Skip to main content

Advertisement

Log in

The Cerebellar Cortex Receives Orofacial Proprioceptive Signals from the Supratrigeminal Nucleus via the Mossy Fiber Pathway in Rats

  • Original Article
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Proprioceptive sensory information from muscle spindles is essential for the regulation of motor functions. However, little is known about the motor control regions in the cerebellar cortex that receive proprioceptive signals from muscle spindles distributed throughout the body, including the orofacial muscles. Therefore, in this study, we investigated the pattern of projections in the rat cerebellar cortex derived from the supratrigeminal nucleus (Su5), which conveys orofacial proprioceptive information from jaw-closing muscle spindles (JCMSs). Injections of an anterograde tracer into the Su5 revealed that many bilateral axon terminals (rosettes) were distributed in the granular layer of the cerebellar cortex (including the simple lobule B, crus II and flocculus) in a various sized, multiple patchy pattern. We could also detect JCMS proprioceptive signals in these cerebellar cortical regions, revealing for the first time that they receive muscle proprioceptive inputs in rats. Retrograde tracer injections confirmed that the Su5 directly sends outputs to the cerebellar cortical areas. Furthermore, we injected an anterograde tracer into the external cuneate nucleus (ECu), which receives proprioceptive signals from the forelimb and neck muscle spindles, to distinguish between the Su5- and ECu-derived projections in the cerebellar cortex. The labeled terminals from the ECu were distributed predominantly in the vermis of the cerebellar cortex. Almost no overlap was seen in the terminal distributions of the Su5 and ECu projections. Our findings demonstrate that the rat cerebellar cortex receives orofacial proprioceptive input that is processed differently from the proprioceptive signals from the other regions of the body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data and materials are available upon request.

Code Availability

Not applicable.

Abbreviations

I–X:

Lobules I–X

5C:

Caudal subnucleus of the trigeminal spinal nucleus

5I:

Interpolar subnucleus of the trigeminal spinal nucleus

7n:

Facial nerve

10:

Dorsal motor nucleus of vagus

12 :

Hypoglossal nucleus

AP:

Area postrema

BDA:

Biotinylated dextran amine

BPn:

Basilar pontine nuclei

Cop:

Copula pyramidis

Crus I:

Crus I of the ansiform lobule

Crus II:

Crus II of the ansiform lobule

CTb:

Cholera toxin B subunit

Cu:

Cuneate nucleus

cu:

Cuneate fasciculus

ECu:

External cuneate nucleus

FG:

Fluorogold

FL:

Flocculus

Gr:

Gracile nucleus

H II–V:

Hemisphere of lobules II–V

I5:

Intertrigeminal region

JCMS:

Jaw-closing muscle spindle

KF:

Kölliker-Fuse nucleus

LC:

Locus coeruleus

LRt:

Lateral reticular nucleus

M1:

Primary motor cortex

Me5:

Trigeminal mesencephalic nucleus

me5:

Trigeminal mesencephalic tract

Mo5:

Trigeminal motor nucleus

Pa5:

Paratrigeminal nucleus

PB:

Phosphate buffer

Pb:

Parabrachial nucleus

PFL:

Paraflocculus

PM:

Paramedian lobule

Pr5:

Trigeminal principal nucleus

RtTg:

Reticulotegmental nucleus of the pons

scp:

Superior cerebellar peduncle

Sim A:

Simple lobule A

Sim B:

Simple lobule B

Sol:

Solitary tract nucleus

sp5:

Spinal trigeminal tract

Su5:

Supratrigeminal nucleus

Ves:

Vestibular nuclei

VPM:

Ventral posteromedial thalamic nucleus

References

  1. Eccles JC, Ito M, Szentágothai J. The cerebellum as a neuronal machine. Berlin-Heidelberg-New York: Springer-Verlag; 1967. p. 227–61.

