Skip to main content

Advertisement

Log in

A Review of Brain and Pituitary Gland MRI Findings in Patients with Ataxia and Hypogonadism

  • REVIEW
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The association of cerebellar ataxia and hypogonadism occurs in a heterogeneous group of disorders, caused by different genetic mutations often associated with a recessive inheritance. In these patients, magnetic resonance imaging (MRI) plays a pivotal role in the diagnostic workflow, with a variable involvement of the cerebellar cortex, alone or in combination with other brain structures. Neuroimaging involvement of the pituitary gland is also variable. Here, we provide an overview of the main clinical and conventional brain and pituitary gland MRI imaging findings of the most common genetic mutations associated with the clinical phenotype of ataxia and hypogonadism, with the aim of helping neuroradiologists in the identification of these disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Holmes G. A form of familial degeneration of the cerebellum. Brain. 1908;30(4):466–89. https://doi.org/10.1093/brain/30.4.466.

    Article  Google Scholar 

  2. González-Latapi P, Sousa M, Lang A (2021) Movement disorders associated with hypogonadism. Movement Disorders Clinical Practice 8. https://doi.org/10.1002/mdc3.13308

  3. Acharya SV, Gopal RA, Lila A, Sanghvi DS, Menon PS, Bandgar TR, Shah NS. Phenotype and radiological correlation in patients with growth hormone deficiency. Indian J Pediatr. 2011;78(1):49–54. https://doi.org/10.1007/s12098-010-0211-1.

  4. Argyropoulou M, Perignon F, Brunelle F, Brauner R, Rappaport R. Height of normal pituitary gland as a function of age evaluated by magnetic resonance imaging in children. Pediatr Radiol. 1991;21(4):247–9. https://doi.org/10.1007/BF02018614.

  5. Bortolotto Felippe Trentin M, Borges Daniel K, Reis F, Adolfo Silva Junior N, Appenzeller S, Rittner L, Benetti Pinto C, Garmes HM. Reconsidering the olfactory and brain structures in Kallmann's syndrome: New findings in the analysis of volumetry. Clin Endocrinol (Oxf). 2023;98(4):554–8. https://doi.org/10.1111/cen.14868.

  6. Zhang Z, Sun X, Wang C, Wang G, Zhao B. Magnetic Resonance Imaging Findings in Kallmann Syndrome: 14 Cases and Review of the Literature. J Comput Assist Tomogr. 2016;40(1):39–42. https://doi.org/10.1097/RCT.0000000000000334.

  7. Mehmood S, Hoggard N, Hadjivassiliou M. Gordon Holmes syndrome: finally genotype meets phenotype. Pract Neurol. 2017;17(6):476–8. https://doi.org/10.1136/practneurol-2017-001674.

  8. Margolin DH, Kousi M, Chan YM, Lim ET, Schmahmann JD, Hadjivassiliou M, Hall JE, Adam I, Dwyer A, Plummer L, Aldrin SV, O'Rourke J, Kirby A, Lage K, Milunsky A, Milunsky JM, Chan J, Hedley-Whyte ET, Daly MJ, Katsanis N, Seminara SB. Ataxia, dementia, and hypogonadotropism caused by disordered ubiquitination. N Engl J Med. 2013;368(21):1992–2003. https://doi.org/10.1056/NEJMoa1215993.

  9. Wild EJ, Tabrizi SJ. Huntington's disease phenocopy syndromes. Curr Opin Neurol. 2007;20(6):681–7. https://doi.org/10.1097/WCO.0b013e3282f12074.

  10. Calandra CR, Mocarbel Y, Vishnopolska SA, Toneguzzo V, Oliveri J, Cazado EC, Biagioli G, Turjanksi AG, Marti M. Gordon Holmes Syndrome Caused by RNF216 Novel Mutation in 2 Argentinean Siblings. Mov Disord Clin Pract. 2019;6(3):259–62. https://doi.org/10.1002/mdc3.12721.

  11. Chen KL, Zhao GX, Wang H, Wei L, Huang YY, Chen SD, Lin BY, Dong Q, Cui M, Yu JT. A novel de novo RNF216 mutation associated with autosomal recessive Huntington‐like disorder. Ann Clin Transl Neurol. 2020;7. https://doi.org/10.1002/acn3.51047

  12. Lieto M, Galatolo D, Roca A, Cocozza S, Pontillo G, Fico T, Pane C, Saccà F, De Michele G, Santorelli FM, Filla A. Overt Hypogonadism May Not Be a Sentinel Sign of RING Finger Protein 216: Two Novel Mutations Associated with Ataxia, Chorea, and Fertility. Mov Disord Clin Pract. 2019;6(8):724–6. https://doi.org/10.1002/mdc3.12839.

  13. Santens P, Van Damme T, Steyaert W, Willaert A, Sablonnière B, De Paepe A, Coucke PJ, Dermaut B. RNF216 mutations as a novel cause of autosomal recessive Huntington-like disorder. Neurology. 2015;84(17):1760–6. https://doi.org/10.1212/WNL.0000000000001521.

  14. Alqwaifly M, Bohlega S. Ataxia and Hypogonadotropic hypogonadism with intrafamilial variability caused by RNF216 mutation. Neurol Int. 2016;8(2):6444. https://doi.org/10.4081/ni.2016.6444.

  15. Mol MO, van Rooij JGJ, Brusse E, Verkerk AJMH, Melhem S, den Dunnen WFA, Rizzu P, Cupidi C, van Swieten JC, Donker Kaat L. Clinical and pathologic phenotype of a large family with heterozygous STUB1 mutation. Neurol Genet. 2020;6(3):e417. https://doi.org/10.1212/NXG.0000000000000417.

  16. Palvadeau R, Kaya-Güleç ZE, Şimşir G, Vural A, Öztop-Çakmak Ö, Genç G, Aygün MS, Falay O, Başak AN, Ertan S. Cerebellar cognitive-affective syndrome preceding ataxia associated with complex extrapyramidal features in a Turkish SCA48 family. Neurogenetics. 2020;21(1):51–8. https://doi.org/10.1007/s10048-019-00595-0.

  17. De Michele G, Lieto M, Galatolo D, Salvatore E, Cocozza S, Barghigiani M, Tessa A, Baldacci J, Pappatà S, Filla A, De Michele G, Santorelli FM. Spinocerebellar ataxia 48 presenting with ataxia associated with cognitive, psychiatric, and extrapyramidal features: a report of two Italian families. Parkinsonism Relat Disord. 2019;65:91–6. https://doi.org/10.1016/j.parkreldis.2019.05.001.

    Article  PubMed  Google Scholar 

  18. De Michele G, Galatolo D, Barghigiani M, Dello Iacovo D, Trovato R, Tessa A, Salvatore E, Filla A, De Michele G, Santorelli FM. Spinocerebellar ataxia type 48: last but not least. Neurol Sci. 2020 Sep;41(9):2423–32. https://doi.org/10.1007/s10072-020-04408-3.

  19. Ravel J-M, Benkirane M, Calmels N, Marelli C, Ory-Magne F, Ewenczyk C, Halleb Y, Tison F, Lecocq C, Pische G, Casenave P, Chaussenot A, Frismand S, Tyvaert L, Larrieu L, Pointaux M, Drouot N, Bossenmeyer-Pourié C, Oussalah A, Guéant J-L, Leheup B, Bonnet C, Anheim M, Tranchant C, Lambert L, Chelly J, Koenig M, Renaud M. Expanding the clinical spectrum of STIP1 homology and U-box containing protein 1-associated ataxia. J Neurol. 2021;268(5):1927–37. https://doi.org/10.1007/s00415-020-10348-x.

    Article  CAS  PubMed  Google Scholar 

  20. Shi CH, Schisler JC, Rubel CE, Tan S, Song B, McDonough H, Xu L, Portbury AL, Mao CY, True C, Wang RH, Wang QZ, Sun SL, Seminara SB, Patterson C, Xu YM. Ataxia and hypogonadism caused by the loss of ubiquitin ligase activity of the U box protein CHIP. Hum Mol Genet. 2014;23(4):1013–24. https://doi.org/10.1093/hmg/ddt497.

