Skip to main content
Log in

Dance Improves Motor, Cognitive, and Social Skills in Children With Developmental Cerebellar Anomalies

  • Original Article
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

In this multiple single-cases study, we used dance to train sensorimotor synchronization (SMS), motor, and cognitive functions in children with developmental cerebellar anomalies (DCA). DCA are rare dysfunctions of the cerebellum that affect motor and cognitive skills. The cerebellum plays an important role in temporal cognition, including SMS, which is critical for motor and cognitive development. Dancing engages the SMS neuronal circuitry, composed of the cerebellum, the basal ganglia, and the motor cortices. Thus, we hypothesized that dance has a beneficial effect on SMS skills and associated motor and cognitive functions in children with DCA. Seven children (aged 7–11) with DCA participated in a 2-month dance training protocol (3 h/week). A test–retest design protocol with multiple baselines was used to assess children’s SMS skills as well as motor, cognitive, and social abilities. SMS skills were impaired in DCA before the training. The training led to improvements in SMS (reduced variability in paced tapping), balance, and executive functioning (cognitive flexibility), as well as in social skills (social cognition). The beneficial effects of the dance training were visible in all participants. Notably, gains were maintained 2 months after the intervention. These effects are likely to be sustained by enhanced activity in SMS brain networks due to the dance training protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Musselman KE, Stoyanov CT, Marasigan R, Jenkins ME, Konczak J, Morton SM, Bastian AJ. Prevalence of ataxia in children: a systematic review. Neurology. 2014;82(1):80–9. https://doi.org/10.1212/01.wnl.0000438224.25600.6c.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bareš M, Apps R, Avanzino L, Breska A, D’Angelo E, Filip P, … Petter E. A. Consensus paper: decoding the contributions of the cerebellum as a time machine. From neurons to clinical applications. Cerebellum. 2018; 18(2), 266–286. https://doi.org/10.1007/s12311-018-0979-5

  3. Hoche F, Guell X, Sherman JC, Vangel MG, Schmahmann JD. The cerebellar contribution to social cognition. The Cerebellum. 2016;15(6):S23. https://doi.org/10.1002/ana.24247.

    Article  Google Scholar 

  4. Koziol LF, Budding D, Andreasen N, D’Arrigo S, Bulgheroni S, Imamizu H, … Yamazaki T. Consensus paper: the cerebellum’s role in movement and cognition. Cerebellum. 2014; 13(1), 151–177. https://doi.org/10.1007/s12311-013-0511-x.

  5. Manto M, Bower JM, Conforto AB, Delgado-García JM, Da Guarda SNF, Gerwig M, … Timmann D. Consensus paper: roles of the cerebellum in motor control-the diversity of ideas on cerebellar involvement in movement. Cerebellum. 2012; 11(2), 457–487. https://doi.org/10.1007/s12311-011-0331-9.

  6. Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121(4):561–79. https://doi.org/10.1093/brain/121.4.561.

    Article  PubMed  Google Scholar 

  7. Therrien AS, Bastian AJ. The cerebellum as a movement sensor. Neurosci Lett. 2019;688:37–40. https://doi.org/10.1016/j.neulet.2018.06.055.

    Article  CAS  PubMed  Google Scholar 

  8. ten Donkelaar HJ, Lammens M, Wesseling P, Thijssen HOM, Renier WO. Development and developmental disorders of the human cerebellum. J Neurol. 2003;250(09):1025–36. https://doi.org/10.1007/s00415-003-0199-9.

    Article  PubMed  Google Scholar 

  9. Wang VY, Zoghbi HY. Genetic regulation of cerebellar development. Nat Rev Neurosci. 2001;2(7):484–91. https://doi.org/10.1038/35081558.

    Article  CAS  PubMed  Google Scholar 

  10. Brenna V. Patients with cerebellar pathology: rehabilitation of cognitive functions. In Paediatric Neurological Disorders With Cerebellar Involvment—Diagnosis and Management. 2014; 27: 221–234 (John Libbey Eurotext). D’arigo, S; Riva, D; Valente, EM.

  11. Boltshauser E. Cerebellum—small brain but large confusion: a review of selected cerebellar malformations and disruptions. Am J Med Genet. 2004;126(4):376–85. https://doi.org/10.1002/ajmg.a.20662.

    Article  Google Scholar 

  12. Poretti A, Boltshauser E, Doherty D. Cerebellar hypoplasia: differential diagnosis and diagnostic approach. Am J Med Genet C Semin Med Genet. 2014;166(2):211–26. https://doi.org/10.1002/ajmg.c.31398.

    Article  CAS  Google Scholar 

  13. Ryan MM, Engle EC. Acute ataxia in childhood. J Child Neurol. 2003;18:309–16. https://doi.org/10.1177/08830738030180050901.