    Book  Google Scholar 

  2. Palay SL, Chan-Palay V. Cerebellar cortex: Cytology and organization. Berlin: Springer-Verlag; 1974.

    Book  Google Scholar 

  3. Ito M. The Cerebellum and Neural Control. New York: Raven Press; 1984.

    Google Scholar 

  4. Quy PN, Fujita H, Sakamoto Y, Na J, Sugihara I. Projection patterns of single mossy fiber axons originating from the dorsal column nuclei mapped on the aldolase C compartments in the rat cerebellar cortex. J Comp Neurol. 2011;519:874–99.

    Article  PubMed  Google Scholar 

  5. Dubner R, Sessle BJ, Storey AT. The neural basis of oral and facial function. New York: Plenum Press; 1978.

    Book  Google Scholar 

  6. Gould BB. Organization of afferents from the brain stem nuclei to the cerebellar cortex in the cat. Adv Anat Embryol Cell Biol. 1980;62:1–90.

    Article  Google Scholar 

  7. Matsushita M, Ikeda M, Okado N. The cells of origin of the trigeminothalamic, trigeminospinal and trigeminocerebellar projections in the cat. Neuroscience. 1982;7:1439–54.

    Article  CAS  PubMed  Google Scholar 

  8. Donga R, Dessem D. An unrelayed projection of jaw-muscle spindle afferents to the cerebellum. Brain Res. 1993;626:347–50.

    Article  CAS  PubMed  Google Scholar 

  9. Dessem D, Donga R, Luo P. Primary- and secondary-like jaw-muscle spindle afferents have characteristic topographic distributions. J Neurophysiol. 1997;77:2925–44.

    Article  CAS  PubMed  Google Scholar 

  10. Nomura S, Mizuno N. Differential distribution of cell bodies and central axons of mesencephalic trigeminal nucleus neurons supplying the jaw-closing muscles and periodontal tissue: a transganglionic tracer study in the cat. Brain Res. 1985;359:311–9.

    Article  CAS  PubMed  Google Scholar 

  11. Kishimoto H, Bae YC, Yoshida A, Moritani M, Takemura M, Nakagawa S, Nagase Y, Wada T, Sessle BJ, Shigenaga Y. Central distribution of synaptic contacts of primary and secondary jaw muscle spindle afferents in the trigeminal motor nucleus of the cat. J Comp Neurol. 1998;391:50–63.

    Article  CAS  PubMed  Google Scholar 

  12. Yoshida A, Mukai N, Moritani M, Nagase Y, Hirose Y, Honma S, Fukami H, Takagi K, Matsuya T, Shigenaga Y. Physiologic and morphologic properties of motoneurons and spindle afferents innervating the temporal muscle in the cat. J Comp Neurol. 1999;406:29–50.

    Article  CAS  PubMed  Google Scholar 

  13. Lingenhöhl K, Friauf E. Sensory neurons and motoneurons of the jaw-closing reflex pathway in rats: a combined morphological and physiological study using the intracellular horseradish peroxidase technique. Exp Brain Res. 1991;83:385–96.

    Article  PubMed  Google Scholar 

  14. Yoshida A, Tsuru K, Mitsuhiro Y, Otani K, Shigenaga Y. Morphology of masticatory motoneurons stained intracellularly with horseradish peroxidase. Brain Res. 1987;416:393–401.

    Article  CAS  PubMed  Google Scholar 

  15. Shigenaga Y, Yoshida A, Tsuru K, Mitsuhiro Y, Otani K, Cao CQ. Physiological and morphological characteristics of cat masticatory motoneurons–intracellular injection of HRP. Brain Res. 1988;461:238–56.

    Article  CAS  PubMed  Google Scholar 

  16. Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 4th ed. Sydney: Academic Press; 1998.

    Google Scholar 

  17. Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 7th ed. Sydney: Academic Press; 2014.

    Google Scholar 

  18. Fujio T, Sato F, Tachibana Y, Kato T, Tomita A, Higashiyama K, Ono T, Maeda Y, Yoshida A. Revisiting the supratrigeminal nucleus in the rat. Neuroscience. 2016;324:307–20.

