Skip to main content
Log in

Your Actions in My Cerebellum: Subclinical Deficits in Action Observation in Patients with Unilateral Chronic Cerebellar Stroke

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Empirical evidence indicates that cognitive consequences of cerebellar lesions tend to be mild and less important than the symptoms due to lesions to cerebral areas. By contrast, imaging studies consistently report strong cerebellar activity during tasks of action observation and action understanding. This has been interpreted as part of the automatic motor simulation process that takes place in the context of action observation. The function of the cerebellum as a sequencer during executed movements makes it a good candidate, within the framework of embodied cognition, for a pivotal role in understanding the timing of action sequences. Here, we investigated a cohort of eight patients with chronic, first-ever, isolated, ischemic lesions of the cerebellum. The experimental task consisted in identifying a plausible sequence of pictures from a randomly ordered group of still frames extracted from (a) a complex action performed by a human actor (“biological action” test) or (b) a complex physical event occurring to an inanimate object (“folk physics” test). A group of 16 healthy participants was used as control. The main result showed that cerebellar patients performed significantly worse than controls in both sequencing tasks, but performed much worse in the “biological action” test than in the “folk physics” test. The dissociation described here suggests that observed sequences of simple motor acts seem to be represented differentially from other sequences in the cerebellum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cattaneo L, Rizzolatti G. The mirror neuron system. Arch Neurol. 2009;66:557–60.

    Article  PubMed  Google Scholar 

  2. Fadiga L, Fogassi L, Pavesi G, Rizzolatti G. Motor facilitation during action observation: a magnetic stimulation study. J Neurophysiol. 1995;73:2608–11.

    PubMed  CAS  Google Scholar 

  3. Jeannerod M. Neural simulation of action: a unifying mechanism for motor cognition. NeuroImage. 2001;14:S103–9.

    Article  PubMed  CAS  Google Scholar 

  4. Rizzolatti G, Fadiga L, Fogassi L, Gallese V. The space around us. Science. 1997;277:190–1.

    Article  PubMed  CAS  Google Scholar 

  5. Andres M, Seron X, Olivier E. Contribution of hand motor circuits to counting. J Cogn Neurosci. 2007;19:563–76.

    Article  PubMed  Google Scholar 

  6. Sato M, Cattaneo L, Rizzolatti G, Gallese V. Numbers within our hands: modulation of corticospinal excitability of hand muscles during numerical judgment. J Cogn Neurosci. 2007;19:684–93.

    Article  PubMed  Google Scholar 

  7. Glenberg AM, Sato M, Cattaneo L. Use-induced motor plasticity affects the processing of abstract and concrete language. Curr Biol. 2008;18:R290–1.

    Article  PubMed  CAS  Google Scholar 

  8. Calvo-Merino B, Grezes J, Glaser DE, Passingham RE, Haggard P. Seeing or doing? Influence of visual and motor familiarity in action observation. Curr Biol. 2006;16:1905–10.

    Article  PubMed  CAS  Google Scholar 

  9. Gazzola V, Keysers C. The observation and execution of actions share motor and somatosensory voxels in all tested subjects: single-subject analyses of unsmoothed fmri data. Cereb Cortex. 2008;19:1239–55.

    Article  PubMed  Google Scholar 

  10. Hamilton AF, Wolpert DM, Frith U, Grafton ST. Where does your own action influence your perception of another person's action in the brain? NeuroImage. 2006;29:524–35.

    Article  PubMed  Google Scholar 

  11. Rizzolatti G, Luppino G, Matelli M. The organization of the cortical motor system: new concepts. Electroencephalogr Clin Neurophysiol. 1998;106:283–96.

    Article  PubMed  CAS  Google Scholar 

  12. Davare M, Montague K, Olivier E, Rothwell JC, Lemon RN. Ventral premotor to primary motor cortical interactions during object-driven grasp in humans. Cortex. 2009;45:1050–7.

    Article  PubMed  Google Scholar 

  13. Ehrsson HH, Fagergren A, Jonsson T, Westling G, Johansson RS, Forssberg H. Cortical activity in precision- versus power-grip tasks: an fmri study. J Neurophysiol. 2000;83:528–36.

    PubMed  CAS  Google Scholar 

  14. Grafton ST, Arbib MA, Fadiga L, Rizzolatti G. Localization of grasp representations in humans by positron emission tomography. 2. Observation compared with imagination. Exp Brain Res. 1996;112:103–11.