  21. Hayer SN, Deconinck T, Bender B, Smets K, Züchner S, Reich S, Schöls L, Schüle R, De Jonghe P, Baets J, Synofzik M. STUB1/CHIP mutations cause Gordon Holmes syndrome as part of a widespread multisystemic neurodegeneration: evidence from four novel mutations. Orphanet J Rare Dis. 2017;12(1):31. https://doi.org/10.1186/s13023-017-0580-x.

  22. Chiu H-H, Hsaio C-T, Tsai Y-S, Liao Y-C, Lee Y-C, Soong B-W. Clinical and genetic characterization of autosomal recessive spinocerebellar ataxia type 16 (SCAR16) in Taiwan. The Cerebellum. 2020;19(4):544–9. https://doi.org/10.1007/s12311-020-01136-4.

    Article  CAS  PubMed  Google Scholar 

  23. Synofzik M, Schüle R, Schulze M, Gburek-Augustat J, Schweizer R, Schirmacher A, Krägeloh-Mann I, Gonzalez M, Young P, Züchner S, Schöls L, Bauer P. Phenotype and frequency of STUB1 mutations: next-generation screenings in Caucasian ataxia and spastic paraplegia cohorts. Orphanet J Rare Dis. 2014;9(1):57. https://doi.org/10.1186/1750-1172-9-57.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Heimdal K, Sanchez-Guixé M, Aukrust I, Bollerslev J, Bruland O, Jablonski GE, Erichsen AK, Gude E, Koht JA, Erdal S, Fiskerstrand T, Haukanes BI, Boman H, Bjørkhaug L, Tallaksen CME, Knappskog PM, Johansson S. STUB1 mutations in autosomal recessive ataxias — evidence for mutation-specific clinical heterogeneity. Orphanet J Rare Dis. 2014;9(1):146. https://doi.org/10.1186/s13023-014-0146-0.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cocozza S, Pontillo G, De Michele G, Perillo T, Guerriero E, Ugga L, Salvatore E, Galatolo D, Riso V, Saccà F, Quarantelli M, Brunetti A. The "crab sign": an imaging feature of spinocerebellar ataxia type 48. Neuroradiology. 2020;62(9):1095–103. https://doi.org/10.1007/s00234-020-02427-7.

  26. Synofzik M, Kernstock C, Haack TB, Schöls L. Ataxia meets chorioretinal dystrophy and hypogonadism: Boucher-Neuhäuser syndrome due to PNPLA6 mutations. J Neurol Neurosurg Psychiatry. 2015;86(5):580–1. https://doi.org/10.1136/jnnp-2014-307793.

  27. Synofzik M, Gonzalez MA, Lourenco CM, Coutelier M, Haack TB, Rebelo A, Hannequin D, Strom TM, Prokisch H, Kernstock C, Durr A, Schöls L, Lima-Martínez MM, Farooq A, Schüle R, Stevanin G, Marques W Jr, Züchner S. PNPLA6 mutations cause Boucher-Neuhauser and Gordon Holmes syndromes as part of a broad neurodegenerative spectrum. Brain. 2014;137(Pt 1):69–77. https://doi.org/10.1093/brain/awt326.

  28. Melentev P, Agranovich O, Sarantseva S. Human diseases associated with NTE gene. Ecol Genet. 2020;18. https://doi.org/10.17816/ecogen16327.

  29. Zheng R, Zhao Y, Wu J, Wang Y, Liu JL, Zhou ZL, Zhou XT, Chen DN, Liao WH, Li JD. A novel PNPLA6 compound heterozygous mutation identified in a Chinese patient with Boucher‑Neuhäuser syndrome. Mol Med Rep. 2018;18(1):261–7. https://doi.org/10.3892/mmr.2018.8955.

  30. Yoon G, Baskin B, Tarnopolsky M, Boycott KM, Geraghty MT, Sell E, Goobie S, Meschino W, Banwell B, Ray PN. Autosomal recessive hereditary spastic paraplegia—clinical and genetic characteristics of a well-defined cohort. Neurogenetics. 2013;14(3):181–8. https://doi.org/10.1007/s10048-013-0366-9.

    Article  CAS  PubMed  Google Scholar 

  31. Locci S, Bianchi S, Tessa A, Santorelli FM, Mignarri A. Gordon Holmes syndrome caused by two novel mutations in the PNPLA6 gene. Clin Neurol Neurosurg. 2021;207:106763. https://doi.org/10.1016/j.clineuro.2021.106763.

  32. Patsi O, De Beaufort C, Kerschen P, Cardillo S, Soehn A, Rautenberg M, Diederich NJ. A new PNPLA6 mutation presenting as Oliver McFarlane syndrome. J Neurol Sci. 2018;392:1–2. https://doi.org/10.1016/j.jns.2018.06.016.

  33. Wiethoff S, Bettencourt C, Paudel R, Madon P, Liu Y-T, Hersheson J, Wadia N, Desai J, Houlden H. Pure cerebellar ataxia with homozygous mutations in the PNPLA6 gene. The Cerebellum. 2017;16(1):262–7. https://doi.org/10.1007/s12311-016-0769-x.

    Article  CAS  PubMed  Google Scholar 

  34. Hufnagel RB, Arno G, Hein ND, Hersheson J, Prasad M, Anderson Y, Krueger LA, Gregory LC, Stoetzel C, Jaworek TJ, Hull S, Li A, Plagnol V, Willen CM, Morgan TM, Prows CA, Hegde RS, Riazuddin S, Grabowski GA, Richardson RJ, Dieterich K, Huang T, Revesz T, Martinez-Barbera JP, Sisk RA, Jefferies C, Houlden H, Dattani MT, Fink JK, Dollfus H, Moore AT, Ahmed ZM. Neuropathy target esterase impairments cause Oliver-McFarlane and Laurence-Moon syndromes. J Med Genet. 2015;52(2):85–94. https://doi.org/10.1136/jmedgenet-2014-102856.

  35. Kate M, Kesavadas C, Nair M, Krishnan S, Soman M, Singh A. Late-onset Boucher-Neuhauser Syndrome (late BNS) associated with white-matter changes: a report of two cases and review of literature. J Neurol Neurosurg Psychiatry. 2011;82:888–91. https://doi.org/10.1136/jnnp.2009.196790.

    Article  PubMed  Google Scholar 

  36. Rainier S, Albers J, Dyck P, Eldevik O, Wilcock S, Richardson R, Fink J. Motor neuron disease due to neuropathy target esterase gene mutation: clinical features of the index families. Muscle Nerve. 2011;43:19–25. https://doi.org/10.1002/mus.21777.

    Article  PubMed  Google Scholar 

  37. Rainier S, Bui M, Mark E, Thomas D, Tokarz D, Ming L, Delaney C, Richardson RJ, Albers JW, Matsunami N, Stevens J, Coon H, Leppert M, Fink JK. Neuropathy target esterase gene mutations cause motor neuron disease. Am J Hum Genet. 2008;82(3):780–5. https://doi.org/10.1016/j.ajhg.2007.12.018.

  38. Dallabona C, Diodato D, Kevelam SH, Haack TB, Wong LJ, Salomons GS, Baruffini E, Melchionda L, Mariotti C, Strom TM, Meitinger T, Prokisch H, Chapman K, Colley A, Rocha H, Ounap K, Schiffmann R, Salsano E, Savoiardo M, Hamilton EM, Abbink TE, Wolf NI, Ferrero I, Lamperti C, Zeviani M, Vanderver A, Ghezzi D, van der Knaap MS. Novel (ovario) leukodystrophy related to AARS2 mutations. Neurology. 2014;82(23):2063–71. https://doi.org/10.1212/WNL.0000000000000497.

  39. Axelsen TM, Vammen TL, Bak M, Pourhadi N, Stenør CM, Grønborg S. Case report: 'AARS2 leukodystrophy'. Mol Genet Metab Rep. 2021;28:100782. https://doi.org/10.1016/j.ymgmr.2021.100782.

  40. Lakshmanan R, Adams ME, Lynch DS, Kinsella JA, Phadke R, Schott JM, Murphy E, Rohrer JD, Chataway J, Houlden H, Fox NC, Davagnanam I. Redefining the phenotype of ALSP and AARS2 mutation-related leukodystrophy. Neurol Genet. 2017;3(2):e135. https://doi.org/10.1212/NXG.0000000000000135.