    Article  PubMed  Google Scholar 

  14. Fogel BL. Childhood cerebellar ataxia. J Child Neurol. 2012;27(9):1138–45. https://doi.org/10.1177/0883073812448231.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Marsden JF. Cerebellar ataxia. In Day BL, Lord SR (Eds.), Handbook of Clinical Neurology. 2018 (pp. 261–281). https://doi.org/10.1016/B978-0-444-63916-5.00017-3.

  16. Bodranghien F, Bastian A, Casali C, Hallett M, Louis ED, Manto M, … van Dun K. Consensus paper: revisiting the symptoms and signs of cerebellar syndrome. Cerebellum. 2016; 15(3), 369–391. https://doi.org/10.1007/s12311-015-0687-3

  17. De Smet HJ, Paquier P, Verhoeven J, Mariën P. The cerebellum: its role in language and related cognitive and affective functions. Brain Lang. 2013;127(3):334–42. https://doi.org/10.1016/j.bandl.2012.11.001.

    Article  PubMed  Google Scholar 

  18. Schmahmann JD. Disorders of the cerebellum. J Neuropsychiatry Clin Neurosci. 2004;16:367–78. https://doi.org/10.1212/wnl.32.7.790.

    Article  PubMed  Google Scholar 

  19. Schmahmann JD, Guell X, Stoodley CJ, Halko MA. The theory and neuroscience of cerebellar cognition. Annu Rev Neurosci. 2019;42:337–64. https://doi.org/10.1146/annurev-neuro-070918-050258.

    Article  CAS  PubMed  Google Scholar 

  20. Bolduc M-E, Limperopoulos C. Neurodevelopmental outcomes in children with cerebellar malformations : a systematic review. Dev Med Child Neurol. 2009;51(4):256–67. https://doi.org/10.1111/j.1469-8749.2008.03224.x.

    Article  PubMed  Google Scholar 

  21. Guell X, Hoche F, Schmahmann JD. Metalinguistic deficits in patients with cerebellar dysfunction: empirical support for the dysmetria of thought theory. Cerebellum. 2015;14(1):50–8. https://doi.org/10.1007/s12311-014-0630-z.

    Article  PubMed  Google Scholar 

  22. Thier P, Markanday A. Role of the vermal cerebellum in visually guided eye movements and visual motion perception. Ann Rev Vision Sci. 2019;5(1):247–68. https://doi.org/10.1146/annurev-vision-091718-015000.

    Article  Google Scholar 

  23. Ackermann H. Cerebellar contributions to speech production and speech perception: psycholinguistic and neurobiological perspectives. Trends Neurosci. 2008;31(6):265–72. https://doi.org/10.1016/j.tins.2008.02.011.

    Article  CAS  PubMed  Google Scholar 

  24. Nowak DA, Topka H, Timmann D, Boecker H, Hermsdörfer J. The role of the cerebellum for predictive control of grasping. Cerebellum. 2007;6(1):7–17. https://doi.org/10.1080/14734220600776379.

    Article  PubMed  Google Scholar 

  25. Ebner TJ, Hewitt AL, Popa LS. What features of limb movements are encoded in the discharge of cerebellar neurons? Cerebellum. 2011;10(4):683–93. https://doi.org/10.1007/s12311-010-0243-0.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bastian AJ. Learning to predict the future: the cerebellum adapts feedforward movement control. Curr Opin Neurobiol. 2006;16(6):645–9. https://doi.org/10.1016/j.conb.2006.08.016.

    Article  CAS  PubMed  Google Scholar 

  27. Braitenberg V, Heck D, Sultan F. The detection and generation of sequences as a key to cerebellar function: experiments and theory. Behav Brain Sci. 1997;20(2):229–77. https://doi.org/10.1017/S0140525X9700143X.

    Article  CAS  PubMed  Google Scholar 

  28. Damm L, Varoqui D, Cochen De Cock V, Dalla Bella S, Bardy B. Why do we move to the beat? A multi-scale approach, from physical principles to brain dynamics. Neurosci Biobehav Rev; 2019. (December). https://doi.org/10.1016/j.neubiorev.2019.12.024.

  29. Molinari M, Leggio MG, De Martin M, Cerasa A, Thaut M. Neurobiology of rhythmic motor entrainment. Ann N Y Acad Sci. 2003;999(1):313–21. https://doi.org/10.1196/annals.1284.042.

    Article  PubMed  Google Scholar 

  30. Molinari M, Leggio MG, Thaut MH. The cerebellum and neural networks for rhythmic sensorimotor synchronization in the human brain. The Cerebellum. 2007;6(1):18–23. https://doi.org/10.1080/14734220601142886.

    Article  PubMed  Google Scholar 

  31. Paquette S, Fujii S, Li HC, Schlaug G. The cerebellum’s contribution to beat interval discrimination. Neuroimage. 2017;163:177–82. https://doi.org/10.1016/j.neuroimage.2017.09.017.

