Skip to main content
Log in

New Horizons on Non-invasive Brain Stimulation of the Social and Affective Cerebellum

  • Review
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The cerebellum is increasingly attracting scientists interested in basic and clinical research of neuromodulation. Here, we review available studies that used either transcranial magnetic stimulation (TMS) or transcranial direct current stimulation (tDCS) to examine the role of the posterior cerebellum in different aspects of social and affective cognition, from mood regulation to emotion discrimination, and from the ability to identify biological motion to higher-level social inferences (mentalizing). We discuss how at the functional level the role of the posterior cerebellum in these different processes may be explained by a generic prediction mechanism and how the posterior cerebellum may exert this function within different cortico-cerebellar and cerebellar limbic networks involved in social cognition. Furthermore, we suggest to deepen our understanding of the cerebro-cerebellar circuits involved in different aspects of social cognition by employing promising stimulation approaches that have so far been primarily used to study cortical functions and networks, such as paired-pulse TMS, frequency-tuned stimulation, state-dependent protocols, and chronometric TMS. The ability to modulate cerebro-cerebellar connectivity opens up possible clinical applications for improving impairments in social and affective skills associated with cerebellar abnormalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Schmahman JD. The cerebrocerebellar system. In: Essentials of Cerebellum and Cerebellar Disorders. Springer: Cham; 2016. pp. 101–115.

  2. Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BT. The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106(5):2322–45.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121(4):561–79.

    Article  PubMed  Google Scholar 

  4. Argyropoulos GP, Van Dun K, Adamaszek M, Leggio M, Manto M, Masciullo M, ... , Schmahmann JD. The cerebellar cognitive affective/Schmahmann syndrome: a task force paper. Cerebellum. 2020; 1–24.

  5. Adamaszek M, D’Agata F, Ferrucci R, Habas C, Keulen S, Kirkby KC, et al. Consensus paper: cerebellum and emotion. Cerebellum. 2017;16(2):552–76.

    Article  CAS  PubMed  Google Scholar 

  6. Van Overwalle F, Ma Q, Heleven E. The posterior crus II cerebellum is specialized for social mentalizing and emotional self-experiences: a meta-analysis. Soc Cogn Affect Neurosci. 2020;15(9):905–28.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Van Overwalle F, D’aes, T., & Mariën, P. . Social cognition and the cerebellum: a meta-analytic connectivity analysis. Hum Brain Mapp. 2015;36(12):5137–54.

    Article  PubMed  PubMed Central  Google Scholar 

  8. De Zeeuw CI, Lisberger SG, Raymond JL. Diversity and dynamism in the cerebellum. Nat Neurosci. 2021;24:160–7.

    Article  PubMed  CAS  Google Scholar 

  9. Hull C. Prediction signals in the cerebellum: beyond supervised motor learning. Elife. 2020;9:e54073.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Parkin BL, Ekhtiari H, Walsh VF. Non-invasive human brain stimulation in cognitive neuroscience: a primer. Neuron. 2015;87(5):932–45.

    Article  CAS  PubMed  Google Scholar 

  11. Pascual-Leone A, Walsh V, Rothwell J. Transcranial magnetic stimulation in cognitive neuroscience–virtual lesion, chronometry, and functional connectivity. Curr Opin Neurobiol. 2000;10(2):232–7.

    Article  CAS  PubMed  Google Scholar 

  12. Ciricugno A, Ferrari C, Rusconi ML, Cattaneo Z. The left posterior cerebellum is involved in orienting attention along the mental number line: an online-TMS study. Neuropsychologia. 2020; 107497.

  13. Ferrari C, Cattaneo Z, Oldrati V, Casiraghi L, Castelli F, D’Angelo E, Vecchi T. TMS over the cerebellum interferes with short-term memory of visual sequences. Sci Rep. 2018;8(1):1–8.

    Article  Google Scholar 

  14. Ferrari C, Ciricugno A, Battelli L, Grossman ED, Cattaneo Z. Distinct cerebellar regions for body motion discrimination. Soc Cogn Affect Neurosci. 2021a.

  15. Ferrari C, Ciricugno A, Urgesi C, Cattaneo Z. Cerebellar contribution to emotional body language perception: a TMS study. Soc Cogn Affect Neurosci. 2021b.

  16. Ferrari C, Fiori F, Suchan B, Plow EB, Cattaneo Z. TMS over the posterior cerebellum modulates motor cortical excitability in response to facial emotional expressions. Eur J Neurosci. 2021c.

  17. Ferrari C, Oldrati V, Gallucci M, Vecchi T, Cattaneo Z. The role of the cerebellum in explicit and incidental processing of facial emotional expressions: a study with transcranial magnetic stimulation. Neuroimage. 2018;169:256–64.

    Article  PubMed  Google Scholar 

  18. Ferrucci R, Giannicola G, Rosa M, Fumagalli M, Boggio PS, Hallett M, et al. Cerebellum and processing of negative facial emotions: cerebellar transcranial DC stimulation specifically enhances the emotional recognition of facial anger and sadness. Cogn Emot. 2012;26(5):786–99.

    Article  PubMed  Google Scholar 

  19. Heleven E, van Dun K, De Witte S, Baeken C, Van Overwalle F. The role of the cerebellum in social and non-social action sequences: a preliminary LF-rTMS study. Front Hum Neurosci Brain Imaging Stimul. 2021.

  20. Newstead S, Young H, Benton D, Jiga-Boy G, Sienz MLA, Clement RM, Boy F. Acute and repetitive fronto-cerebellar tDCS stimulation improves mood in non-depressed participants. Exp Brain Res. 2018;236(1):83–97.