  41. Srivastava S, Butala A, Mahida S, Richter J, Mu W, Poretti A, Vernon H, VanGerpen J, Atwal PS, Middlebrooks EH, Zee DS, Naidu S. Expansion of the clinical spectrum associated with AARS2-related disorders. Am J Med Genet A. 2019;179(8):1556–14. https://doi.org/10.1002/ajmg.a.61188.

  42. Wang X, Wang Q, Tang H, Chen B, Dong X, Niu S, Li S, Shi Y, Shan W, Zhang Z. Novel Alanyl-tRNA Synthetase 2 Pathogenic Variants in Leukodystrophies. Front Neurol. 2019;10:1321. https://doi.org/10.3389/fneur.2019.01321.

  43. Lynch DS, Zhang WJ, Lakshmanan R, Kinsella JA, Uzun GA, Karbay M, Tüfekçioglu Z, Hanagasi H, Burke G, Foulds N, Hammans SR, Bhattacharjee A, Wilson H, Adams M, Walker M, Nicoll JA, Chataway J, Fox N, Davagnanam I, Phadke R, Houlden H. Analysis of Mutations in AARS2 in a Series of CSF1R-Negative Patients With Adult-Onset Leukoencephalopathy With Axonal Spheroids and Pigmented Glia. JAMA Neurol. 2016;73(12):1433–39. https://doi.org/10.1001/jamaneurol.2016.2229.

  44. De Michele G, Galatolo D, Lieto M, Maione L, Cocozza S, Santorelli FM, Filla A. New AARS2 mutations in two siblings with tremor, downbeat nystagmus, and primary amenorrhea: a benign phenotype without leukoencephalopathy. Mov Disord Clin Pract. 2020;7(6):684–7. https://doi.org/10.1002/mdc3.12991.

  45. Kuo ME, Antonellis A, Shakkottai VG. Alanyl-tRNA Synthetase 2 (AARS2)-Related Ataxia Without Leukoencephalopathy. Cerebellum. 2020;19(1):154-160. https://doi.org/10.1007/s12311-019-01080-y.

  46. Taglia I, Di Donato I, Bianchi S, Cerase A, Monti L, Marconi R, Orrico A, Rufa A, Federico A, Dotti MT. AARS2-related ovarioleukodystrophy: Clinical and neuroimaging features of three new cases. Acta Neurol Scand. 2018;138(4):278–83. https://doi.org/10.1111/ane.12954.

  47. Hamatani M, Jingami N, Tsurusaki Y, Shimada S, Shimojima K, Asada-Utsugi M, Yoshinaga K, Uemura N, Yamashita H, Uemura K, Takahashi R, Matsumoto N, Yamamoto T. The first Japanese case of leukodystrophy with ovarian failure arising from novel compound heterozygous AARS2 mutations. J Hum Genet. 2016;61(10):899–902. https://doi.org/10.1038/jhg.2016.64.

  48. Krieger M, Roos A, Stendel C, Claeys KG, Sonmez FM, Baudis M, Bauer P, Bornemann A, de Goede C, Dufke A, Finkel RS, Goebel HH, Häussler M, Kingston H, Kirschner J, Medne L, Muschke P, Rivier F, Rudnik-Schöneborn S, Spengler S, Inzana F, Stanzial F, Benedicenti F, Synofzik M, Lia Taratuto A, Pirra L, Tay SK, Topaloglu H, Uyanik G, Wand D, Williams D, Zerres K, Weis J, Senderek J. SIL1 mutations and clinical spectrum in patients with Marinesco-Sjogren syndrome. Brain. 2013;136(Pt 12):3634–44. https://doi.org/10.1093/brain/awt283.

  49. Anttonen A-K, Siintola E, Tranebjaerg L, Iwata NK, Bijlsma EK, Meguro H, Ichikawa Y, Goto J, Kopra O, Lehesjoki A-E. Novel SIL1 mutations and exclusion of functional candidate genes in Marinesco-Sjögren syndrome. Eur J Hum Genet. 2008;16(8):961–9. https://doi.org/10.1038/ejhg.2008.22.

    Article  CAS  PubMed  Google Scholar 

  50. Eriguchi M, Mizuta H, Kurohara K, Fujitake J, Kuroda Y. Identification of a new homozygous frameshift insertion mutation in the SIL1 gene in 3 Japanese patients with Marinesco-Sjögren syndrome. J Neurol Sci. 2008;270(1–2):197–200. https://doi.org/10.1016/j.jns.2008.02.012.

  51. Reinhold A, Scheer I, Lehmann R, Neumann LM, Michael T, Varon R, Von Moers A. MR imaging features in Marinesco-Sjögren syndrome: severe cerebellar atrophy is not an obligatory finding. AJNR Am J Neuroradiol. 2003;24(5):825–8.

  52. Harting I, Blaschek A, Wolf NI, Seitz A, Haupt M, Goebel HH, Rating D, Sartor K, Ebinger F. T2-hyperintense cerebellar cortex in Marinesco-Sjögren syndrome. Neurology. 2004;63(12):2448–9. https://doi.org/10.1212/01.wnl.0000147324.74071.3e.

  53. McLaughlin JF, Pagon RA, Weinberger E, Haas JE. Marinesco-Sjögren syndrome: clinical and magnetic resonance imaging features in three children. Dev Med Child Neurol. 1996;38(4):363–70. https://doi.org/10.1111/j.1469-8749.1996.tb12103.x. Erratum in: Dev Med Child Neurol 1996;38(6):472. Corrected and republished in: Dev Med Child Neurol. 1996;38(7):636–44.

  54. Moreira MC, Klur S, Watanabe M, Németh AH, Le Ber I, Moniz JC, Tranchant C, Aubourg P, Tazir M, Schöls L, Pandolfo M, Schulz JB, Pouget J, Calvas P, Shizuka-Ikeda M, Shoji M, Tanaka M, Izatt L, Shaw CE, M'Zahem A, Dunne E, Bomont P, Benhassine T, Bouslam N, Stevanin G, Brice A, Guimarães J, Mendonça P, Barbot C, Coutinho P, Sequeiros J, Dürr A, Warter JM, Koenig M. Senataxin, the ortholog of a yeast RNA helicase, is mutant in ataxia-ocular apraxia 2. Nat Genet. 2004;36(3):225–7. https://doi.org/10.1038/ng1303.

  55. Anheim M, Monga B, Fleury M, Charles P, Barbot C, Salih M, Delaunoy JP, Fritsch M, Arning L, Synofzik M, Schöls L, Sequeiros J, Goizet C, Marelli C, Le Ber I, Koht J, Gazulla J, De Bleecker J, Mukhtar M, Drouot N, Ali-Pacha L, Benhassine T, Chbicheb M, M'Zahem A, Hamri A, Chabrol B, Pouget J, Murphy R, Watanabe M, Coutinho P, Tazir M, Durr A, Brice A, Tranchant C, Koenig M. Ataxia with oculomotor apraxia type 2: clinical, biological and genotype/phenotype correlation study of a cohort of 90 patients. Brain. 2009;132(Pt 10):2688–98. https://doi.org/10.1093/brain/awp211.

  56. Le Ber I, Bouslam N, Rivaud-Péchoux S, Guimarães J, Benomar A, Chamayou C, Goizet C, Moreira MC, Klur S, Yahyaoui M, Agid Y, Koenig M, Stevanin G, Brice A, Dürr A. Frequency and phenotypic spectrum of ataxia with oculomotor apraxia 2: a clinical and genetic study in 18 patients. Brain. 2004;127(Pt 4):759–67. https://doi.org/10.1093/brain/awh080.

  57. Lynch DR, Braastad CD, Nagan N. Ovarian failure in ataxia with oculomotor apraxia type 2. Am J Med Genet A. 2007;143A(15):1775–7. https://doi.org/10.1002/ajmg.a.31816.

    Article  CAS  PubMed  Google Scholar 

  58. Fogel BL, Lee JY, Perlman S. Aberrant splicing of the senataxin gene in a patient with ataxia with oculomotor apraxia type 2. Cerebellum. 2009 ;8(4):448–53. https://doi.org/10.1007/s12311-009-0130-8.

  59. Frismand S, Salem H, Panouilleres M, Pélisson D, Jacobs S, Vighetto A, Cotton F, Tilikete C. MRI findings in AOA2: Cerebellar atrophy and abnormal iron detection in dentate nucleus. NeuroImage: Clinical. 2013;2:542–8. https://doi.org/10.1016/j.nicl.2013.03.018.