    Article  CAS  PubMed  Google Scholar 

  32. Doyon J, Penhune V, Ungerleider LG. Distinct contribution of the cortico-striatal and cortico-cerebellar systems to motor skill learning. Neuropsychologia. 2003;41(3):252–62. https://doi.org/10.1016/S0028-3932(02)00158-6.

    Article  PubMed  Google Scholar 

  33. Provasi J, Doyère V, Zélanti PS, Kieffer V, Perdry H, El Massioui N, … Droit-Volet S. Disrupted sensorimotor synchronization, but intact rhythm discrimination, in children treated for a cerebellar medulloblastoma. Research in Developmental Disabilities. 2014; 35(9), 2053–2068. https://doi.org/10.1016/j.ridd.2014.04.024.

  34. Schwartze M, Keller PE, Kotz SA. Spontaneous, synchronized, and corrective timing behavior in cerebellar lesion patients. Behav Brain Res. 2016;312:285–93. https://doi.org/10.1016/j.bbr.2016.06.040.

    Article  PubMed  Google Scholar 

  35. Zatorre RJ, Chen JL, Penhune VB. When the brain plays music: auditory-motor interactions in music perception and production. Nat Rev Neurosci. 2007;8(7):547–58. https://doi.org/10.1038/nrn2152.

    Article  CAS  PubMed  Google Scholar 

  36. Repp BH. Sensorimotor synchronization: a review of the tapping literature. Psychon Bull Rev. 2005;12(6):969–92. https://doi.org/10.3758/BF03206433.

    Article  PubMed  Google Scholar 

  37. Repp BH, Su Y-H. Sensorimotor synchronization: a review of recent research (2006–2012). Psychon Bull Rev. 2013;20(3):403–52. https://doi.org/10.3758/s13423-012-0371-2.

    Article  PubMed  Google Scholar 

  38. Dalla Bella S, Farrugia N, Benoit CE, Begel V, Verga L, Harding E, Kotz SA. BAASTA: battery for the assessment of auditory sensorimotor and timing abilities. Behav Res Methods. 2017;49(3):1128–45. https://doi.org/10.3758/s13428-016-0773-6.

    Article  PubMed  Google Scholar 

  39. Molinari M, Chiricozzi FR, Clausi S, Tedesco AM, Lisa MD, Leggio MG. Cerebellum and detection of sequences, from perception to cognition. Cerebellum. 2008;7:611–5. https://doi.org/10.1007/s12311-008-0060-x.

    Article  PubMed  Google Scholar 

  40. Shadmehr R, Smith MA, Krakauer JW. Error correction, sensory prediction, and adaptation in motor control. Annu Rev Neurosci. 2010;33:89–108. https://doi.org/10.1146/annurev-neuro-060909-153135.

    Article  CAS  PubMed  Google Scholar 

  41. Breska A, Ivry RB. Taxonomies of timing: where does the cerebellum fit in? Curr Opin Behav Sci. 2016;8:282–8. https://doi.org/10.1016/j.cobeha.2016.02.034.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Coull J, Nobre A. Dissociating explicit timing from temporal expectation with fMRI. Curr Opin Neurobiol. 2008;18(2):137–44. https://doi.org/10.1016/j.conb.2008.07.011.

    Article  CAS  PubMed  Google Scholar 

  43. Coull JT, Cheng R-K, Meck WH. Neuroanatomical and neurochemical substrates of timing. Neuropsychopharmacology. 2011;36(1):3–25. https://doi.org/10.1038/npp.2010.113.

    Article  PubMed  Google Scholar 

  44. Grahn JA. The role of the basal ganglia in beat perception: neuroimaging and neuropsychological investigations. Ann N Y Acad Sci. 2009;1169:35–45. https://doi.org/10.1111/j.1749-6632.2009.04553.x.

    Article  PubMed  Google Scholar 

  45. Grahn JA, Brett M. Rhythm and beat perception in motor areas of the brain. J Cogn Neurosci. 2007;19(5):893–906. https://doi.org/10.1162/jocn.2007.19.5.893.

    Article  PubMed  Google Scholar 

  46. Kotz SA, Schwartze M. Differential input of the supplementary motor area to a dedicated temporal processing network: functional and clinical implications. Front Integr Neurosci. 2011;5(86):86. https://doi.org/10.3389/fnint.2011.00086.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bengtsson SL, Ehrsson HH, Forssberg H, Ullén F. Effector-independent voluntary timing: behavioural and neuroimaging evidence. Eur J Neurosci. 2005;22(12):3255–65. https://doi.org/10.1111/j.1460-9568.2005.04517.x.

    Article  PubMed  Google Scholar 

  48. Lang EJ, Apps R, Bengtsson F, Cerminara NL, De Zeeuw CI, Ebner T J., … Xiao J. The roles of the olivocerebellar pathway in motor learning and motor control. A consensus paper. Cerebellum. 2017; 16(1), 230–252. https://doi.org/10.1007/s12311-016-0787-8.