    Article  CAS  PubMed  Google Scholar 

  19. Sato F, Kado S, Tsutsumi Y, Tachibana Y, Ikenoue E, Furuta T, Uchino K, Bae YC, Uzawa N, Yoshida A. Ascending projection of jaw-closing muscle-proprioception to the intralaminar thalamic nuclei in rats. Brain Res. 2020;1739:146830.

    Article  CAS  PubMed  Google Scholar 

  20. Yoshida A, Fujio T, Sato F, Ali MS, Haque T, Ohara H, Moritani M, Kato T, Dostrovsky JO, Tachibana Y. Orofacial proprioceptive thalamus of the rat. Brain Struct Funct. 2017;222:2655–69.

    Article  PubMed  Google Scholar 

  21. Haque T, Yamamoto S, Masuda Y, Kato T, Sato F, Uchino K, Oka A, Nakamura M, Takeda R, Ono T, Kogo M, Yoshida A. Thalamic afferent and efferent connectivity to cerebral cortical areas with direct projections to identified subgroups of trigeminal premotoneurons in the rat. Brain Res. 2010;1346:69–82.

    Article  CAS  PubMed  Google Scholar 

  22. Iida C, Oka A, Moritani M, Kato T, Haque T, Sato F, Nakamura M, Uchino K, Seki S, Bae YC, Takada K, Yoshida A. Corticofugal direct projections to primary afferent neurons in the trigeminal mesencephalic nucleus of rats. Neuroscience. 2010;169:1739–57.

    Article  CAS  PubMed  Google Scholar 

  23. Campbell SK, Parker TD, Welker W. Somatotopic organization of the external cuneate nucleus in albino rats. Brain Res. 1974;77:1–23.

    Article  CAS  Google Scholar 

  24. Uemura Y, Haque T, Sato F, Tsutsumi Y, Ohara H, Oka A, Furuta T, Bae YC, Yamashiro T, Tachibana Y, Yoshida A. Proprioceptive thalamus receiving forelimb and neck muscle spindle inputs via the external cuneate nucleus in the rat. Brain Struct Funct. 2020;225:2177–92.

    Article  PubMed  Google Scholar 

  25. Tsutsumi Y, Tachibana Y, Sato F, Furuta T, Ohara H, Tomita A, Fujita M, Moritani M, Yoshida A. Cortical and subcortical projections from granular insular cortex receiving orofacial proprioception. Neuroscience. 2018;388:317–29.

    Article  CAS  PubMed  Google Scholar 

  26. Sato F, Uemura Y, Kanno C, Tsutsumi Y, Tomita A, Oka A, Kato T, Uchino K, Murakami J, Haque T, Tachibana Y, Yoshida A. Thalamo-insular pathway conveying orofacial muscle proprioception in the rat. Neuroscience. 2017;365:158–78.

    Article  CAS  PubMed  Google Scholar 

  27. Tsutsumi Y, Mizuno Y, Haque T, Sato F, Furuta T, Oka A, Moritani M, Bae YC, Yamashiro T, Tachibana Y, Yoshida A. Widespread corticopetal projections from the oval paracentral nucleus of the intralaminar thalamic nuclei conveying orofacial proprioception in rats. Brain Struct Funct. 2021;226:1115–33.

    Article  PubMed  Google Scholar 

  28. Buisseret-Delmas C. Sagittal organization of the olivocerebellonuclear pathway in the rat. I. Connections with the nucleus fastigii and the nucleus vestibularis lateralis. Neurosci Res. 1988;5:475–93.

    Article  CAS  PubMed  Google Scholar 

  29. Swanson LW. Brain maps: structure of the rat brain. Amsterdam: Elsevier; 1992.

    Google Scholar 

  30. Taylor A. Neurophysiology of the Jaws and Teeth. London: Macmillan Press; 1990.

    Book  Google Scholar 

  31. Kobayashi Y. Distribution and size of cerebellar and thalamic projection neurons in the trigeminal principal sensory nucleus and adjacent nuclei in the rat. Kaibogaku Zasshi. 1995;70:156–71.