    Article  PubMed  CAS  Google Scholar 

  15. Avenanti A, Bolognini N, Maravita A, Aglioti SM. Somatic and motor components of action simulation. Curr Biol. 2007;17:2129–35.

    Article  PubMed  CAS  Google Scholar 

  16. Cattaneo L. Tuning of ventral premotor cortex neurons to distinct observed grasp types: a tms-priming study. Exp Brain Res. 2010;207:165–72.

    Article  PubMed  Google Scholar 

  17. Cattaneo L, Barchiesi G, Tabarelli D, Arfeller C, Sato M, Glenberg AM. One's motor performance predictably modulates the understanding of others' actions through adaptation of premotor visuo-motor neurons. Soc Cogn Affect Neurosci. 2010;6:301–10.

    Article  PubMed  Google Scholar 

  18. Cattaneo L, Sandrini M, Schwarzbach J. State-dependent tms reveals a hierarchical representation of observed acts in the temporal, parietal, and premotor cortices. Cereb Cortex. 2010;20:2252–8.

    Article  PubMed  Google Scholar 

  19. Pobric G, Hamilton AF. Action understanding requires the left inferior frontal cortex. Curr Biol. 2006;16:524–9.

    Article  PubMed  CAS  Google Scholar 

  20. Clavagnier S, Prado J, Kennedy H, Perenin MT. How humans reach: distinct cortical systems for central and peripheral vision. Neuroscientist. 2007;13:22–7.

    Article  PubMed  Google Scholar 

  21. Filimon F, Nelson JD, Hagler DJ, Sereno MI. Human cortical representations for reaching: mirror neurons for execution, observation, and imagery. NeuroImage. 2007;37:1315–28.

    Article  PubMed  Google Scholar 

  22. Malfait N, Valyear KF, Culham JC, Anton JL, Brown LE, Gribble PL. Fmri activation during observation of others' reach errors. J Cogn Neurosci. 2010;22:1493–503.

    Article  PubMed  Google Scholar 

  23. Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neurosci. 2009;32:413–34.

    Article  PubMed  CAS  Google Scholar 

  24. Grossman E, Donnelly M, Price R, Pickens D, Morgan V, Neighbor G, et al. Brain areas involved in perception of biological motion. J Cogn Neurosci. 2000;12:711–20.

    Article  PubMed  CAS  Google Scholar 

  25. Vaina LM, Solomon J, Chowdhury S, Sinha P, Belliveau JW. Functional neuroanatomy of biological motion perception in humans. Proc Natl Acad Sci U S A. 2001;98:11656–61.

    Article  PubMed  CAS  Google Scholar 

  26. Frey SH, Gerry VE. Modulation of neural activity during observational learning of actions and their sequential orders. J Neurosci. 2006;26:13194–201.

    Article  PubMed  CAS  Google Scholar 

  27. Gallagher HL, Frith CD. Dissociable neural pathways for the perception and recognition of expressive and instrumental gestures. Neuropsychologia. 2004;42:1725–36.

    Article  PubMed  Google Scholar 

  28. Grezes J, Pichon S, de Gelder B. Perceiving fear in dynamic body expressions. NeuroImage. 2007;35:959–67.

    Article  PubMed  CAS  Google Scholar 

  29. Jokisch D, Troje NF, Koch B, Schwarz M, Daum I. Differential involvement of the cerebellum in biological and coherent motion perception. Eur J Neurosci. 2005;21:3439–46.

    Article  PubMed  Google Scholar 

  30. Sokolov AA, Gharabaghi A, Tatagiba MS, Pavlova M. Cerebellar engagement in an action observation network. Cereb Cortex. 2010;20:486–91.

    Article  PubMed  Google Scholar 

  31. Fazio P, Cantagallo A, Craighero L, D'Ausilio A, Roy AC, Pozzo T, et al. Encoding of human action in broca's area. Brain. 2009;132:1980–8.

    Article  PubMed  Google Scholar 

  32. Jastorff J, Begliomini C, Fabbri-Destro M, Rizzolatti G, Orban GA. Coding observed motor acts: different organizational principles in the parietal and premotor cortex of humans. J Neurophysiol. 2010;104:128–40.

    Article  PubMed  Google Scholar 

  33. World Medical Association General Assembly. Declaration of Helsinki. Ethical principles for medical research involving human subjects. World Med J. 2008;54:122–5.