  49. Murdoch BE. The cerebellum and language: historical perspective and review. Cortex. 2010;46(7):858–68. https://doi.org/10.1016/j.cortex.2009.07.018.

    Article  PubMed  Google Scholar 

  50. Schwartze M, Kotz SA. A dual-pathway neural architecture for specific temporal prediction. Neurosci Biobehav Rev. 2013;37(10):2587–96. https://doi.org/10.1016/j.neubiorev.2013.08.005.

    Article  PubMed  Google Scholar 

  51. Van Overwalle F, Manto M, Leggio M, Delgado-García JM. The sequencing process generated by the cerebellum crucially contributes to social interactions. Med Hypotheses. 2019;128:33–42. https://doi.org/10.1016/j.mehy.2019.05.014.

    Article  PubMed  Google Scholar 

  52. Broersen R, Onuki Y, Abdelgabar AR, Owens CB, Picard S, Willems J, … De Zeeuw CI. Impaired spatio-temporal predictive motor timing associated with spinocerebellar ataxia type 6. PLoS ONE. 2016; 11(8), 1–20. https://doi.org/10.1371/journal.pone.0162042.

  53. Ivry RB, Keele SW. Timing functions of the cerebellum. J Cogn Neurosci. 1989;1(2):136–52. https://doi.org/10.1162/jocn.1989.1.2.136.

    Article  CAS  PubMed  Google Scholar 

  54. Timmann D, Watts S, Hore J. Failure of cerebellar patients to time finger opening precisely causes ball high-low inaccuracy in overarm throws. J Neurophysiol. 1999;82(1):103–14. https://doi.org/10.1152/jn.1999.82.1.103.

    Article  CAS  PubMed  Google Scholar 

  55. Ivry RB, Spencer RMC, Zelaznik HN, Diedrichsen J. The cerebellum and event timing. Ann N Y Acad Sci. 2002;978(1):302–17. https://doi.org/10.1111/j.1749-6632.2002.tb07576.x.

    Article  PubMed  Google Scholar 

  56. Grube M, Cooper FE, Chinnery PF, Griffiths TD. Dissociation of duration-based and beat-based auditory timing in cerebellar degeneration. Proc Natl Acad Sci USA. 2010;107(25):11597–601. https://doi.org/10.1073/pnas.0910473107.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Joufflineau C, Vincent C, Bachrach A. Synchronization, attention and transformation: multidimensional exploration of the aesthetic experience of contemporary dance spectators. Behav Sci. 2018;8(2):24. https://doi.org/10.3390/BS8020024.

    Article  PubMed Central  Google Scholar 

  58. Laland K, Wilkins C, Clayton N. The evolution of dance. Curr Biol. 2016;26(1):R5–9. https://doi.org/10.1016/j.cub.2015.11.031.

    Article  CAS  PubMed  Google Scholar 

  59. Bachrach A, Jola C, Pallier C. Neuronal bases of structural coherence in contemporary dance observation. Neuroimage. 2016;124:464–72. https://doi.org/10.1016/j.neuroimage.2015.08.072.

    Article  PubMed  Google Scholar 

  60. Brown S, Martinez MJ, Parsons LM. The neural basis of human dance. Cereb Cortex. 2006;16(8):1157–67. https://doi.org/10.1093/cercor/bhj057.

    Article  PubMed  Google Scholar 

  61. Cross ES, Hamilton AFdC, Grafton ST. Building a motor simulation de novo: observation of dance by dancers. Neuroimage. 2006;31(3):1257–67. https://doi.org/10.1016/j.neuroimage.2006.01.033.

    Article  PubMed  Google Scholar 

  62. Cross ES, Kraemer DJM, Hamilton AFDC, Kelley WM, Grafton ST. Sensitivity of the action observation network to physical and observational learning. Cereb Cortex. 2009;19(2):315–26. https://doi.org/10.1093/cercor/bhn083.

    Article  PubMed  Google Scholar 

  63. Giacosa C, Karpati FJ, Foster NEV, Penhune VB, Hyde KL. Dance and music training have different effects on white matter diffusivity in sensorimotor pathways. Neuroimage. 2016;135:273–86. https://doi.org/10.1016/j.neuroimage.2016.04.048.

    Article  PubMed  Google Scholar 

  64. Karpati FJ, Giacosa C, Foster NEV, Penhune VB, Hyde KL. Dance and the brain: a review. Ann N Y Acad Sci. 2015;1337(1):140–6. https://doi.org/10.1111/nyas.12632.

    Article  PubMed  Google Scholar 

  65. Bläsing B, Calvo-Merino B, Cross ES, Jola C, Honisch J, Stevens CJ. Neurocognitive control in dance perception and performance. Acta Physiol (Oxf). 2012;139(2):300–8. https://doi.org/10.1016/j.actpsy.2011.12.005.