    CAS  PubMed  Google Scholar 

  32. Azzena GB, Desole C, Palmieri G. Cerebellar projections of the masticatory and extraocular muscle proprioception. Exp Neurol. 1970;27:151–61.

    Article  CAS  PubMed  Google Scholar 

  33. Shambes GM, Gibson JM, Welker W. Fractured somatotopy in granule cell tactile areas of rat cerebellar hemispheres revealed by micromapping. Brain Behav Evol. 1978;15:94–140.

    Article  CAS  PubMed  Google Scholar 

  34. Cody FW, Richardson HC. Mossy and climbing fibre mediated responses evoked in the cerebellar cortex of the cat by trigeminal afferent stimulation. J Physiol. 1979;287:1–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rosén I, Sjölund B. Organization of group I activated cells in the main and external cuneate nuclei of the cat: identification of muscle receptors. Exp Brain Res. 1973;16:221–37.

    PubMed  Google Scholar 

  36. Dykes RW, Rasmusson DD, Sretavan D, Rehman NB. Submodality segregation and receptive-field sequences in cuneate, gracile, and external cuneate nuclei of the cat. J Neurophysiol. 1982;47:389–416.

    Article  CAS  PubMed  Google Scholar 

  37. Jasmin L, Courville J. Distribution of external cuneate nucleus afferents to the cerebellum: II. Topographical distribution and zonal pattern–an experimental study with radioactive tracers in the cat. J Comp Neurol. 1987;261:497–514.

    Article  CAS  PubMed  Google Scholar 

  38. Na J, Sugihara I, Shinoda Y. The entire trajectories of single pontocerebellar axons and their lobular and longitudinal terminal distribution patterns in multiple aldolase C-positive compartments of the rat cerebellar cortex. J Comp Neurol. 2019;527:2488–511.

    Article  CAS  PubMed  Google Scholar 

  39. Wu HS, Sugihara I, Shinoda Y. Projection patterns of single mossy fibers originating from the lateral reticular nucleus in the rat cerebellar cortex and nuclei. J Comp Neurol. 1999;411:97–118.

    Article  CAS  PubMed  Google Scholar 

  40. Serapide MF, Parenti R, Pantò MR, Zappalà A, Cicirata F. Multiple zonal projections of the nucleus reticularis tegmenti pontis to the cerebellar cortex of the rat. Eur J Neurosci. 2002;15:1854–8.

    Article  CAS  PubMed  Google Scholar 

  41. Blanks RH, Precht W, Torigoe Y. Afferent projections to the cerebellar flocculus in the pigmented rat demonstrated by retrograde transport of horseradish peroxidase. Exp Brain Res. 1983;52:293–306.

    Article  CAS  PubMed  Google Scholar 

  42. Ruigrok TJH. Collateralization of climbing and mossy fibers projecting to the nodulus and flocculus of the rat cerebellum. J Comp Neurol. 2003;466:278–98.

    Article  PubMed  Google Scholar 

  43. Mihailoff GA, Burne RA, Azizi SA, Norell G, Woodward DJ. The pontocerebellar system in the rat: an HRP study. II Hemispheral components J Comp Neurol. 1981;197:559–77.

    Article  CAS  PubMed  Google Scholar 

  44. Mihailoff GA. Intra- and interhemispheric collateral branching in the rat pontocerebellar system, a fluorescence double-label study. Neuroscience. 1983;10:141–60.

    Article  CAS  PubMed  Google Scholar 

  45. Hrycyshyn AH, Flumerfelt BA, Anderson WA. A horseradish peroxidase study of the projections from the lateral reticular nucleus to the cerebellum in the rat. Anat Embryol (Berl). 1982;165:1–18.

    Article  CAS  PubMed  Google Scholar 

  46. Yoshida A, Inoue M, Sato F, Morita Y, Tsutsumi Y, Furuta T, Uchino K, Akhter F, Bae YC, Tachibana Y, Inoue T. Efferent and afferent connections of supratrigeminal neurons conveying orofacial muscle proprioception in rats. Brain Struct Funct. 2022;227:111–29.