    Article  PubMed  Google Scholar 

  21. Oldrati V, Ferrari E, Butti N, Cattaneo Z, Borgatti R, Urgesi C, Finisguerra A. How social is the cerebellum? Exploring the effects of cerebellar transcranial direct current stimulation on the prediction of social and physical events. Brain Struct Funct. 2021.

  22. Oliver R, Opavsky R, Vyslouzil M, Greenwood R, Rothwell JC. The role of the cerebellum in ‘real’and ‘imaginary’line bisection explored with 1-Hz repetitive transcranial magnetic stimulation. Eur J Neurosci. 2011;33(9):1724–32.

    Article  PubMed  Google Scholar 

  23. Gamond L, Ferrari C, La Rocca S, Cattaneo Z. Dorsomedial prefrontal cortex and cerebellar contribution to in-group attitudes: a transcranial magnetic stimulation study. Eur J Neurosci. 2017;45(7):932–9.

    Article  PubMed  Google Scholar 

  24. Schmahmann JD, Doyon J, McDonald D, Holmes C, Lavoie K, Hurwitz AS, et al. Three-dimensional MRI atlas of the human cerebellum in proportional stereotaxic space. Neuroimage. 1999;10(3):233–60.

    Article  CAS  PubMed  Google Scholar 

  25. Schutter DJ, Enter D, Hoppenbrouwers SS. High-frequency repetitive transcranial magnetic stimulation to the cerebellum and implicit processing of happy facial expressions. J Psychiatry Neurosci. 2009;34(1):60–5.

    PubMed  PubMed Central  Google Scholar 

  26. Schutter DJ, van Honk J, d’Alfonso AA, Peper JS, Panksepp J. High frequency repetitive transcranial magnetic over the medial cerebellum induces a shift in the prefrontal electroencephalography gamma spectrum: a pilot study in humans. Neurosci Lett. 2003;336(2):73–6.

    Article  CAS  PubMed  Google Scholar 

  27. Schutter DJ, van Honk J. The cerebellum in emotion regulation: a repetitive transcranial magnetic stimulation study. Cerebellum. 2009;8(1):28–34.

    Article  PubMed  Google Scholar 

  28. Rothwell J. Transcranial brain stimulation: past and future. Brain Neurosci Adv. 2018;2:1–4.

    Article  Google Scholar 

  29. Walsh V, Pascual-Leone A. Transcranial magnetic stimulation: a neurochronometrics of mind. MIT press; 2003.

  30. Sliwinska MW, Vitello S, Devlin JT. Transcranial magnetic stimulation for investigating causal brain-behavioral relationships and their time course. J Vis Exp. (89): 2014.

  31. de Graaf TA, Koivisto M, Jacobs C, Sack AT. The chronometry of visual perception: review of occipital TMS masking studies. Neurosci Biobehav Rev. 2014;45:295–304.

    Article  PubMed  Google Scholar 

  32. Luber B, Lisanby SH. Enhancement of human cognitive performance using transcranial magnetic stimulation (TMS). Neuroimage. 2014;85:961–70.

    Article  PubMed  Google Scholar 

  33. Romei V, Chiappini E, Hibbard PB, Avenanti A. Empowering reentrant projections from V5 to V1 boosts sensitivity to motion. Curr Biol. 2016;26(16):2155–60.

    Article  CAS  PubMed  Google Scholar 

  34. Silvanto J, Cattaneo Z. Common framework for “virtual lesion” and state-dependent TMS: the facilitatory/suppressive range model of online TMS effects on behavior. Brain Cogn. 2017;119:32–8.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Silvanto J, Cattaneo Z. Nonlinear interaction between stimulation intensity and initial brain state: evidence for the facilitatory/suppressive range model of online TMS effects. Neurosci Lett. 2021;742:135538.

    Article  CAS  PubMed  Google Scholar 

  36. Stagg CJ, Antal A, Nitsche MA. Physiology of transcranial direct current stimulation. J ECT. 2018;34(3):144–52.

    Article  PubMed  Google Scholar 

  37. Jacobson L, Koslowsky M, Lavidor M. tDCS polarity effects in motor and cognitive domains: a meta-analytical review. Exp Brain Res. 2012;216(1):1–10.

    Article  PubMed  Google Scholar 

  38. Benwell CSY, Learmonth G, Miniussi C, Harvey M, Thut G. Non-linear effects of transcranial direct current stimulation as a function of individual baseline performance: evidence from biparietal tDCS influence on lateralized attention bias. Cortex. 2015;69:152–65.

    Article  PubMed  Google Scholar 

  39. van Dun K, Bodranghien FCAA, Mariën P, Manto MU. tDCS of the cerebellum: Where do we stand in 2016? Technical issues and critical review of the literature. Frontiers in Human Neuroscience. 2016;10:Article 199.

    PubMed  Google Scholar 

  40. Rahman A, Toshev PK, Bikson M. Polarizing cerebellar neurons with transcranial Direct Current Stimulation. Clin Neurophysiol. 2014;125:435–8.

    Article  PubMed  Google Scholar 

  41. Oldrati V, Schutter DJLG. Targeting the human cerebellum with transcranial direct current stimulation to modulate behavior: a meta-analysis. Cerebellum. 2018;17(2):228–36.