    Article  PubMed  Google Scholar 

  60. Nanetti L, Cavalieri S, Pensato V, Erbetta A, Pareyson D, Panzeri M, Zorzi G, Antozzi C, Moroni I, Gellera C, Brusco A, Mariotti C. SETX mutations are a frequent genetic cause of juvenile and adult onset cerebellar ataxia with neuropathy and elevated serum alpha-fetoprotein. Orphanet J Rare Dis. 2013;8:123. https://doi.org/10.1186/1750-1172-8-123.

  61. Cocozza S, Pontillo G, De Michele G, Di Stasi M, Guerriero E, Perillo T, Pane C, De Rosa A, Ugga L, Brunetti A. Conventional MRI findings in hereditary degenerative ataxias: a pictorial review. Neuroradiology. 2021;63(7):983–99. https://doi.org/10.1007/s00234-021-02682-2.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Tariq H, Imran R, Naz S. A Novel Homozygous Variant of SETX Causes Ataxia with Oculomotor Apraxia Type 2. J Clin Neurol. 2018;14(4):498-504. https://doi.org/10.3988/jcn.2018.14.4.498.

  63. Ronsin S, Hannoun S, Thobois S, Petiot P, Vighetto A, Cotton F, Tilikete C. A new MRI marker of ataxia with oculomotor apraxia. Eur J Radiol. 2019;110:187–92. https://doi.org/10.1016/j.ejrad.2018.11.035.

  64. Hikmat O, Tzoulis C, Chong WK, Chentouf L, Klingenberg C, Fratter C, Carr LJ, Prabhakar P, Kumaraguru N, Gissen P, Cross JH, Jacques TS, Taanman JW, Bindoff LA, Rahman S. The clinical spectrum and natural history of early-onset diseases due to DNA polymerase gamma mutations. Genet Med. 2017;19(11):1217–25. https://doi.org/10.1038/gim.2017.35. Erratum in: Genet Med. 2019;21(4):1027.

  65. Rahman S. Mitochondrial disease and epilepsy. Dev Med Child Neurol. 2012;54(5):397–406. https://doi.org/10.1111/j.1469-8749.2011.04214.x.

  66. Jha R, Patel H, Dubey R, Goswami JN, Bhagwat C, Saini L, K Manokaran R, John BM, Kovilapu UB, Mohimen A, Saxena A, Sondhi V. Clinical and molecular spectrum associated with Polymerase-γ related disorders. J Child Neurol. 2022;37(4):246–55. https://doi.org/10.1177/08830738211067065.

  67. Saneto RP, Cohen BH, Copeland WC, Naviaux RK. Alpers-Huttenlocher syndrome. Pediatr Neurol. 2013;48(3):167–78. https://doi.org/10.1016/j.pediatrneurol.2012.09.014.

  68. Hikmat O, Naess K, Engvall M, Klingenberg C, Rasmussen M, Tallaksen CM, Brodtkorb E, Ostergaard E, de Coo IFM, Pias-Peleteiro L, Isohanni P, Uusimaa J, Darin N, Rahman S, Bindoff LA. Simplifying the clinical classification of polymerase gamma (POLG) disease based on age of onset; studies using a cohort of 155 cases. J Inherit Metab Dis. 2020;43(4):726–36. https://doi.org/10.1002/jimd.12211.

  69. Béreau M, Anheim M, Echaniz-Laguna A, Magot A, Verny C, Goideau-Sevrain M, Barth M, Amati-Bonneau P, Allouche S, Ayrignac X, Bédat-Millet AL, Guyant-Maréchal L, Kuntzer T, Ochsner F, Petiot P, Vial C, Omer S, Sole G, Taieb G, Carvalho N, Tio G, Kremer S, Acquaviva-Bourdain C, de Camaret BM, Tranchant C. The wide POLG-related spectrum: An integrated view. J Neurol Sci. 2016;368:70–6. https://doi.org/10.1016/j.jns.2016.06.062.

  70. Nicastro N, Ranza E, Antonarakis SE, Horvath J. Pure Progressive Ataxia and Palatal Tremor (PAPT) Associated with a New Polymerase Gamma (POLG) Mutation. Cerebellum. 2016;15(6):829–31. https://doi.org/10.1007/s12311-015-0749-6.

  71. Henao AI, Pira S, Herrera DA, Vargas SA, Montoya J, Castillo M. Characteristic brain MRI findings in ataxia-neuropathy spectrum related to POLG mutation. Neuroradiol J. 2016;29(1):46–8. https://doi.org/10.1177/1971400915621324.

  72. Anagnostou ME, Ng YS, Taylor RW, McFarland R. Epilepsy due to mutations in the mitochondrial polymerase gamma (POLG) gene: A clinical and molecular genetic review. Epilepsia. 2016;57(10):1531–45. https://doi.org/10.1111/epi.13508..

  73. Synofzik M, Srulijes K, Godau J, Berg D, Schöls L. Characterizing POLG ataxia: clinics, electrophysiology and imaging. Cerebellum. 2012;11(4):1002–11. https://doi.org/10.1007/s12311-012-0378-2.

  74. Paramasivam A, Venkatapathi C, Sandeep G, Meena AK, Uppin MS, Mohapatra S, Pitceathly RDS, Thangaraj K. Homozygous R627W mutations in POLG cause mitochondrial DNA depletion leading to encephalopathy, seizures and stroke-like episodes. Mitochondrion. 2019;48:78–83. https://doi.org/10.1016/j.mito.2019.08.003.

  75. Tzoulis C, Engelsen BA, Telstad W, Aasly J, Zeviani M, Winterthun S, Ferrari G, Aarseth JH, Bindoff LA. The spectrum of clinical disease caused by the A467T and W748S POLG mutations: a study of 26 cases. Brain. 2006;129(7):1685–92. https://doi.org/10.1093/brain/awl097.

    Article  PubMed  Google Scholar 

  76. Parada-Garza JD, López-Valencia G, Miranda-García LA, Pérez-García G, Ruiz-Sandoval JL. MRI findings in SANDO variety of the ataxia-neuropathy spectrum with a novel mutation in POLG (c.3287G>T): A case report. Neuromuscul Disord. 2020;30(7):590–92. https://doi.org/10.1016/j.nmd.2020.04.008.

  77. Van Goethem G, Luoma P, Rantamäki M, Al Memar A, Kaakkola S, Hackman P, Krahe R, Löfgren A, Martin JJ, De Jonghe P, Suomalainen A, Udd B, Van Broeckhoven C. POLG mutations in neurodegenerative disorders with ataxia but no muscle involvement. Neurology. 2004;63(7):1251–7. https://doi.org/10.1212/01.wnl.0000140494.58732.83.

  78. Bender F, Timmann D, van de Warrenburg BP, Adarmes-Gómez AD, Bender B, Thieme A, Synofzik M, Schöls L. Natural History of Polymerase Gamma-Related Ataxia. Mov Disord. 2021;36(11):2642–52. https://doi.org/10.1002/mds.28713.

  79. Nuzhnyi E, Seliverstov Y, Klyushnikov S, Krylova T, Tsygankova P, Bychkov I, Zakharova E, Konovalov R, Fedin P, Abramycheva N, Illarioshkin S. POLG-associated ataxias can represent a substantial part of recessive and sporadic ataxias in adults. Clin Neurol Neurosurg. 2021;201:106462. https://doi.org/10.1016/j.clineuro.2020.106462.

  80. McKelvie P, Marotta R, Thorburn DR, Chin J, Punchihewa S, Collins S. A case of myelopathy, myopathy, peripheral neuropathy and subcortical grey matter degeneration associated with recessive compound heterozygous POLG1 mutations. Neuromuscul Disord. 2012;22(5):401–5. https://doi.org/10.1016/j.nmd.2011.10.017.

  81. Habek M, Barun B, Adamec I, Mitrović Z, Ozretić D, Brinar VV. Early-onset ataxia with progressive external ophthalmoplegia associated with POLG mutation: autosomal recessive mitochondrial ataxic syndrome or SANDO? Neurologist. 2012;18(5):287–9. https://doi.org/10.1097/NRL.0b013e318266f5a6.