  47. Crandall WF, Keller EL. Visual and oculomotor signals in nucleus reticularis tegmenti pontis in alert monkey. J Neurophysiol. 1985;54:1326–45.

    Article  CAS  PubMed  Google Scholar 

  48. Torigoe Y, Blanks RH, Precht W. Anatomical studies on the nucleus reticularis tegmenti pontis in the pigmented rat. I. Cytoarchitecture, topography, and cerebral cortical afferents. J Comp Neurol. 1986;243:71–87.

    Article  CAS  PubMed  Google Scholar 

  49. Suzuki DA, Yamada T, Yee RD. Smooth-pursuit eye-movement-related neuronal activity in macaque nucleus reticularis tegmenti pontis. J Neurophysiol. 2003;89:2146–58.

    Article  PubMed  Google Scholar 

  50. Thier P, Möck M. The oculomotor role of the pontine nuclei and the nucleus reticularis tegmenti pontis. Prog Brain Res. 2006;151:293–320.

    Article  PubMed  Google Scholar 

  51. Wiesendanger R, Wiesendanger M. The corticopontine system in the rat. II. The projection pattern J Comp Neurol. 1982;208:227–38.

    Article  CAS  PubMed  Google Scholar 

  52. Mihailoff GA, Lee H, Watt CB, Yates R. Projections to the basilar pontine nuclei from face sensory and motor regions of the cerebral cortex in the rat. J Comp Neurol. 1985;237:251–63.

    Article  CAS  PubMed  Google Scholar 

  53. Mihailoff GA, Kosinski RJ, Azizi SA, Border BG. Survey of noncortical afferent projections to the basilar pontine nuclei: a retrograde tracing study in the rat. J Comp Neurol. 1989;282:617–43.

    Article  CAS  PubMed  Google Scholar 

  54. Kosinski RJ, Azizi SA, Mihailoff GA. Convergence of cortico- and cuneopontine projections onto components of the pontocerebellar system in the rat: an anatomical and electrophysiological study. Exp Brain Res. 1988;71:541–56.

    Article  CAS  PubMed  Google Scholar 

  55. Watson CR, Switzer RC 3rd. Trigeminal projections to cerebellar tactile areas in the rat-origin mainly from n. interpolaris and n. principalis. Neurosci Lett. 1978;10:77–82.

    Article  CAS  PubMed  Google Scholar 

  56. Huerta MF, Frankfurter A, Harting JK. Studies of the principal sensory and spinal trigeminal nuclei of the rat: projections to the superior colliculus, inferior olive, and cerebellum. J Comp Neurol. 1983;220:147–67.

    Article  CAS  PubMed  Google Scholar 

  57. Falls WM, Rice RE, VanWagner JP. The dorsomedial portion of trigeminal nucleus oralis (Vo) in the rat: cytology and projections to the cerebellum. Somatosens Res. 1985;3:89–118.

    Article  CAS  PubMed  Google Scholar 

  58. Phelan KD, Falls WM. A comparison of the distribution and morphology of thalamic, cerebellar and spinal projection neurons in rat trigeminal nucleus interpolaris. Neuroscience. 1991;40:497–511.

    Article  CAS  PubMed  Google Scholar 

  59. Ikeda M. Projections from the spinal and the principal sensory nuclei of the trigeminal nerve to the cerebellar cortex in the cat, as studied by retrograde transport of horseradish peroxidase. J Comp Neurol. 1979;184:567–86.

    Article  CAS  PubMed  Google Scholar 

  60. Somana R, Kotchabhakdi N, Walberg F. Cerebellar afferents from the trigeminal sensory nuclei in the cat. Exp Brain Res. 1980;38:57–64.

    Article  CAS  PubMed  Google Scholar 

  61. Joseph JW, Shambes GM, Gibson JM, Welker W. Tactile projections to granule cells in caudal vermis of the rat’s cerebellum. Brain Behav Evol. 1978;15:141–9.