    Article  PubMed  Google Scholar 

  42. Beynel L, Appelbaum LG, Luber B, Crowell CA, Hilbig SA, Lim W, et al. Effects of online repetitive transcranial magnetic stimulation (rTMS) on cognitive processing: a meta-analysis and recommendations for future studies. Neurosci Biobehav Rev. 2019;107:47–58.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Thair H, Holloway AL, Newport R, Smith AD. Transcranial direct current stimulation (tDCS): a beginner’s guide for design and implementation. Front Neurosci. 2017;11:641.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Jamil A, Batsikadze G, Kuo HI, Labruna L, Hasan A, Paulus W, Nitsche MA. Systematic evaluation of the impact of stimulation intensity on neuroplastic after-effects induced by transcranial direct current stimulation. J Physiol. 2017;595(4):1273–88.

    Article  CAS  PubMed  Google Scholar 

  45. Bergmann TO, Karabanov A, Hartwigsen G, Thielscher A, Siebner HR. Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: current approaches and future perspectives. Neuroimage. 2016;140:4–19.

    Article  PubMed  Google Scholar 

  46. Callejón-Leblic MA, Miranda PC. A computational parcellated brain model for electric field analysis in transcranial direct current stimulation. Brain Hum Body Model. 2020;2020:81.

    Google Scholar 

  47. Deng ZD, Lisanby SH, Peterchev AV. Electric field depth–focality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs. Brain Stimul. 2013;6(1):1–13.

    Article  PubMed  Google Scholar 

  48. Hardwick RM, Lesage E, Miall RC. Cerebellar transcranial magnetic stimulation: the role of coil geometry and tissue depth. Brain Stimul. 2014;7(5):643–9.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Gomez-Tames J, Sugiyama Y, Laakso I, Tanaka S, Koyama S, Sadato N, Hirata A. Effect of microscopic modeling of skin in electrical and thermal analysis of transcranial direct current stimulation. Phys Med Biol. 2016;61(24):8825.

    Article  PubMed  Google Scholar 

  50. Ramaraju S, Roula MA, McCarthy PW. Modelling the effect of electrode displacement on transcranial direct current stimulation (tDCS). J Neural Eng. 2018;15(1):016019.

    Article  PubMed  Google Scholar 

  51. Parazzini M, Rossi E, Ferrucci R, Liorni I, Priori A, Ravazzani P. Modelling the electric field and the current density generated by cerebellar transcranial DC stimulation in humans. Clin Neurophysiol. 2014;125(3):577–84.

    Article  PubMed  Google Scholar 

  52. Fiocchi S, Ravazzani P, Priori A, Parazzini M. Cerebellar and spinal direct current stimulation in children: computational modeling of the induced electric field. Front Hum Neurosci. 2016;10:522.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Rezaee Z, Dutta A. Cerebellar lobules optimal stimulation (CLOS): a computational pipeline to optimize cerebellar lobule-specific electric field distribution. Front Neurosci. 2019;13:266.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Zhong X, Rastogi P, Wang Y, Lee EG, Jiles DC. Investigating the role of coil designs and anatomical variations in cerebellar TMS. IEEE Trans Magn. 2019;55(7):1–5.

    Article  CAS  Google Scholar 

  55. Fomenko A, Neudorfer C, Dallapiazza RF, Kalia SK, Lozano AM. Low-intensity ultrasound neuromodulation: an overview of mechanisms and emerging human applications. Brain Stimul. 2018;11(6):1209–17.

    Article  PubMed  Google Scholar 

  56. Asan AS, Kang Q, Oralkan Ö, Sahin M. Entrainment of cerebellar Purkinje cell spiking activity using pulsed ultrasound stimulation. Brain Stimulation. 2021;14(3):598–606.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Baek H, Pahk KJ, Kim MJ, Youn I, Kim H. Modulation of cerebellar cortical plasticity using low-intensity focused ultrasound for poststroke sensorimotor function recovery. Neurorehabil Neural Repair. 2018;32(9):777–87.

    Article  PubMed  Google Scholar 

  58. Baek H, Sariev A, Kim MJ, Lee H, Kim J, Kim H. A neuroprotective brain stimulation for vulnerable cerebellar Purkinje cell after ischemic stroke: a study with low-intensity focused ultrasound. In 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE; 2018: pp. 4744–4747.

  59. Baek H, Sariev A, Lee S, Dong SY, Royer S, Kim H. Deep cerebellar low-intensity focused ultrasound stimulation restores interhemispheric balance after ischemic stroke in mice. IEEE Trans Neural Syst Rehabil Eng. 2020;28(9):2073–9.

    Article  PubMed  Google Scholar 

  60. Molenberghs P, Johnson H, Henry JD, Mattingley JB. Understanding the minds of others: a neuroimaging meta-analysis. Neurosci Biobehav Rev. 2016;65:276–91.

    Article  PubMed  Google Scholar 

  61. Schurz M, Radua J, Aichhorn M, Richlan F, Perner J. Fractionating theory of mind: a meta-analysis of functional brain imaging studies. Neurosci Biobehav Rev. 2014;42:9–34.

    Article  PubMed  Google Scholar 

  62. Van Overwalle F. Social cognition and the brain: a meta-analysis. Hum Brain Mapp. 2009;30(3):829–58.

    Article  PubMed  Google Scholar 

  63. Van Overwalle F, Baetens K. Understanding others’ actions and goals by mirror and mentalizing systems: a meta-analysis. Neuroimage. 2009;48(3):564–84.

    Article  PubMed  Google Scholar 

  64. Van Overwalle F, Baetens K, Mariën P, Vandekerckhove M. Social cognition and the cerebellum: a meta-analysis of over 350 fMRI studies. Neuroimage. 2014;86:554–72.