    Article  Google Scholar 

  66. Jin X, Wang B, Lv Y, Lu Y, Chen J, Zhou C. Does dance training influence beat sensorimotor synchronization? Differences in finger-tapping sensorimotor synchronization between competitive ballroom dancers and nondancers. Exp Brain Res. 2019;237(3):743–53. https://doi.org/10.1007/s00221-018-5410-4.

    Article  PubMed  Google Scholar 

  67. Karpati FJ, Giacosa C, Foster NEV, Penhune VB, Hyde KL. Sensorimotor integration is enhanced in dancers and musicians. Exp Brain Res. 2016;234(3):893–903. https://doi.org/10.1007/s00221-015-4524-1.

    Article  PubMed  Google Scholar 

  68. Jola C, Davis A, Haggard P. Proprioceptive integration and body representation: insights into dancers’ expertise. Exp Brain Res. 2011;213(2–3):257–65. https://doi.org/10.1007/s00221-011-2743-7.

    Article  PubMed  Google Scholar 

  69. Chuang LY, Hung HY, Huang CJ, Chang YK, Hung TM. A 3-month intervention of Dance Dance Revolution improves interference control in elderly females: a preliminary investigation. Exp Brain Res. 2015;233(4):1181–8. https://doi.org/10.1007/s00221-015-4196-x.

    Article  PubMed  Google Scholar 

  70. Coubard OA, Duretz S, Lefebvre V, Lapalus P, Ferrufino L. Practice of contemporary dance improves cognitive flexibility in aging. Front Aging Neurosci. 2011;3(SEP):1–12. https://doi.org/10.3389/fnagi.2011.00013.

    Article  Google Scholar 

  71. de Natale ER, Paulus KS, Aiello E, Sanna B, Manca A, Sotgiu G, … Deriu F. Dance therapy improves motor and cognitive functions in patients with Parkinson’s disease. NeuroRehabilitation. 2017; 40(1), 141–144. https://doi.org/10.3233/NRE-161399.

  72. Sampaio LMM, Subramaniam S, Arena R, Bhatt T. Does virtual reality-based kinect dance training paradigm improve autonomic nervous system modulation in individuals with chronic stroke? J Vasc Interv Neurol. 2016;9(2):21–9.

    PubMed  PubMed Central  Google Scholar 

  73. Grönlund E, Renck B, Weibull J. Dance/movement therapy as an alternative treatment for young boys diagnosed as ADHD: a pilot study. Am J Dance Ther. 2005;27(2):63–85. https://doi.org/10.1007/s10465-005-9000-1.

    Article  Google Scholar 

  74. dos Santos Delabary M, Komeroski IG, Monteiro EP, Costa RR, Haas AN. Effects of dance practice on functional mobility, motor symptoms and quality of life in people with Parkinson’s disease: a systematic review with meta-analysis. Aging Clin Exp Res. 2018;30(7):727–35. https://doi.org/10.1007/s40520-017-0836-2.

    Article  PubMed  Google Scholar 

  75. Hackney ME, Byers C, Butler G, Sweeney M, Rossbach L, Bozzorg A. Adapted tango improves mobility, motor-cognitive function, and gait but not cognition in older adults in independent living. J Am Geriatr Soc. 2015;63(10):2105–13. https://doi.org/10.1111/jgs.13650.

    Article  PubMed  Google Scholar 

  76. Hackney ME, Kantorovich S, Levin R, Earhart GM. Effects of tango on functional mobility in Parkinson’s disease: a preliminary study. J Neurol Phys Ther. 2007;31(4):173–9. https://doi.org/10.1097/NPT.0b013e31815ce78b.

    Article  PubMed  Google Scholar 

  77. McKee KE, Hackney ME. The effects of adapted tango on spatial cognition and disease severity in Parkinson’s disease. J Mot Behav. 2013;45(6):519–29. https://doi.org/10.1080/00222895.2013.834288.

    Article  PubMed  Google Scholar 

  78. Shanahan J, Morris ME, Bhriain ON, Saunders J, Clifford AM. Dance for people with Parkinson disease: what is the evidence telling us? Arch Phys Med Rehabil. 2015;96(1):141–53. https://doi.org/10.1016/j.apmr.2014.08.017.

    Article  PubMed  Google Scholar 

  79. Benoit C-E, Dalla Bella S, Farrugia N, Obrig H, Mainka S, Kotz SA. Musically cued gait-training improves both perceptual and motor timing in Parkinson’s disease. Front Hum Neurosci. 2014;8:494. https://doi.org/10.3389/fnhum.2014.00494.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Grahn JA, Brett M. Impairment of beat-based rhythm discrimination in Parkinson’s disease. Cortex. 2009;45(1):54–61. https://doi.org/10.1016/j.cortex.2008.01.005.

    Article  PubMed  Google Scholar 

  81. Jones CRG, Jahanshahi M. Motor and perceptual timing in Parkinson’s disease. Adv Exp Med Biol. 2014;829:265–90. https://doi.org/10.1007/978-1-4939-1782-2_14.