  82. Uusimaa J, Gowda V, McShane A, Smith C, Evans J, Shrier A, Narasimhan M, O'Rourke A, Rajabally Y, Hedderly T, Cowan F, Fratter C, Poulton J. Prospective study of POLG mutations presenting in children with intractable epilepsy: prevalence and clinical features. Epilepsia. 2013;54(6):1002–11. https://doi.org/10.1111/epi.12115.

  83. Arkadir D, Meiner V, Karni A, Lossos A. Teaching NeuroImages: hypertrophic olivary degeneration in a young man with POLG gene mutation. Neurology. 2015;84(8):e59. https://doi.org/10.1212/WNL.0000000000001287.

  84. Kinghorn KJ, Kaliakatsos M, Blakely EL, Taylor RW, Rich P, Clarke A, Omer S. Hypertrophic olivary degeneration on magnetic resonance imaging in mitochondrial syndromes associated with POLG and SURF1 mutations. J Neurol. 2013;260(1):3–9. https://doi.org/10.1007/s00415-012-6564-9.

    Article  CAS  PubMed  Google Scholar 

  85. Gu CN, Carr CM, Kaufmann TJ, Kotsenas AL, Hunt CH, Wood CP. MRI Findings in Nonlesional Hypertrophic Olivary Degeneration. J Neuroimaging : Off J Am Soc Neuroimaging. 2015;25(5):813–7. https://doi.org/10.1111/jon.12267.

    Article  CAS  Google Scholar 

  86. Raeder MTL, Reis EP, Campos BM, Zamilute IAG, França Júnior MC, Reis F. Transaxonal degenerations of cerebellar connections: the value of anatomical knowledge. Arq Neuropsiquiatr. 2020;78(5):301–6. https://doi.org/10.1590/0004-282x20200021.

    Article  PubMed  Google Scholar 

  87. Tzoulis C, Tran GT, Coxhead J, Bertelsen B, Lilleng PK, Balafkan N, Payne B, Miletic H, Chinnery PF, Bindoff LA. Molecular pathogenesis of polymerase γ-related neurodegeneration. Ann Neurol. 2014;76(1):66–81. https://doi.org/10.1002/ana.24185.

  88. Tzoulis C, Neckelmann G, Mørk SJ, Engelsen BE, Viscomi C, Moen G, Ersland L, Zeviani M, Bindoff LA. Localized cerebral energy failure in DNA polymerase gamma-associated encephalopathy syndromes. Brain. 2010;133(Pt 5):1428–37. https://doi.org/10.1093/brain/awq067.

  89. de Vries MC, Rodenburg RJ, Morava E, van Kaauwen EPM, ter Laak H, Mullaart RA, Snoeck IN, van Hasselt PM, Harding P, van den Heuvel LPW, Smeitink JAM. Multiple oxidative phosphorylation deficiencies in severe childhood multi-system disorders due to polymerase gamma (POLG1) mutations. Eur J Pediatr. 2007;166(3):229–34. https://doi.org/10.1007/s00431-006-0234-9.

    Article  PubMed  Google Scholar 

  90. Simon M, Chang RC, Bali DS, Wong LJ, Peng Y, Abdenur JE. Abnormalities in glycogen metabolism in a patient with alpers' syndrome presenting with hypoglycemia. JIMD Rep. 2014;14:29–35. https://doi.org/10.1007/8904_2013_280.

  91. Altassan R, Péanne R, Jaeken J, Barone R, Bidet M, Borgel D, Brasil S, Cassiman D, Cechova A, Coman D, Corral J, Correia J, de la Morena-Barrio ME, de Lonlay P, Dos Reis V, Ferreira CR, Fiumara A, Francisco R, Freeze H, Funke S, Gardeitchik T, Gert M, Girad M, Giros M, Grünewald S, Hernández-Caselles T, Honzik T, Hutter M, Krasnewich D, Lam C, Lee J, Lefeber D, Marques-de-Silva D, Martinez AF, Moravej H, Õunap K, Pascoal C, Pascreau T, Patterson M, Quelhas D, Raymond K, Sarkhail P, Schiff M, Seroczyńska M, Serrano M, Seta N, Sykut-Cegielska J, Thiel C, Tort F, Vals MA, Videira P, Witters P, Zeevaert R, Morava E. International clinical guidelines for the management of phosphomannomutase 2-congenital disorders of glycosylation: Diagnosis, treatment and follow up. J Inherit Metab Dis. 2019;42(1):5–28. https://doi.org/10.1002/jimd.12024. Erratum in: J Inherit Metab Dis. 2019;42(3):577.

  92. Al-Maawali AA, Miller E, Schulze A, Yoon G, Blaser SI. Subcutaneous fat pads on body MRI — an early sign of congenital disorder of glycosylation PMM2-CDG (CDG1a). Pediatr Radiol. 2014;44(2):222–5. https://doi.org/10.1007/s00247-013-2782-2.

    Article  PubMed  Google Scholar 

  93. Giurgea I, Michel A, Le Merrer M, Seta N, de Lonlay P. Underdiagnosis of mild congenital disorders of glycosylation type Ia. Pediatr Neurol. 2005;32(2):121–3. https://doi.org/10.1016/j.pediatrneurol.2004.06.021.

  94. Pancho C, Garcia-Cazorla A, Varea V, Artuch R, Ferrer I, Vilaseca MA, Briones P, Campistol J. Congenital disorder of glycosylation type Ia revealed by hypertransaminasemia and failure to thrive in a young boy with normal neurodevelopment. J Pediatr Gastroenterol Nutr. 2005;40(2):230–2. https://doi.org/10.1097/00005176-200502000-00030.

  95. Coman D, Klingberg S, Morris D, McGill J, Mercer H. Congenital disorder of glycosylation type Ia in a 6-year-old girl with a mild intellectual phenotype: two novel PMM2 mutations. J Inherit Metab Dis. 2005;28(6):1189–90. https://doi.org/10.1007/s10545-005-0166-y.

  96. Drouin-Garraud V, Belgrand M, Grünewald S, Seta N, Dacher J-N, Hénocq A, Matthijs G, Cormier-Daire V, Frébourg T, Saugier-Veber P. Neurological presentation of a congenital disorder of glycosylation CDG-Ia: implications for diagnosis and genetic counseling. Am J Med Genet. 2001;101(1):46–9. https://doi.org/10.1002/ajmg.1298.

    Article  CAS  PubMed  Google Scholar 

  97. Schade van Westrum SM, Nederkoorn PJ, Schuurman PR, Vulsma T, Duran M, Poll-The BT. Skeletal dysplasia and myelopathy in congenital disorder of glycosylation type IA. J Pediatr. 2006;148(1):115–7. https://doi.org/10.1016/j.jpeds.2005.08.048.

  98. Al Teneiji A, Bruun TUJ, Sidky S, Cordeiro D, Cohn RD, Mendoza-Londono R, Moharir M, Raiman J, Siriwardena K, Kyriakopoulou L, Mercimek-Mahmutoglu S. Phenotypic and genotypic spectrum of congenital disorders of glycosylation type I and type II. Mol Genet Metab. 2017;120(3):235–42. https://doi.org/10.1016/j.ymgme.2016.12.014.

    Article  CAS  PubMed  Google Scholar 

  99. Serrano M. Stroke-Like Episodes in PMM2-CDG: When the Lack of Other Evidence Is the Only Evidence. Front Pediatr. 2021;9:717864. https://doi.org/10.3389/fped.2021.717864.

  100. Grünert SC, Marquardt T, Lausch E, Fuchs H, Thiel C, Sutter M, Schumann A, Hannibal L, Spiekerkoetter U. Unsuccessful intravenous D-mannose treatment in PMM2-CDG. Orphanet J Rare Dis. 2019;14(1):231. https://doi.org/10.1186/s13023-019-1213-3.

  101. Vals M-A, Morava E, Teeäär K, Zordania R, Pajusalu S, Lefeber DJ, Õunap K. Three families with mild PMM2-CDG and normal cognitive development. Am J Med Genet A. 2017;173(6):1620–4. https://doi.org/10.1002/ajmg.a.38235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Serrano NL, De Diego V, Cuadras D, Martinez Monseny AF, Velázquez-Fragua R, López L, Felipe A, Gutiérrez-Solana LG, Macaya A, Pérez-Dueñas B, Serrano M; CDG Spanish-Consortium. A quantitative assessment of the evolution of cerebellar syndrome in children with phosphomannomutase-deficiency (PMM2-CDG). Orphanet J Rare Dis. 2017;12(1):155. https://doi.org/10.1186/s13023-017-0707-0.