    Article  PubMed  Google Scholar 

  65. Badura A, Verpeut JL, Metzger JW, Pereira TD, Pisano TJ, Deverett B, Wang SS. Normal cognitive and social development require posterior cerebellar activity. Elife. 2018;7:3e6401.

    Article  Google Scholar 

  66. Heleven E, van Dun K, Van Overwalle F. The posterior cerebellum is involved in constructing social action sequences: an fMRI study. Sci Rep. 2019;9(1):11110.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Van Overwalle F, Manto M, Cattaneo Z, Clausi S, Ferrari C, Gabrieli JDEE, et al. Consensus paper: cerebesllum and social cognition. Cerebellum. 2020;19(6):833–68.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Van Overwalle F, De Coninck S, Heleven E, Perrotta G, Taib NO, Ben M, M., & Mariën, P. . The role of the cerebellum in reconstructing social action sequences: a pilot study. Soc Cogn Affect Neurosci. 2019;14(5):549–58.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Van Overwalle F, Van de Steen F, van Dun K, Heleven E. Connectivity between the cerebrum and cerebellum during social and non-social sequencing using dynamic causal modelling. Neuroimage. 2020;206:116326.

    Article  PubMed  Google Scholar 

  70. Leggio MG, Molinari M. Cerebellar sequencing: a trick for predicting the future. Cerebellum. 2015;14(1):35–8.

    Article  CAS  PubMed  Google Scholar 

  71. Ma Q, Heleven E, Funghi G, Pu M, Deroost N, Van Overwalle F. Implicit learning of true and false belief sequences. 2021. Unpublished Manuscript.

  72. Pu M, Heleven E, Delplanque J, Gibert N, Ma Q, Funghi G, Van Overwalle F. The posterior cerebellum supports the explicit sequence learning linked to trait attribution. Cogn Affect Behav Neurosci. 2020;20(4):798–815.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Van Overwalle F, Manto M, Leggio M, Delgado-García JM. The sequencing process generated by the cerebellum crucially contributes to social interactions. Med Hypotheses. 2019;128:33–42.

    Article  PubMed  Google Scholar 

  74. Siman-Tov T, Granot RY, Shany O, Singer N, Hendler T, Gordon CR. Is there a prediction network? Meta-analytic evidence for a cortical-subcortical network likely subserving prediction. Neurosci Biobehav Rev. 2019;105:262–75.

    Article  PubMed  Google Scholar 

  75. Miall RC, Weir DJ, Wolpert DM, Stein JF. Is the cerebellum a smith predictor? J Mot Behav. 1993;25(3):203–16.

    Article  CAS  PubMed  Google Scholar 

  76. Tanaka H, Ishikawa T, Kakei S. Neural evidence of the cerebellum as a state predictor. Cerebellum. 2019;18(3):349–71.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Langdon R, Coltheart M. Mentalising, schizotypy, and schizophrenia. Cognition. 1999;71:43–71.

    Article  CAS  PubMed  Google Scholar 

  78. Cattaneo L, Fasanelli M, Andreatta O, Bonifati DM, Barchiesi G, Caruana F. Your actions in my cerebellum: subclinical deficits in action observation in patients with unilateral chronic cerebellar stroke. Cerebellum. 2012;11(1):264–71.

    Article  PubMed  Google Scholar 

  79. Leggio MG, Tedesco AM, Chiricozzi FR, Clausi S, Orsini A, Molinari M. Cognitive sequencing impairment in patients with focal or atrophic cerebellar damage. Brain. 2008;131(5):1332–43.

    Article  CAS  PubMed  Google Scholar 

  80. Van Overwalle F, Van de Steen F, Mariën P. Dynamic causal modeling of the effective connectivity between the cerebrum and cerebellum in social mentalizing across five studies. Cogn Affect Behav Neurosci. 2019;19(1):211–23.

    Article  PubMed  Google Scholar 

  81. Silvanto J, Bona S, Marelli M, Cattaneo Z. On the mechanisms of Transcranial Magnetic Stimulation (TMS): how brain state and baseline performance level determine behavioral effects of TMS. Front Psychol. 2018;9:741.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Gentsch A, Weber A, Synofzik M, Vosgerau G, Schütz-Bosbach S. Towards a common framework of grounded action cognition: relating motor control, perception and cognition. Cognition. 2016;146:81–9.

    Article  PubMed  Google Scholar 

  83. Bach P, Schenke KC. Predictive social perception: towards a unifying framework from action observation to person knowledge. Social and Personality Psychology Compass. 2017;11(7):e12312.

    Article  Google Scholar 

  84. Hinton P. Implicit stereotypes and the predictive brain: cognition and culture in “biased” person perception. Palgrave Communications. 2017;3(1):1–9.

    Article  Google Scholar 

  85. Hehman E, Ingbretsen ZA, Freeman JB. The neural basis of stereotypic impact on multiple social categorization. Neuroimage. 2014;101:704–11.

    Article  PubMed  Google Scholar 

  86. Ruckmann J, Bodden M, Jansen A, Kircher T, Dodel R, Rief W. How pain empathy depends on ingroup/outgroup decisions: a functional magnet resonance imaging study. Psychiatry Res Neuroimaging. 2015;234(1):57–65.

    Article  Google Scholar 

  87. Van Overwalle F, Mariën P. Functional connectivity between the cerebrum and cerebellum in social cognition: a multi-study analysis. Neuroimage. 2016;124:248–55.

    Article  PubMed  Google Scholar 

  88. Pavlova MA. Biological motion processing as a hallmark of social cognition. Cereb Cortex. 2012;22(5):981–95.

    Article  PubMed  Google Scholar 

  89. Sokolov AA, Gharabaghi A, Tatagiba MS, Pavlova M. Cerebellar engagement in an action observation network. Cereb Cortex. 2010;20(2):486–91.

