–1343.

    Article  PubMed  CAS  Google Scholar 

  60. Richter B, Bandeira-Echtler E, Bergerhoff K, Lerch CL. Dipeptidyl peptidase-4 (DPP-4) inhibitors for type 2 diabetes mellitus. Cochrane Database Syst Rev, 2008;(2):CD006739.

    PubMed  Google Scholar 

  61. Göke B, Hershon K, Kerr D, et al. Efficacy and safety of vildagliptin monotherapy during 2-year treatment of drug-naïve patients with type 2 diabetes: comparison with metformin. Horm Metab Res, 2008;40:892–895.

    Article  PubMed  Google Scholar 

  62. Novartis. Eucreas, a single-tablet combination of Galvus and metformin, set for launch in first EU countries [press release]. Available at: www.prdomain. com/companies/N/Novartis/newsreleases/200822653863.htm. Accessed December 2008.

  63. Dejager S, Schweizer A, Couturier A, Pratley RE. Achievement of glycaemic targets with vildagliptin. Diabetologia. 2007;50(suppl. 1):S365. Abs. 0885.

    Google Scholar 

  64. Melikian C, White TJ, Vanderplas A, Dezii CM, Chang E. Adherence to oral antidiabetic therapy in a managed care organization: a comparison of monotherapy, combination therapy, and fixeddose combination therapy. Clin Ther, 2002;24:460–467.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abd A. Tahrani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tahrani, A.A., Piya, M.K. & Barnett, A.H. Drug evaluation: Vildagliptin-metformin single-tablet combination. Adv Therapy 26, 138–154 (2009). https://doi.org/10.1007/s12325-009-0010-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12325-009-0010-0

Keywords

Navigation