  103. Casado M, O'Callaghan MM, Montero R, Pérez-Cerda C, Pérez B, Briones P, Quintana E, Muchart J, Aracil A, Pineda M, Artuch R. Mild clinical and biochemical phenotype in two patients with PMM2-CDG (congenital disorder of glycosylation Ia). Cerebellum. 2012;11(2):557–63. https://doi.org/10.1007/s12311-011-0313-y.

  104. Mostile G, Barone R, Nicoletti A, Rizzo R, Martinelli D, Sturiale L, Fiumara A, Jankovic J, Zappia M. Hyperkinetic movement disorders in congenital disorders of glycosylation. Eur J Neurol. 2019;26(9):1226–34. https://doi.org/10.1111/ene.14007.

  105. de Diego V, Martínez-Monseny AF, Muchart J, Cuadras D, Montero R, Artuch R, Pérez-Cerdá C, Pérez B, Pérez-Dueñas B, Poretti A, Serrano M; Collaborators of the CDG Spanish-Consortium. Longitudinal volumetric and 2D assessment of cerebellar atrophy in a large cohort of children with phosphomannomutase deficiency (PMM2-CDG). J Inherit Metab Dis. 2017;40(5):709–13. https://doi.org/10.1007/s10545-017-0028-4. Erratum in: J Inherit Metab Dis. 2017.

  106. Monin M-L, Mignot C, De Lonlay P, Héron B, Masurel A, Mathieu-Dramard M, Lenaerts C, Thauvin C, Gérard M, Roze E, Jacquette A, Charles P, de Baracé C, Drouin-Garraud V, Van Kien PK, Cormier-Daire V, Mayer M, Ogier H, Brice A, Seta N, Héron D. 29 French adult patients with PMM2-congenital disorder of glycosylation: outcome of the classical pediatric phenotype and depiction of a late-onset phenotype. Orphanet J Rare Dis. 2014;9(1):207. https://doi.org/10.1186/s13023-014-0207-4.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Serrano M, de Diego V, Muchart J, Cuadras D, Felipe A, Macaya A, Velázquez R, Poo MP, Fons C, O'Callaghan MM, García-Cazorla A, Boix C, Robles B, Carratalá F, Girós M, Briones P, Gort L, Artuch R, Pérez-Cerdá C, Jaeken J, Pérez B, Pérez-Dueñas B. Phosphomannomutase deficiency (PMM2-CDG): ataxia and cerebellar assessment. Orphanet J Rare Dis. 2015;10:138. https://doi.org/10.1186/s13023-015-0358-y.

  108. Pettinato F, Mostile G, Battini R, Martinelli D, Madeo A, Biamino E, Frattini D, Garozzo D, Gasperini S, Parini R, Sirchia F, Sortino G, Sturiale L, Matthijs G, Morrone A, Di Rocco M, Rizzo R, Jaeken J, Fiumara A, Barone R. Clinical and radiological correlates of activities of daily living in cerebellar atrophy caused by PMM2 mutations (PMM2-CDG). Cerebellum. 2021;20(4):596–605. https://doi.org/10.1007/s12311-021-01242-x.

  109. Barone R, Carrozzi M, Parini R, Battini R, Martinelli D, Elia M, Spada M, Lilliu F, Ciana G, Burlina A, Leuzzi V, Leoni M, Sturiale L, Matthijs G, Jaeken J, Di Rocco M, Garozzo D, Fiumara A. A nationwide survey of PMM2-CDG in Italy: high frequency of a mild neurological variant associated with the L32R mutation. J Neurol. 2015;262(1):154–64. https://doi.org/10.1007/s00415-014-7549-7.

  110. Schiff M, Roda C, Monin ML, Arion A, Barth M, Bednarek N, Bidet M, Bloch C, Boddaert N, Borgel D, Brassier A, Brice A, Bruneel A, Buissonnière R, Chabrol B, Chevalier MC, Cormier-Daire V, De Barace C, De Maistre E, De Saint-Martin A, Dorison N, Drouin-Garraud V, Dupré T, Echenne B, Edery P, Feillet F, Fontan I, Francannet C, Labarthe F, Gitiaux C, Héron D, Hully M, Lamoureux S, Martin-Coignard D, Mignot C, Morin G, Pascreau T, Pincemaille O, Polak M, Roubertie A, Thauvin-Robinet C, Toutain A, Viot G, Vuillaumier-Barrot S, Seta N, De Lonlay P. Clinical, laboratory and molecular findings and long-term follow-up data in 96 French patients with PMM2-CDG (phosphomannomutase 2-congenital disorder of glycosylation) and review of the literature. J Med Genet. 2017;54(12):843–51. https://doi.org/10.1136/jmedgenet-2017-104903.

  111. Coorg R, Lotze TE. Child Neurology: a case of PMM2-CDG (CDG 1a) presenting with unusual eye movements. Neurology. 2012;79(15):e131-3. https://doi.org/10.1212/WNL.0b013e31826e2617.

  112. Feraco P, Mirabelli-Badenier M, Severino M, Alpigiani MG, Di Rocco M, Biancheri R, Rossi A. The shrunken, bright cerebellum: a characteristic MRI finding in congenital disorders of glycosylation type 1a. AJNR Am J Neuroradiol. 2012;33(11):2062–7. https://doi.org/10.3174/ajnr.A3151.

  113. Farmania R, Jain P, Sharma S, Aneja S. Unusual Presentation of PMM2-Congenital Disorder of Glycosylation With Isolated Strokelike Episodes in a Young Girl. J Child Neurol. 2019;34(7):410–4. https://doi.org/10.1177/0883073819833543.

  114. Dinopoulos A, Mohamed I, Jones B, Rao S, Franz D, deGrauw T. Radiologic and neurophysiologic aspects of stroke-like episodes in children with congenital disorder of glycosylation type Ia. Pediatrics. 2007;119(3):e768–72. https://doi.org/10.1542/peds.2006-0763.

  115. Izquierdo-Serra M, Martínez-Monseny AF, López L, Carrillo-García J, Edo A, Ortigoza-Escobar JD, García Ó, Cancho-Candela R, Carrasco-Marina ML, Gutiérrez-Solana LG, Cuadras D, Muchart J, Montero R, Artuch R, Pérez-Cerdá C, Pérez B, Pérez-Dueñas B, Macaya A, Fernández-Fernández JM, Serrano M. Stroke-Like Episodes and Cerebellar Syndrome in Phosphomannomutase Deficiency (PMM2-CDG): Evidence for Hypoglycosylation-Driven Channelopathy. Int J Mol Sci. 2018;19(2):619. https://doi.org/10.3390/ijms19020619.

  116. Pearl PL, Krasnewich D. Neurologic course of congenital disorders of glycosylation. J Child Neurol. 2001;16(6):409–13. https://doi.org/10.1177/088307380101600604.

  117. Ishikawa N, Tajima G, Ono H, Kobayashi M. Different neuroradiological findings during two stroke-like episodes in a patient with a congenital disorder of glycosylation type Ia. Brain Dev. 2009;31(3):240–3. https://doi.org/10.1016/j.braindev.2008.03.012.

  118. van Baalen A, Stephani U, Rohr A. Increased brain lactate during stroke-like episode in a patient with congenital disorder of glycosylation type Ia. Brain Dev. 2009 ;31(2):183. https://doi.org/10.1016/j.braindev.2008.08.014.

  119. Takanashi J, Osaka H, Saitsu H, Sasaki M, Mori H, Shibayama H, Tanaka M, Nomura Y, Terao Y, Inoue K, Matsumoto N, Barkovich AJ. Different patterns of cerebellar abnormality and hypomyelination between POLR3A and POLR3B mutations. Brain Dev. 2014;36(3):259–63. https://doi.org/10.1016/j.braindev.2013.03.006.