    Article  PubMed  Google Scholar 

  90. Sokolov AA, Zeidman P, Erb M, Ryvlin P, Friston KJ, Pavlova MA. Structural and effective brain connectivity underlying biological motion detection. Proc Natl Acad Sci. 2018;115(51):E12034–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Grossman ED, Battelli L, Pascual-Leone A. Repetitive TMS over posterior STS disrupts perception of biological motion. Vision Res. 2005;45(22):2847–53.

    Article  PubMed  Google Scholar 

  92. Kawai Y, Nagai Y, Asada M. Prediction error in the PMd as a criterion for biological motion discrimination: a computational account. IEEE Trans Cogn Dev Syst. 2017;10(2):237–49.

    Article  Google Scholar 

  93. Sokolov AA, Miall RC, Ivry RB. The cerebellum: adaptive prediction for movement and cognition. Trends Cogn Sci. 2017;21(5):313–32.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Hoche F, Guell X, Vangel MG, Sherman JC, Schmahmann JD. The cerebellar cognitive affective/Schmahmann syndrome scale. Brain. 2018;141(1):248–70.

    Article  PubMed  Google Scholar 

  95. Schmahmann JD. The cerebellum and cognition. Neurosci Lett. 2019;688:62–75.

    Article  CAS  PubMed  Google Scholar 

  96. Nashold BS, Slaughter DG. Effects of stimulating or destroying the deep cerebellar regions in man. J Neurosurg. 1969;31(2):172–86.

    Article  PubMed  Google Scholar 

  97. Heath RG. Modulation of emotion with a brain pacemaker: treatment for intractable psychiatric illness. J Nerv Ment Dis. 1977;165(5):300–17.

    Article  CAS  PubMed  Google Scholar 

  98. Jackman SL, Chen CH, Offermann HL, Drew IR, Harrison BM, Bowman AM, et al. Cerebellar Purkinje cell activity modulates aggressive behavior. Elife. 2020;9:e53229.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Murphy DN, Boggio P, Fregni F. Transcranial direct current stimulation as a therapeutic tool for the treatment of major depression: insights from past and recent clinical studies. Curr Opin Psychiatry. 2009;22(3):306–11.

    Article  PubMed  Google Scholar 

  100. Barrett LF, Quigley KS, Hamilton P. An active inference theory of allostasis and interoception in depression. Philos Trans R Soc B Biol Sci. 2016;371(1708):20160011.

    Article  Google Scholar 

  101. Schutter DJ. A cerebellar framework for predictive coding and homeostatic regulation in depressive disorder. Cerebellum. 2016;15(1):30–3.

    Article  CAS  PubMed  Google Scholar 

  102. Schutter DJ. The cerebellum in emotions and psychopathology. London: Taylor & Francis; 2020.

    Book  Google Scholar 

  103. Hilber P, Cendelin J, Le Gall A, Machado ML, Tuma J, Besnard S. Cooperation of the vestibular and cerebellar networks in anxiety disorders and depression. Prog Neuropsychopharmacol Biol Psychiatry. 2019;89:310–21.

    Article  PubMed  Google Scholar 

  104. Kube T, Schwarting R, Rozenkrantz L, Glombiewski JA, Rief W. Distorted cognitive processes in major depression: a predictive processing perspective. Biol Psychiat. 2020;87(5):388–98.

    Article  PubMed  Google Scholar 

  105. Habas C. Research note: a resting-state, cerebello-amygdaloid intrinsically connected network. Cereb Ataxias. 2018;5(1):1–4.

    Google Scholar 

  106. Schutter DJ. The cerebello-hypothalamic–pituitary–adrenal axis dysregulation hypothesis in depressive disorder. Med Hypotheses. 2012;79(6):779–83.

    Article  CAS  PubMed  Google Scholar 

  107. Habas C, Manto M. Probing the neuroanatomy of the cerebellum using tractography. In: Handbook of clinical neurology, vol. 154. Elsevier; 2018. pp. 235–249.

  108. Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon V, Greicius MD. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci. 2009;29(26):8586–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci. 2007;27(9):2349–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Pierce JE, Péron J. The basal ganglia and the cerebellum in human emotion. Soc Cogn Affect Neurosci. 2020.

  111. Lopez RB, Denny BT, Fagundes CP. Neural mechanisms of emotion regulation and their role in endocrine and immune functioning: a review with implications for treatment of affective disorders. Neurosci Biobehav Rev. 2018;95:508–14.

    Article  CAS  PubMed  Google Scholar 

  112. Klaus J, Schutter DJ. Functional topography of anger and aggression in the human cerebellum. NeuroImage. 2020;226:117582.

    Article  PubMed  Google Scholar 

  113. Grezes J, Pichon S, De Gelder B. Perceiving fear in dynamic body expressions. Neuroimage. 2007;35(2):959–67.

    Article  CAS  PubMed  Google Scholar 

  114. Baumann O, Mattingley JB. Functional topography of primary emotion processing in the human cerebellum. Neuroimage. 2012;61(4):805–11.

    Article  PubMed  Google Scholar 

  115. Park JY, Gu BM, Kang DH, Shin YW, Choi CH, Lee JM, Kwon JS. Integration of cross-modal emotional information in the human brain: an fMRI study. Cortex. 2010;46(2):161–9.