    Article  CAS  PubMed  Google Scholar 

  62. Shambes GM, Beermann DH, Welker W. Multiple tactile areas in cerebellar cortex: another patchy cutaneous projection to granule cell columns in rats. Brain Res. 1978;157:123–8.

    Article  CAS  PubMed  Google Scholar 

  63. Welker W, Shambes GM. Tactile cutaneous representation in cerebellar granule cell layer of the opossum. Didelphis virginiana Brain Behav Evol. 1985;27:57–79.

    Article  CAS  PubMed  Google Scholar 

  64. Sherrington CS. The integrative action of the nervous system. London: Yale University Press; 1906.

    Google Scholar 

  65. Manni E, Petrosini L. Luciani’s work on the cerebellum a century later. Trends Neurosci. 1997;20:112–6.

    Article  CAS  PubMed  Google Scholar 

  66. Manni E, Petrosini L. A century of cerebellar somatotopy: a debated representation. Nat Rev Neurosci. 2004;5:241–9.

    Article  CAS  PubMed  Google Scholar 

  67. Kelly RM, Strick PL. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci. 2003;23:8432–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BTT. The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106:2322–45.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Barnes GR. Visual-vestibular interaction in the control of head and eye movement: the role of visual feedback and predictive mechanisms. Prog Neurobiol. 1993;41:435–72.

    Article  CAS  PubMed  Google Scholar 

  70. Schmahmann JD. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci. 2004;16:367–78.

    Article  PubMed  Google Scholar 

  71. Koziol LF, Budding D, Andreasen N, D’Arrigo S, Bulgheroni S, Imamizu H, Ito M, Manto M, Marvel C, Parker K, Pezzulo G, Ramnani N, Riva D, Schmahmann JD, Vandervert L, Yamazaki T. Consensus paper: the cerebellum’s role in movement and cognition. Cerebellum. 2014;13:151–77.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Sasaki K, Oka S, Jinnai K, Yasuda T. Mossy fibre and climbing fibre responses produced in the cerebeller cortex by stimulation of the cerebral cortex in monkeys. Exp Brain Res. 1977;29:419–28.

    CAS  PubMed  Google Scholar 

  73. Marvel CL, Desmond JE. The contributions of cerebro-cerebellar circuitry to executive verbal working memory. Cortex. 2010;46:880–95.

    Article  PubMed  Google Scholar 

  74. Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage. 2009;44:489–501.

    Article  PubMed  Google Scholar 

  75. Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46:831–44.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Turner BM, Paradiso S, Marvel CL, Pierson R, Ponto LLB, Hichwa RD, Robinson RG. The cerebellum and emotional experience. Neuropsychologia. 2007;45:1331–41.

    Article  PubMed  Google Scholar 

  77. Brodal P, Bjaalie JG. Salient anatomic features of the cortico-ponto-cerebellar pathway. Prog Brain Res. 1997;114:227–49.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Grants-in-Aid for Scientific Research of the Japan Society for the Promotion of Science (DC-1 21J21394 to Y.Ts.; 20K09888 to F.S.; 18KK0259 and 21K09814 to A.Y.).

Author information

Authors and Affiliations

Authors

Contributions

All authors read and approved the final manuscript. AY and YTs conceptualized the hypothesis, designed and supervised the experiments, and directed the data analysis. YTs and FS carried out the experiments and data analysis. MM and KU helped with the experiments and data analysis. AY, YTs, TF, YCB, TK and YTa finalized the figures and text.

Corresponding author

Correspondence to Atsushi Yoshida.

Ethics declarations

Ethical Approval and Consent to Participate

Detailed protocols for the care and use of laboratory animals were approved by the animal ethics committees of the Osaka University Graduate School of Dentistry.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsutsumi, Y., Sato, F., Furuta, T. et al. The Cerebellar Cortex Receives Orofacial Proprioceptive Signals from the Supratrigeminal Nucleus via the Mossy Fiber Pathway in Rats. Cerebellum 22, 663–679 (2023). https://doi.org/10.1007/s12311-022-01434-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-022-01434-z

Keywords

Navigation