  120. Bernard G, Chouery E, Putorti ML, Tétreault M, Takanohashi A, Carosso G, Clément I, Boespflug-Tanguy O, Rodriguez D, Delague V, Abou Ghoch J, Jalkh N, Dorboz I, Fribourg S, Teichmann M, Megarbane A, Schiffmann R, Vanderver A, Brais B. Mutations of POLR3A encoding a catalytic subunit of RNA polymerase Pol III cause a recessive hypomyelinating leukodystrophy. Am J Hum Genet. 2011;89(3):415–23. https://doi.org/10.1016/j.ajhg.2011.07.014. Erratum in: Am J Hum Genet. 2012;91(5):972.

  121. Cayami FK, La Piana R, van Spaendonk RM, Nickel M, Bley A, Guerrero K, Tran LT, van der Knaap MS, Bernard G, Wolf NI. POLR3A and POLR3B Mutations in Unclassified Hypomyelination. Neuropediatrics. 2015;46(3):221–8. https://doi.org/10.1055/s-0035-1550148.

  122. La Piana R, Tonduti D, Gordish Dressman H, Schmidt JL, Murnick J, Brais B, Bernard G, Vanderver A. Brain magnetic resonance imaging (MRI) pattern recognition in Pol III-related leukodystrophies. J Child Neurol. 2014;29(2):214–20. https://doi.org/10.1177/0883073813503902.

  123. Wolf NI, Vanderver A, van Spaendonk RM, Schiffmann R, Brais B, Bugiani M, Sistermans E, Catsman-Berrevoets C, Kros JM, Pinto PS, Pohl D, Tirupathi S, Strømme P, de Grauw T, Fribourg S, Demos M, Pizzino A, Naidu S, Guerrero K, van der Knaap MS, Bernard G; 4H Research Group. Clinical spectrum of 4H leukodystrophy caused by POLR3A and POLR3B mutations. Neurology. 2014;83(21):1898–905. https://doi.org/10.1212/WNL.0000000000001002.

  124. Steenweg ME, Vanderver A, Blaser S, Bizzi A, de Koning TJ, Mancini GMS, van Wieringen WN, Barkhof F, Wolf NI, van der Knaap MS. Magnetic resonance imaging pattern recognition in hypomyelinating disorders. Brain. 2010;133(10):2971–82. https://doi.org/10.1093/brain/awq257.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Zanette V, Reyes A, Johnson M, do Valle D, Robinson AJ, Monteiro V, Telles BA, L R Souza R, S F Santos ML, Benincá C, Zeviani M. Neurodevelopmental regression, severe generalized dystonia, and metabolic acidosis caused by POLR3A mutations. Neurol Genet. 2020;6(6):e521. https://doi.org/10.1212/NXG.0000000000000521.

  126. Azmanov DN, Siira SJ, Chamova T, Kaprelyan A, Guergueltcheva V, Shearwood AJ, Liu G, Morar B, Rackham O, Bynevelt M, Grudkova M, Kamenov Z, Svechtarov V, Tournev I, Kalaydjieva L, Filipovska A. Transcriptome-wide effects of a POLR3A gene mutation in patients with an unusual phenotype of striatal involvement. Hum Mol Genet. 2016;25(19):4302–14. https://doi.org/10.1093/hmg/ddw263.

  127. Harting I, Al-Saady M, Krägeloh-Mann I, Bley A, Hempel M, Bierhals T, Karch S, Moog U, Bernard G, Huntsman R, van Spaendonk RML, Vreeburg M, Rodríguez-Palmero A, Pujol A, van der Knaap MS, Pouwels PJW, Wolf NI. POLR3A variants with striatal involvement and extrapyramidal movement disorder. Neurogenetics. 2020;21(2):121–33. https://doi.org/10.1007/s10048-019-00602-4.

  128. La Piana R, Cayami FK, Tran LT, Guerrero K, van Spaendonk R, Õunap K, Pajusalu S, Haack T, Wassmer E, Timmann D, Mierzewska H, Poll-Thé BT, Patel C, Cox H, Atik T, Onay H, Ozkınay F, Vanderver A, van der Knaap MS, Wolf NI, Bernard G. Diffuse hypomyelination is not obligate for POLR3-related disorders. Neurology. 2016;86(17):1622–6. https://doi.org/10.1212/WNL.0000000000002612.

  129. Minnerop M, Kurzwelly D, Wagner H, Soehn AS, Reichbauer J, Tao F, Rattay TW, Peitz M, Rehbach K, Giorgetti A, Pyle A, Thiele H, Altmüller J, Timmann D, Karaca I, Lennarz M, Baets J, Hengel H, Synofzik M, Atasu B, Feely S, Kennerson M, Stendel C, Lindig T, Gonzalez MA, Stirnberg R, Sturm M, Roeske S, Jung J, Bauer P, Lohmann E, Herms S, Heilmann-Heimbach S, Nicholson G, Mahanjah M, Sharkia R, Carloni P, Brüstle O, Klopstock T, Mathews KD, Shy ME, de Jonghe P, Chinnery PF, Horvath R, Kohlhase J, Schmitt I, Wolf M, Greschus S, Amunts K, Maier W, Schöls L, Nürnberg P, Zuchner S, Klockgether T, Ramirez A, Schüle R. Hypomorphic mutations in POLR3A are a frequent cause of sporadic and recessive spastic ataxia. Brain. 2017;140(6):1561–78. https://doi.org/10.1093/brain/awx095. Erratum in: Brain. 2017 Dec 9.

  130. Barrett TG, Bundey SE. Wolfram (DIDMOAD) syndrome. J Med Genet. 1997;34(10):838–41. https://doi.org/10.1136/jmg.34.10.838.

  131. Das L, Rai A, Mavuduru R, Vaiphei K, Sharma A, Gupta V, Bhadada SK, Lodha S, Panda N, Bhansali A, Singh P, Dutta P. Wolfram syndrome: clinical and genetic profiling of a cohort from a tertiary care centre with characterization of the primary gonadal failure. Endocrine. 2020;69(2):420–9. https://doi.org/10.1007/s12020-020-02320-6.

    Article  CAS  PubMed  Google Scholar 

  132. Pakdemirli E, Karabulut N, Bir LS, Sermez Y. Cranial magnetic resonance imaging of Wolfram (DIDMOAD) syndrome. Australas Radiol. 2005;49(2):189–91. https://doi.org/10.1111/j.1440-1673.2005.01420.x.

  133. Ito S, Sakakibara R, Hattori T. Wolfram syndrome presenting marked brain MR imaging abnormalities with few neurologic abnormalities. AJNR Am J Neuroradiol. 2007;28(2):305–6.

  134. Scolding NJ, Kellar-Wood HF, Shaw C, Shneerson JM, Antoun N. Wolfram syndrome: hereditary diabetes mellitus with brainstem and optic atrophy. Ann Neurol. 1996;39(3):352–60. https://doi.org/10.1002/ana.410390312.

  135. Ari Ş, Keklíkçí U, Çaça İ, Ünlü K, Kayabaşi H. Wolfram syndrome: case report and review of the literature. Compr Ther. 2007;33(1):18–20. https://doi.org/10.1007/s12019-007-0007-z.

    Article  PubMed  Google Scholar 

  136. Chaussenot A, Bannwarth S, Rouzier C, Vialettes B, Mkadem SA, Chabrol B, Cano A, Labauge P, Paquis-Flucklinger V. Neurologic features and genotype-phenotype correlation in Wolfram syndrome. Ann Neurol. 2011;69(3):501–8. https://doi.org/10.1002/ana.22160.

  137. Labauge P, Renard D, Chaussenot A, Paquis-Flucklinger V. Neurological picture. Wolfram syndrome associated with leukoencephalopathy. J Neurol Neurosurg Psychiatry. 2010;81(8):928. https://doi.org/10.1136/jnnp.2009.185579.

  138. Hershey T, Lugar HM, Shimony JS, Rutlin J, Koller JM, Perantie DC, Paciorkowski AR, Eisenstein SA, Permutt MA; Washington University Wolfram Study Group. Early brain vulnerability in Wolfram syndrome. PLoS One. 2012;7(7):e40604. https://doi.org/10.1371/journal.pone.0040604.