    Article  PubMed  Google Scholar 

  116. Schraa-Tam CK, Rietdijk WJ, Verbeke WJ, Dietvorst RC, Van Den Berg WE, Bagozzi RP, De Zeeuw CI. fMRI activities in the emotional cerebellum: a preference for negative stimuli and goal-directed behavior. The Cerebellum. 2012;11(1):233–45.

    Article  PubMed  Google Scholar 

  117. De Gelder B, Snyder J, Greve D, Gerard G, Hadjikhani N. Fear fosters flight: a mechanism for fear contagion when perceiving emotion expressed by a whole body. Proc Natl Acad Sci. 2004;101(47):16701–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Fernandez L, Major BP, Teo WP, Byrne LK, Enticott PG. Assessing cerebellar brain inhibition (CBI) via transcranial magnetic stimulation (TMS): a systematic review. Neurosci Biobehav Rev. 2018;86:176–206.

    Article  PubMed  Google Scholar 

  119. Kelly RM, Strick PL. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci. 2003;23(23):8432–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Casiraghi L, Alahmadi AA, Monteverdi A, Palesi F, Castellazzi G, Savini G, et al. I see your effort: force-related BOLD effects in an extended action execution–observation network involving the cerebellum. Cereb Cortex. 2019;29(3):1351–68.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46(7):831–44.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Fernandez L, Major BP, Teo WP, Byrne LK, Enticott PG. The impact of stimulation intensity and coil type on reliability and tolerability of cerebellar brain inhibition (CBI) via dual-coil TMS. Cerebellum. 2018;17(5):540–9.

    Article  PubMed  Google Scholar 

  123. D’Mello AM, Turkeltaub PE, Stoodley CJ. Cerebellar tDCS modulates neural circuits during semantic prediction: a combined tDCS-fMRI study. J Neurosci. 2017;37(6):1604–13.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Lesage E, Hansen PC, Miall RC. Right lateral cerebellum represents linguistic predictability. J Neurosci. 2017;37(26):6231–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Cattaneo Z, Renzi C, Casali S, Silvanto J, Vecchi T, Papagno C, D’Angelo E. Cerebellar vermis plays a causal role in visual motion discrimination. Cortex. 2014;58:272–80.

    Article  PubMed  Google Scholar 

  126. Guell X, Gabrieli JD, Schmahmann JD. Triple representation of language, working memory, social and emotion processing in the cerebellum: convergent evidence from task and seed-based resting-state fMRI analyses in a single large cohort. Neuroimage. 2018;172:437–49.

    Article  PubMed  Google Scholar 

  127. Klein AP, Ulmer JL, Quinet SA, Mathews V, Mark LP. Nonmotor functions of the cerebellum: an introduction. Am J Neuroradiol. 2016;37(6):1005–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Timmann D, Drepper J, Frings M, Maschke M, Richter S, Gerwig MEEA, Kolb FP. The human cerebellum contributes to motor, emotional and cognitive associative learning A review. Cortex. 2010;46(7):845–57.

    Article  CAS  PubMed  Google Scholar 

  129. Sokolov AA, Erb M, Gharabaghi A, Grodd W, Tatagiba MS, Pavlova MA. Biological motion processing: the left cerebellum communicates with the right superior temporal sulcus. Neuroimage. 2012;59(3):2824–30.

    Article  PubMed  Google Scholar 

  130. Sokolov AA, Erb M, Grodd W, Pavlova MA. Structural loop between the cerebellum and the superior temporal sulcus: evidence from diffusion tensor imaging. Cereb Cortex. 2014;24(3):626–32.

    Article  PubMed  Google Scholar 

  131. Wang D, Buckner RL, Liu H. Cerebellar asymmetry and its relation to cerebral asymmetry estimated by intrinsic functional connectivity. J Neurophysiol. 2013;109(1):46–57.

    Article  CAS  PubMed  Google Scholar 

  132. Guell X, Schmahmann JD, Gabrieli JD, Ghosh SS. Functional gradients of the cerebellum Elife. 2018;7:e36652.

    PubMed  Google Scholar 

  133. Keren-Happuch E, Chen SHA, Ho MHR, Desmond JE. A meta-analysis of cerebellar contributions to higher cognition from PET and fMRI studies. Hum Brain Mapp. 2014;35(2):593.

    Article  Google Scholar 

  134. Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage. 2009;44(2):489–501.

    Article  PubMed  Google Scholar 

  135. Silvanto J, Cattaneo Z. State-dependent Transcranial Magnetic Stimulation (TMS) protocols. In: Transcranial Magnetic Stimulation. Humana Press: New York; 2014. pp. 153–176.

  136. Decroix J, Borgomaneri S, Kalénine S, Avenanti A. State-dependent TMS of inferior frontal and parietal cortices highlights integration of grip configuration and functional goals during action recognition. Cortex. 2020;132:51–62.

    Article  PubMed  Google Scholar 

  137. Mazzoni N, Jacobs C, Venuti P, Silvanto J, Cattaneo L. State-dependent TMS reveals representation of affective body movements in the anterior intraparietal cortex. J Neurosci. 2017;37(30):7231–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Halko MA, Farzan F, Eldaief MC, Schmahmann JD, Pascual-Leone A. Intermittent theta-burst stimulation of the lateral cerebellum increases functional connectivity of the default network. J Neurosci. 2014;34(36):12049–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Du X, Rowland LM, Summerfelt A, Choa FS, Wittenberg GF, Wisner K, et al. Cerebellar-stimulation evoked prefrontal electrical synchrony is modulated by GABA. Cerebellum. 2018;17(5):550–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Schutter DJ, van Honk J. An electrophysiological link between the cerebellum, cognition and emotion: frontal theta EEG activity to single-pulse cerebellar TMS. Neuroimage. 2006;33(4):1227–31.