    Google Scholar 

  34. Bartolo A, Cubelli R, Della Sala S. Cognitive approach to the assessment of limb apraxia. Clin Neuropsychol. 2008;22:27–45.

    Article  PubMed  Google Scholar 

  35. Hamilton M. Rating depressive patients. J Clin Psychiatry. 1980;41:21–4.

    PubMed  CAS  Google Scholar 

  36. Spinnler H, Tognoni G. Standardizzazione e taratura italiana di test neuropsicologici. Ital J Neurol Sci. 1987;6:1–120.

    Google Scholar 

  37. Venturini R, Lombardo Radice M, Imperiali MG. Il ‘colour-word test’ o test di Stroop. Firenze: Giunti Organizzazioni Speciali; 1983.

    Google Scholar 

  38. Golden CJ (1978) Stroop color and word test: a manual for clinical and experimental uses Chicago: Skoelting.

  39. Raven J, Raven JC, Court JH. Manual for Raven's progressive matrices and vocabulary scales. San Antonio: Harcourt Assessment; 2003.

    Google Scholar 

  40. Trouillas P, Takayanagi T, Hallett M, Currier RD, Subramony SH, Wessel K, et al. International cooperative ataxia rating scale for pharmacological assessment of the cerebellar syndrome. The ataxia neuropharmacology committee of the world federation of neurology. J Neurol Sci. 1997;145:205–11.

    Article  PubMed  CAS  Google Scholar 

  41. Molinari M, Chiricozzi FR, Clausi S, Tedesco AM, De Lisa M, Leggio MG. Cerebellum and detection of sequences, from perception to cognition. Cerebellum. 2008;7:611–5.

    Article  PubMed  Google Scholar 

  42. Leggio MG, Tedesco AM, Chiricozzi FR, Clausi S, Orsini A, Molinari M. Cognitive sequencing impairment in patients with focal or atrophic cerebellar damage. Brain. 2008;131:1332–43.

    Article  PubMed  CAS  Google Scholar 

  43. Schmahmann JD. The role of the cerebellum in cognition and emotion: personal reflections since 1982 on the dysmetria of thought hypothesis, and its historical evolution from theory to therapy. Neuropsychol Rev. 2010;20:236–60.

    Article  PubMed  Google Scholar 

  44. Schmahmann JD, Macmore J, Vangel M. Cerebellar stroke without motor deficit: clinical evidence for motor and non-motor domains within the human cerebellum. Neuroscience. 2009;162:852–61.

    Article  PubMed  CAS  Google Scholar 

  45. Leiguarda RC, Marsden CD, Limb apraxias. Higher-order disorders of sensorimotor integration. Brain. 2000;123(Pt 5):860–79.

    Article  PubMed  Google Scholar 

  46. Pazzaglia M, Pizzamiglio L, Pes E, Aglioti SM. The sound of actions in apraxia. Curr Biol. 2008;18:1766–72.

    Article  PubMed  CAS  Google Scholar 

  47. Handel B, Thier P, Haarmeier T. Visual motion perception deficits due to cerebellar lesions are paralleled by specific changes in cerebro-cortical activity. J Neurosci. 2009;29:15126–33.

    Article  PubMed  Google Scholar 

  48. Timmann D, Daum I. How consistent are cognitive impairments in patients with cerebellar disorders? Behav Neurol. 2010;23:81–100.

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. M. Leone for most valuable comments on the manuscript. This work has been realized through the financial support from the Provincia autonoma di Trento and the Fondazione Cassa di Risparmio di Trento e Rovereto.

Conflict of Interest Notification Page

None of the authors report any conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Cattaneo.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

(JPEG 3795 kb)

Supplementary Fig. 2

(JPEG 6783 kb)

Supplementary Table 1

(DOC 55 kb)

Supplementary Table 2

(DOC 109 kb)

Supplementary Table 3

(DOC 95 kb)

Supplementary Table 4

(DOC 43 kb)

Supplementary Table 5

(DOC 44 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cattaneo, L., Fasanelli, M., Andreatta, O. et al. Your Actions in My Cerebellum: Subclinical Deficits in Action Observation in Patients with Unilateral Chronic Cerebellar Stroke. Cerebellum 11, 264–271 (2012). https://doi.org/10.1007/s12311-011-0307-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-011-0307-9

Keywords

Navigation