    Article  PubMed  Google Scholar 

  82. Bledsoe JC, Semrud-Clikeman M, Pliszka SR. Neuroanatomical and neuropsychological correlates of the cerebellum in children with attention-deficit/hyperactivity disorder–combined type. J Am Acad Child Adolesc Psychiatry. 2011;50(6):593–601. https://doi.org/10.1016/j.jaac.2011.02.014.Neuroanatomical.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Puyjarinet F, Bégel V, Lopez R, Dellacherie D, Dalla Bella S. Children and adults with attention-deficit/hyperactivity disorder cannot move to the beat. Sci Rep. 2017;7(1):11550. https://doi.org/10.1038/s41598-017-11295-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. López-Ortiz C, Egan T, Gaebler-Spira DJ. Pilot study of a targeted dance class for physical rehabilitation in children with cerebral palsy. SAGE Open Med. 2016;4:205031211667092. https://doi.org/10.1177/2050312116670926.

    Article  Google Scholar 

  85. López-Ortiz C, Gladden K, Deon L, Schmidt J, Girolami G, Gaebler-Spira D. Dance program for physical rehabilitation and participation in children with cerebral palsy. Arts and Health. 2012;4(1):39–54. https://doi.org/10.1080/17533015.2011.564193.

    Article  PubMed  Google Scholar 

  86. Chauvigné LAS, Walton A, Richardson MJ, & Brown S. Human movement science multi-person and multisensory synchronization during group dancing. Hum Mov Sci. 2019; 63(May 2018), 199–208. https://doi.org/10.1016/j.humov.2018.12.005.

  87. Hackney ME, Gammon EM. Comparison of partnered and non-partnered dance movement. Neurorehabil Neural Repair. 2011;24(4):384–92. https://doi.org/10.1177/1545968309353329.Effects.

    Article  Google Scholar 

  88. Himberg T, Laroche J, Bigé R, Buchkowski M, Bachrach A. Coordinated interpersonal behaviour in collective dance improvisation: the aesthetics of kinaesthetic togetherness. Behav Sci. 2018;8(2):23. https://doi.org/10.3390/bs8020023.

    Article  PubMed Central  Google Scholar 

  89. Jeong YJ, Hong SC, Myeong SL, Park MC, Kim YK, Suh CM. Dance movement therapy improves emotional responses and modulates neurohormones in adolescents with mild depression. Int J Neurosci. 2005;115(12):1711–20. https://doi.org/10.1080/00207450590958574.

    Article  CAS  PubMed  Google Scholar 

  90. Teixeira-Machado L, Azevedo-Santos I, De Santana JM. Dance improves functionality and psychosocial adjustment in cerebral palsy: a randomized controlled clinical trial. Am J Phys Med Rehabil. 2017;96(6):424–9. https://doi.org/10.1097/PHM.0000000000000646.

    Article  PubMed  Google Scholar 

  91. Song YG, Ryu YU, Im SJ, Lee YS, Park JH. Effects of dance-based movement therapy on balance, gait, and psychological functions in severe cerebellar ataxia: a case study. Physiother Theory Pract. 2018;35(8):756–63. https://doi.org/10.1080/09593985.2018.1457119.

    Article  PubMed  Google Scholar 

  92. Marsden JF, Harris C. Cerebellar ataxia: pathophysiology and rehabilitation. Clin Rehabil. 2011;25(3):195–216. https://doi.org/10.1177/0269215510382495.

    Article  PubMed  Google Scholar 

  93. Martin CL, Tan D, Bragge P, Bialocerkowski A. Systematic review of the effectiveness of physiotherapy for cerebellar dysfunction. Clin Rehabil. 2009;23(8):15–26. https://doi.org/10.1177/0269215509337272.

    Article  CAS  PubMed  Google Scholar 

  94. Sartor-glittenberg C, Brickner L. A multidimensional physical therapy program for individuals with cerebellar ataxia secondary to traumatic brain injury : a case series. Physiother Theory Pract. 2014;30(2):138–48. https://doi.org/10.3109/09593985.2013.819952.

    Article  PubMed  Google Scholar 

  95. Himle MB, Miltenberger RG, Flessner C, Gatheridge B. Teaching safety skills to children to prevent gun play. J Appl Behav Anal. 2004;37(1):1–9. https://doi.org/10.1901/jaba.2004.37-1.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Morgan DL & Morgan RK. Single-case research methods for the behavioral and health sciences. (SAGE publi). 2008. https://doi.org/10.4135/9781483329697.

  97. Crawford JR, Garthwaite PH. Comparison of a single case to a control or normative sample in neuropsychology: development of a Bayesian approach. Cogn Neuropsychol. 2007;24(4):343–72. https://doi.org/10.1080/02643290701290146.