  139. La Morgia C, Maresca A, Amore G, Gramegna LL, Carbonelli M, Scimonelli E, Danese A, Patergnani S, Caporali L, Tagliavini F, Del Dotto V, Capristo M, Sadun F, Barboni P, Savini G, Evangelisti S, Bianchini C, Valentino ML, Liguori R, Tonon C, Giorgi C, Pinton P, Lodi R, Carelli V. Calcium mishandling in absence of primary mitochondrial dysfunction drives cellular pathology in Wolfram Syndrome. Sci Rep. 2020;10(1):4785. https://doi.org/10.1038/s41598-020-61735-3. Erratum in: Sci Rep. 2020;10(1):10398.

  140. Samara A, Lugar HM, Hershey T, Shimony JS. Longitudinal Assessment of Neuroradiologic Features in Wolfram Syndrome. AJNR Am J Neuroradiol. 2020;41(12):2364–9. https://doi.org/10.3174/ajnr.A6831.

  141. Gocmen R, Guler E. Teaching NeuroImages: MRI of brain findings of Wolfram (DIDMOAD) syndrome. Neurology. 2014;83(24):e213–4. https://doi.org/10.1212/WNL.0000000000001082.

  142. Galluzzi P, Filosomi G, Vallone IM, Bardelli AM, Venturi C. MRI of Wolfram syndrome (DIDMOAD). Neuroradiology. 1999;41(10):729–31. https://doi.org/10.1007/s002340050832.

  143. Anheim M, Tranchant C, Koenig M. The autosomal recessive cerebellar ataxias. N Engl J Med. 2012;366(7):636–46. https://doi.org/10.1056/NEJMra1006610.

  144. Sardanelli F, Parodi RC, Ottonello C, Renzetti P, Saitta S, Lignana E, Mancardi GL. Cranial MRI in ataxia-telangiectasia. Neuroradiology. 1995;37(1):77–82. https://doi.org/10.1007/BF00588526.

  145. Tavani F, Zimmerman RA, Berry GT, Sullivan K, Gatti R, Bingham P. Ataxia-telangiectasia: the pattern of cerebellar atrophy on MRI. Neuroradiology. 2003;45(5):315–9. https://doi.org/10.1007/s00234-003-0945-9.

  146. Perucca G, Leboucq N, Roubertie A, Rivier F, Menjot N, Valentini C, Bonafe A. Role of neuroimaging in the diagnosis of hereditary cerebellar ataxias in childhood. J Neuroradiol. 2016;43(3):176–85. https://doi.org/10.1016/j.neurad.2016.03.006.

  147. Habek M, Brinar VV, Rados M, Zadro I, Zarković K. Brain MRI abnormalities in ataxia-telangiectasia. Neurologist. 2008;14(3):192–5. https://doi.org/10.1097/NRL.0b013e31815fa5a7.

  148. Lin DD, Barker PB, Lederman HM, Crawford TO. Cerebral abnormalities in adults with ataxia-telangiectasia. AJNR Am J Neuroradiol. 2014;35(1):119-23. https://doi.org/10.3174/ajnr.A3646.

  149. Kieslich M, Hoche F, Reichenbach J, Weidauer S, Porto L, Vlaho S, Schubert R, Zielen S. Extracerebellar MRI-lesions in ataxia telangiectasia go along with deficiency of the GH/IGF-1 axis, markedly reduced body weight, high ataxia scores and advanced age. Cerebellum. 2010;9(2):190–7. https://doi.org/10.1007/s12311-009-0138-0.

  150. Ahmed O, Felimban Y, Almehdar A. T cell ALL in a child with Ataxia telangiectasia; diagnosis and management challenges. Hematology. 2021;26(1):348–54. https://doi.org/10.1080/16078454.2021.1908725.

  151. Hagerman RJ, Leehey M, Heinrichs W, Tassone F, Wilson R, Hills J, Grigsby J, Gage B, Hagerman PJ. Intention tremor, parkinsonism, and generalized brain atrophy in male carriers of fragile X. Neurology. 2001;57(1):127–30. https://doi.org/10.1212/wnl.57.1.127.

  152. Hall DA, O'keefe JA. Fragile x-associated tremor ataxia syndrome: the expanding clinical picture, pathophysiology, epidemiology, and update on treatment. Tremor Other Hyperkinet Mov (N Y). 2012;2:tre-02-56-352-1. https://doi.org/10.7916/D8HD7TDS.

  153. Hagerman PJ, Hagerman RJ. The fragile-X premutation: a maturing perspective. Am J Hum Genet. 2004;74(5):805–16. https://doi.org/10.1086/386296.

  154. Jacquemont S, Hagerman RJ, Leehey M, Grigsby J, Zhang L, Brunberg JA, Greco C, Des Portes V, Jardini T, Levine R, Berry-Kravis E, Brown WT, Schaeffer S, Kissel J, Tassone F, Hagerman PJ. Fragile X premutation tremor/ataxia syndrome: molecular, clinical, and neuroimaging correlates. Am J Hum Genet. 2003;72(4):869–78. https://doi.org/10.1086/374321.

  155. Hall DA, Birch RC, Anheim M, Jønch AE, Pintado E, O'Keefe J, Trollor JN, Stebbins GT, Hagerman RJ, Fahn S, Berry-Kravis E, Leehey MA. Emerging topics in FXTAS. J Neurodev Disord. 2014;6(1):31. https://doi.org/10.1186/1866-1955-6-31. Erratum in: J Neurodev Disord. 2015;7(1):13.

  156. Leehey MA. Fragile X-associated tremor/ataxia syndrome: clinical phenotype, diagnosis, and treatment. J Investig Med. 2009;57(8):830–6. https://doi.org/10.2310/JIM.0b013e3181af59c4.

  157. Okamoto K, Tokiguchi S, Furusawa T, Ishikawa K, Quardery AF, Shinbo S, Sasai K. MR features of diseases involving bilateral middle cerebellar peduncles. AJNR Am J Neuroradiol. 2003;24(10):1946–54.

  158. Muzar Z, Lozano R. Current research, diagnosis, and treatment of fragile X-associated tremor/ataxia syndrome. Intractable Rare Dis Res. 2014;3(4):101–9. https://doi.org/10.5582/irdr.2014.01029.

  159. Hall DA, Robertson E, Shelton AL, Losh MC, Mila M, Moreno EG, Gomez-Anson B, Martínez-Cerdeño V, Grigsby J, Lozano R, Hagerman R, Maria LS, Berry-Kravis E, O’Keefe JA. Update on the clinical, radiographic, and neurobehavioral manifestations in FXTAS and FMR1 premutation carriers. The Cerebellum. 2016;15(5):578–86. https://doi.org/10.1007/s12311-016-0799-4.

    Article  CAS  PubMed  Google Scholar 

  160. Apartis E, Blancher A, Meissner WG, Guyant-Maréchal L, Maltête D, De Broucker T, Legrand AP, Bouzenada H, Thanh HT, Sallansonnet-Froment M, Wang A, Tison F, Roué-Jagot C, Sedel F, Charles P, Whalen S, Héron D, Thobois S, Poisson A, Lesca G, Ouvrard-Hernandez AM, Fraix V, Palfi S, Habert MO, Gaymard B, Dussaule JC, Pollak P, Vidailhet M, Durr A, Barbot JC, Gourlet V, Brice A, Anheim M. FXTAS: new insights and the need for revised diagnostic criteria. Neurology. 2012;79(18):1898–907. https://doi.org/10.1212/WNL.0b013e318271f7ff.

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. All authors read and approved the final manuscript. Alessandra Scaravilli: conceptualization; writing — original draft preparation; Mario Tranfa: writing — review and editing; Giuseppe Pontillo: writing — review and editing; Bernard Brais: writing — review and editing; Giovanna De Michele: writing — review and editing; Roberta La Piana: writing — review and editing; Francesco Saccà: writing — review and editing; Filippo Maria Santorelli: writing—review and editing; Matthis Synofzik: writing — review and editing; Arturo Brunetti: writing — review and editing; supervision; Sirio Cocozza: conceptualization; writing — review and editing; supervision.

Corresponding author

Correspondence to Sirio Cocozza.

Ethics declarations

Ethics Approval

This report is a literature review and does not require approval by an ethical committee.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scaravilli, A., Tranfa, M., Pontillo, G. et al. A Review of Brain and Pituitary Gland MRI Findings in Patients with Ataxia and Hypogonadism. Cerebellum 23, 757–774 (2024). https://doi.org/10.1007/s12311-023-01562-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-023-01562-0

Keywords

Navigation