    Article  PubMed  Google Scholar 

  141. Romei V, Thut G, Silvanto J. Information-based approaches of noninvasive transcranial brain stimulation. Trends Neurosci. 2016;39(11):782–95.

    Article  CAS  PubMed  Google Scholar 

  142. Zibman S, Daniel E, Alyagon U, Etkin A, Zangen A. Interhemispheric cortico-cortical paired associative stimulation of the prefrontal cortex jointly modulates frontal asymmetry and emotional reactivity. Brain Stimul. 2019;12(1):139–47.

    Article  PubMed  Google Scholar 

  143. Pavon JH, Schneider-Garces N, Begnoche J, Raij T. Effects of paired associative stimulation asynchrony on modulating cortico-cortical connectivity. Brain Stimul. 2019;12(2):582.

    Article  Google Scholar 

  144. Chiappini E, Silvanto J, Hibbard PB, Avenanti A, Romei V. Strengthening functionally specific neural pathways with transcranial brain stimulation. Curr Biol. 2018;28(13):R735–6.

    Article  CAS  PubMed  Google Scholar 

  145. Thut G, Miniussi C. New insights into rhythmic brain activity from TMS–EEG studies. Trends Cogn Sci. 2009;13(4):182–9.

    Article  PubMed  Google Scholar 

  146. Albouy P, Baillet S, Zatorre RJ. Driving working memory with frequency-tuned noninvasive brain stimulation. Ann N Y Acad Sci. 2018;1423(1):126–37.

    Article  Google Scholar 

  147. Albouy P, Weiss A, Baillet S, Zatorre RJ. Selective entrainment of theta oscillations in the dorsal stream causally enhances auditory working memory performance. Neuron. 2017;94(1):193–206.

    Article  CAS  PubMed  Google Scholar 

  148. Kar K, Krekelberg B. Transcranial electrical stimulation over visual cortex evokes phosphenes with a retinal origin. J Neurophysiol. 2012;108(8):2173–8.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Klimesch W, Sauseng P, Gerloff C. Enhancing cognitive performance with repetitive transcranial magnetic stimulation at human individual alpha frequency. Eur J Neurosci. 2003;17(5):1129–33.

    Article  PubMed  Google Scholar 

  150. Laakso I, Hirata A. Computational analysis shows why transcranial alternating current stimulation induces retinal phosphenes. J Neural Eng. 2013;10(4):046009.

    Article  PubMed  Google Scholar 

  151. Schutter DJ. Cutaneous retinal activation and neural entrainment in transcranial alternating current stimulation: a systematic review. Neuroimage. 2016;140:83–8.

    Article  PubMed  Google Scholar 

  152. Schutter DJ, Hortensius R. Retinal origin of phosphenes to transcranial alternating current stimulation. Clin Neurophysiol. 2010;121(7):1080–4.

    Article  PubMed  Google Scholar 

  153. Gooding-Williams G, Wang H, Kessler K. THETA-rhythm makes the world go round: dissociative effects of TMS theta versus alpha entrainment of right pTPJ on embodied perspective transformations. Brain Topogr. 2017;30(5):561–4.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Spampinato D, Avci E, Rothwell J, Rocchi L. Frequency-dependent modulation of cerebellar excitability during the application of non-invasive alternating current stimulation. Brain Stimul. 2021;14(2):277–83.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Dave S, VanHaerents S, Voss JL. Cerebellar theta and beta noninvasive stimulation rhythms differentially influence episodic memory versus semantic prediction. J Neurosci. 2020;40(38):7300–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Courtemanche R, Robinson JC, Aponte DI. Linking oscillations in cerebellar circuits. Front Neural Circuits. 2013;7:125.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Andersen LM, Jerbi K, Dalal SS. Can EEG and MEG detect signals from the human cerebellum? NeuroImage. 2020; 116817.

  158. Courtemanche R, Lamarre Y. Local field potential oscillations in primate cerebellar cortex: synchronization with cerebral cortex during active and passive expectancy. J Neurophysiol. 2005;93(4):2039–52.

    Article  PubMed  Google Scholar 

  159. Soteropoulos DS, Baker SN. Cortico-cerebellar coherence during a precision grip task in the monkey. J Neurophysiol. 2006;95(2):1194–206.

    Article  PubMed  Google Scholar 

  160. Giustiniani A, Tarantino V, Bracco, M, Bonaventura RE, Oliveri M. Functional role of cerebellar gamma frequency in motor sequences learning: a tACS study. Cerebellum. 2021;1–9.

  161. Styliadis C, Ioannides AA, Bamidis PD, Papadelis C. Distinct cerebellar lobules process arousal, valence and their interaction in parallel following a temporal hierarchy. Neuroimage. 2015;110:149–61.

    Article  PubMed  Google Scholar 

  162. Middleton SJ, Racca C, Cunningham MO, Traub RD, Monyer H, Knöpfel T, et al. High-frequency network oscillations in cerebellar cortex. Neuron. 2008;58(5):763–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Buzsáki G, Draguhn A. 2004 Neuronal oscillations in cortical networks. Science. 1926;304(5679):1929.

    Google Scholar 

  164. Samuelsson JG, Sundaram P, Khan S, Sereno MI, Hämäläinen MS. Detectability of cerebellar activity with magnetoencephalography and electroencephalography. Hum Brain Mapp. 2020;41(9):2357–72.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Antal A, Herrmann CS. Transcranial alternating current and random noise stimulation: possible mechanisms. Neural Plastici. 2016; 2016.