    Article  PubMed  Google Scholar 

  98. Schmitz-Hübsch T, Du Montcel ST, Baliko L, Berciano J, Boesch S, Depondt C, … Fancellu R. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology. 2006; 66(11), 1717–1720. https://doi.org/10.1212/01.wnl.0000219042.60538.92.

  99. Iversen JR, & Patel AD. The Beat Alignment Test (BAT): surveying beat processing abilities in the general population. In K. Miyazaki, Y. Hiraga, M. Adachi, Y. Nakajima, & M. Tsuzaki (Eds.), Proceedings of the 10th International Conference on Music Perception & Cognition (ICMPC10). 2008 (pp. 465–468). Adelaide: Causal Productions.

  100. Bégel V, Verga L, Benoit C-E, Kotz SA, Dalla Bella S. Test-retest reliability of the Battery for the Assessment of Auditory Sensorimotor and Timing Abilities (BAASTA). Ann Phys Rehabil Med. 2018;61(6):395–400. https://doi.org/10.1016/j.rehab.2018.04.001.

    Article  PubMed  Google Scholar 

  101. Drake C, Botte MC. Tempo sensitivity in auditory sequences: evidence for a multiple-look model. Percept Psychophys. 1993;54(3):277–86. https://doi.org/10.3758/BF03205262.

    Article  CAS  PubMed  Google Scholar 

  102. London, J. (2012). Hearing in time: psychological aspects of musical meter (Oxford Uni). https://doi.org/10.1093/acprof:oso/9780199744374.001.0001.

  103. Repp BH. Rate limits of sensorimotor synchronization. Adv Cogn Psychol. 2006;2(2):163–81. https://doi.org/10.2478/v10053-008-0053-9.

    Article  Google Scholar 

  104. Brown T. Movement Assessment Battery for Children: 2nd Edition (MABC-2). In Volkmar FR (ed) Encyclopedia of Autism Spectrum Disorders, 2013, pp 1925–1939. https://doi.org/10.1007/978-1-4419-1698-3_1922.

  105. Brooks BL, Sherman EMS, & Strauss E. NEPSY-II: a developmental neuropsychological assessment, second edition. Child Neuropsychology. 2010. https://doi.org/10.1080/09297040903146966.

  106. Soppelsa R & Albaret JM. La batterie d’évaluation du mouvement chez l’enfant (M-ABC) : étalonnage sur une population d’enfants de 4 à 12 ans. Psymotricité. 2005; 195–200.

  107. Manly T, Anderson V, Nimmo-Smith I, Turner A, Watson P, Robertson IH. The differential assessment of children’s attention: the Test of Everyday Attention for Children (TEA-Ch), normative sample and ADHD performance. J Child Psychol Psychiatry. 2001;42(8):1065–81. https://doi.org/10.1111/1469-7610.00806.

    Article  CAS  PubMed  Google Scholar 

  108. Gioia GA, Isquith PK, Guy SC, Kenworthy L. Behavior rating inventory of executive function. Child Neuropsychol. 2000;6(3):235–8. https://doi.org/10.1076/chin.6.3.235.3152.

    Article  Google Scholar 

  109. Reynolds CR, Richmond BO. Factor structure and construct validity of “What I think and feel”: The revised children’s manifest anxiety scale. J Pers Assess. 1979;43(3):281–3. https://doi.org/10.1207/s15327752jpa4303_9.

    Article  CAS  PubMed  Google Scholar 

  110. Nozaradan S, Schwartze M, Obermeier C, Kotz SA. Specific contributions of basal ganglia and cerebellum to the neural tracking of rhythm. Cortex. 2017;95:156–68. https://doi.org/10.1016/j.cortex.2017.08.015.

    Article  PubMed  Google Scholar 

  111. Dalla Bella S, Benoit CE, Farrugia N, Schwartze M, Kotz SA. Effects of musically cued gait training in Parkinson’s disease: beyond a motor benefit. Ann NY Acad Sci. 2015;1337(1):77–85. https://doi.org/10.1111/nyas.12651.

    Article  Google Scholar 

  112. Kotz SA, Schwartze M. Cortical speech processing unplugged: a timely subcortico-cortical framework. Trends Cogn Sci. 2010;14(9):392–9. https://doi.org/10.1016/j.tics.2010.06.005.

    Article  PubMed  Google Scholar 

  113. Surgent OJ, Dadalko OI, Pickett KA, Travers BG. Balance and the brain: a review of structural brain correlates of postural balance and balance training in humans. Gait Posture. 2019;71:245–52. https://doi.org/10.1016/j.gaitpost.2019.05.011.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Dajani DR, Uddin LQ. Demystifying cognitive flexibility: implications for clinical and developmental neuroscience. Trends Neurosci. 2015;38(9):571–8. https://doi.org/10.1016/j.tins.2015.07.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Tierney AT, Kraus N. The ability to tap to a beat relates to cognitive, linguistic, and perceptual skills. Brain Lang. 2013;124(3):225–31. https://doi.org/10.1016/j.bandl.2012.12.014.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Dreu CKD, Nijstad BA, Baas M. Behavioral activation links to creativity because of increased cognitive flexibility. Soc Psychol Personal Sci. 2011;2(1):72–80. https://doi.org/10.1177/1948550610381789.

    Article  Google Scholar 

  117. Diamond A, Lee K. Interventions shown to aid executive function development in children 4 to 12 years old. Science. 2011;333(6045):959–64. https://doi.org/10.1126/science.1204529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Shen Y, Zhao Q, Huang Y, Liu G, & Fang L. Promotion of street-dance training on the executive function in preschool children. Frontiers in Psychology. 2020; 11. https://doi.org/10.3389/fpsyg.2020.585598.

  119. Cirelli LK, Einarson KM, Trainor LJ. Interpersonal synchrony increases prosocial behavior in infants. Dev Sci. 2014;17(6):1003–11. https://doi.org/10.1111/desc.12193.

    Article  PubMed  Google Scholar 

  120. Hove MJ, Risen JL. It’s all in the timing: interpersonal synchrony increases affiliation. Soc Cogn. 2009;27(6):949–60. https://doi.org/10.1521/soco.2009.27.6.949.

    Article  Google Scholar 

  121. Wiltermuth SS, Heath C. Synchrony and cooperation. Psychol Sci. 2009;20(1):1–5. https://doi.org/10.1111/j.1467-9280.2008.02253.x.

    Article  PubMed  Google Scholar 

  122. Gujing L, Hui H, Xin L, Lirong Z, Yutong Y, Guofeng Y, Jing L, Shulin Z, Lei Y, Cheng L, Dezhong Y. Increased insular connectivity and enhanced empathic ability associated with dance/music training. Neural Plast. 2019. https://doi.org/10.1155/2019/9693109.

  123. Turner JC, Oakes PJ, Haslam SA, McGarty C. Self and collective: cognition and social context. Pers Soc Psychol Bull. 1994;20(5):454–63. https://doi.org/10.1177/0146167294205002.

    Article  Google Scholar 

  124. Grattan LM, Eslinger PJ. Higher cognition and social behavior: changes in cognitive flexibility and empathy after cerebral lesions. Neuropsychology. 1989;3(3):175. https://doi.org/10.1037/h0091764.

    Article  Google Scholar 

  125. Milders M, Ietswaart M, Crawford JR, Currie D. Social behavior following traumatic brain injury and its association with emotion recognition, understanding of intentions, and cognitive flexibility. J Int Neuropsychol Soc. 2008;14(2):318–26. https://doi.org/10.1017/S1355617708080351.

    Article  PubMed  Google Scholar 

  126. Verschaffel L, Torbeyns J, De Smedt B, Luwel K, Van Dooren W. Strategy flexibility in children with low achievement in mathematics. Educ Child Psychol. 2007;24(2):16–27.

    Article  Google Scholar 

  127. Deák GO. The development of cognitive flexibility and language abilities. Adv Child Dev Behav. 2004. https://doi.org/10.1016/S0065-2407(03)31007-9.

    Article  Google Scholar 

  128. Snow JH. Mental flexibility and planning skills in children and adolescents with learning disabilities. J Learn Disabil. 1992;25(4):265–70. https://doi.org/10.1177/002221949202500408.

    Article  CAS  PubMed  Google Scholar 

  129. Becker DR, Miao A, Duncan R, McClelland MM. Behavioral self-regulation and executive function both predict visuomotor skills and early academic achievement. Early Child Res Q. 2014. https://doi.org/10.1016/j.ecresq.2014.04.014.

    Article  Google Scholar 

  130. Agostin TMK, Bain SK. Predicting early school success with developmental and social skills screeners. Psychol Sch. 1997;34(3):219–28. https://doi.org/10.1002/(SICI)1520-6807(199707)34:3%3c219::AID-PITS4%3e3.0.CO;2-J.

    Article  Google Scholar 

  131. Bramlett RK, Scott P, Rowell RK. A comparison of temperament and social skills in predicting academic performance in first graders. Spec Serv Sch. 2000;16(1–2):147–58. https://doi.org/10.1300/J008v16n01.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the clinicians who conducted patients’ evaluations: Dr. Marie-Pierre Lemaître, Camille Fallot, and Yohan Bourez. We also thank Véronique Brunel, the dance teacher who created and conducted the dance program. Finally, we thank Séverine Farley for language editing.

Funding

The research was supported by the “Fondation Maladies Rares” (“TEMDANCE” grant).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delphine Dellacherie.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bégel, V., Bachrach, A., Dalla Bella, S. et al. Dance Improves Motor, Cognitive, and Social Skills in Children With Developmental Cerebellar Anomalies. Cerebellum 21, 264–279 (2022). https://doi.org/10.1007/s12311-021-01291-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-021-01291-2

Keywords

Navigation