  166. Carvalho S, Leite J, Fregni F. Transcranial alternating current stimulation and transcranial random noise stimulation. In: Neuromodulation. Academic Press; 2018. pp. 1611–1617.

  167. Evans C, Banissy MJ, Charlton RA. The efficacy of transcranial random noise stimulation (tRNS) on mood may depend on individual differences including age and trait mood. Clin Neurophysiol. 2018;129(6):1201–8.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Moret B, Donato R, Nucci M, Cona G, Campana G. Transcranial random noise stimulation (tRNS): a wide range of frequencies is needed for increasing cortical excitability. Sci Rep. 2019;9(1):1–8.

    Article  CAS  Google Scholar 

  169. Murphy OW, Hoy KE, Wong D, Bailey NW, Fitzgerald PB, Segrave RA. Transcranial random noise stimulation is more effective than transcranial direct current stimulation for enhancing working memory in healthy individuals: behavioural and electrophysiological evidence. Brain Stimul. 2020;13(5):1370–80.

    Article  CAS  PubMed  Google Scholar 

  170. Penton T, Dixon L, Evans LJ, Banissy MJ. Emotion perception improvement following high frequency transcranial random noise stimulation of the inferior frontal cortex. Sci Rep. 2017;7(1):1–7.

    Article  CAS  Google Scholar 

  171. Chang CC, Lin YY, Tzeng NS, Kao YC, Chang HA. Adjunct high-frequency transcranial random noise stimulation over the lateral prefrontal cortex improves negative symptoms of schizophrenia: a randomized, double-blind, sham-controlled pilot study. J Psychiatr Res. 2021;132:151–60.

    Article  PubMed  Google Scholar 

  172. Monastero R, Baschi R, Nicoletti A, Pilati L, Pagano L, Cicero CE, et al. Transcranial random noise stimulation over the primary motor cortex in PD-MCI patients: a crossover, randomized, sham-controlled study. J Neural Transm. 2020;127(12):1589–97.

    Article  PubMed  Google Scholar 

  173. Pitcher D, Walsh V, Yovel G, Duchaine B. TMS evidence for the involvement of the right occipital face area in early face processing. Curr Biol. 2007;17(18):1568–73.

    Article  CAS  PubMed  Google Scholar 

  174. van Dun K, Manto M. Non-invasive cerebellar stimulation: moving towards clinical applications for cerebellar and extra-cerebellar disorders. Cerebellum. 2018;17:259–63.

    Article  PubMed  Google Scholar 

  175. Manto M, Kakei S, Mitoma H. The critical need to develop tools assessing cerebellar reserve for the delivery and assessment of non-invasive cerebellar stimulation. Cereb Ataxias. 2021;8(1):1–4.

    Google Scholar 

  176. Miyaguchi S, Otsuru N, Kojima S, Saito K, Inukai Y, Masaki M, Onishi H. Transcranial alternating current stimulation with gamma oscillations over the primary motor cortex and cerebellar hemisphere improved visuomotor performance. Front Behav Neurosci. 2018;12:132.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Miyaguchi S, Otsuru N, Kojima S, Yokota H, Saito K, Inukai Y, Onishi H. Gamma tACS over M1 and cerebellar hemisphere improves motor performance in a phase-specific manner. Neurosci Lett. 2019;694:64–8.

    Article  CAS  PubMed  Google Scholar 

  178. Naro A, Bramanti A, Leo A, Manuli A, Sciarrone F, Russo M, et al. Effects of cerebellar transcranial alternating current stimulation on motor cortex excitability and motor function. Brain Struct Funct. 2017;222(6):2891–906.

    Article  PubMed  Google Scholar 

  179. Woodward ND, Cascio CJ. Resting-state functional connectivity in psychiatric disorders. JAMA Psychiat. 2015;72(8):743–4.

    Article  Google Scholar 

  180. Butti N, Biffi E, Genova C, Romaniello R, Redaelli DF, Reni G, et al. Virtual Reality Social Prediction Improvement and Rehabilitation Intensive Training (VR-SPIRIT) for paediatric patients with congenital cerebellar diseases: study protocol of a randomised controlled trial. Trials. 2020;21(1):1–12.

    Article  Google Scholar 

  181. Cassani R, Novak GS, Falk TH, Oliveira AA. Virtual reality and non-invasive brain stimulation for rehabilitation applications: a systematic review. J Neuroeng Rehabil. 2020;17(1):1–16.

    Article  Google Scholar 

  182. Grimaldi G, Argyropoulos GP, Boehringer A, Celnik P, Edwards MJ, Ferrucci R, et al. Non-invasive cerebellar stimulation—a consensus paper. Cerebellum. 2014;13(1):121–38.

    Article  CAS  PubMed  Google Scholar 

  183. Mitoma H, Buffo A, Gelfo F, Guell X, Fucà E, Kakei S, et al. Consensus paper. Cerebellar reserve: from cerebellar physiology to cerebellar disorders. Cerebellum. 2020;19(1):131–53.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work has been supported by a Bando Ricerca Finalizzata (GR-2016–02363640) by Italian Ministry of Health to ZC and by NWO Innovational research grant VI.C.181.005 to DS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Cattaneo.

Ethics declarations

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cattaneo, Z., Ferrari, C., Ciricugno, A. et al. New Horizons on Non-invasive Brain Stimulation of the Social and Affective Cerebellum. Cerebellum 21, 482–496 (2022). https://doi.org/10.1007/s12311-021-01300-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-021-01300-4

Keywords

Navigation