Skip to main content
Log in

Static and Dynamic Ocular Motor Abnormalities as Potential Biomarkers in Spinocerebellar Ataxia Type 3

  • Original Article
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

While dynamic ocular motor abnormalities (e.g., gaze-evoked nystagmus (GEN), low optokinetic nystagmus (OKN), pursuit and vestibulo-ocular reflex (VOR) gains, and dysmetric saccades) have been shown to be potential biomarkers in spinocerebellar ataxia type 3 (SCA3), the value of static abnormalities (e.g., convergent [esodeviation] and divergent strabismus [exodeviation]) is unknown. Moreover, studies on dynamic abnormalities in SCA3 usually do not take into account the existence of potential abduction-adduction asymmetries in patients with degenerative ataxia. Thirty-eight patients with genetically confirmed SCA3 (24 females; mean age ± SD, 49.8± 12.2 years) and 22 healthy controls (12 females, p = 0.589; mean age ± SD, 50.7± 12.5 years, p = 0.651) underwent clinical and video-oculographic assessment. A p value < 0.002 (between- and within-group analyses) and < 0.001 (correlation analysis) was considered significant. Patients showed larger esodeviation at distance (p < 0.001), became more esodeviated in lateral gaze (p < 0.001), and their near exodeviation correlated with scale for the assessment and rating of ataxia (SARA) score (p = 0.004). Pursuit, OKN, and VOR gains were lower in patients, both for their adducting and abducting components (p < 0.001). Saccades showed higher velocities (p < 0.001), abducting saccades showed lower amplitude (p < 0.001), and adducting saccades tended to show greater vertical bias (p = 0.018) in patients. Abducting saccades showed relatively lower velocity (p < 0.001) and lower amplitude (p = 0.015) than abducting saccades within patients. All dynamic ocular motor abnormalities except saccades correlated with SARA score, CAG repeat number, and/or disease duration (p < 0.001). Static and dynamic ocular motor abnormalities are potential biomarkers in SCA3. SCA3 studies using saccades should take into account the existence of potential abduction-adduction asymmetries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Parker JL, Santiago M. Oculomotor aspects of the hereditary cerebellar ataxias. Handb Clin Neurol. 2012;103:63–83.

    Article  Google Scholar 

  2. Ohyagi Y, Yamada T, Okayama A, Sakae N, Yamasaki T, Ohshima T, et al. Vergence disorders in patients with spinocerebellar ataxia 3/Machado-Joseph disease: a synoptophore study. J Neurol Sci. 2000;173(2):120–3.

    Article  CAS  Google Scholar 

  3. Ghasia FF, Wilmot G, Ahmed A, Shaikh AG. Strabismus and micro-opsoclonus in Machado-Joseph disease. Cerebellum. 2016;15(4):491–7.

    Article  Google Scholar 

  4. von Noorden GK, Campos EC, editors. Binocular vision and ocular motility. 6th ed. St. Louis: Mosby; 2002. 672 p.

    Google Scholar 

  5. Luis L, Costa J, Muñoz E, de Carvalho M, Carmona S, Schneider E, et al. Vestibulo-ocular reflex dynamics with head-impulses discriminates spinocerebellar ataxias types 1, 2 and 3 and Friedreich ataxia. J Vestib Res. 2016;26(3):327–34.

    Article  CAS  Google Scholar 

  6. Wu C, Chen D-B, Feng L, Zhou X-X, Zhang J-W, You H-J, et al. Oculomotor deficits in spinocerebellar ataxia type 3: potential biomarkers of preclinical detection and disease progression. CNS Neurosci Ther. 2017;23(4):321–8.

    Article  CAS  Google Scholar 

  7. Furtado GV, De Oliveira CM, Bolzan G, Saute JAM, Saraiva-Pereira ML, Jardim LB. State biomarkers for Machado Joseph disease: validation, feasibility and responsiveness to change. Genet Mol Biol. 2019;42(1):238–51.

    Article  CAS  Google Scholar 

  8. Versino M, Hurko O, Zee DS. Disorders of binocular control of eye movements in patients with cerebellar dysfunction. Brain. 1996;119(Pt 6):1933–50.

    Article  Google Scholar 

  9. Lemos J, Novo A, Duque C, Castelhano J, Eggenberger E, Januário C. “Pinball” intrusions in spinocerebellar ataxia type 3. Neurology. 2018;90(1):36–7.

    Article  Google Scholar 

  10. Shaikh AG, Ghasia FF. Misdirected horizontal saccades in pan-cerebellar atrophy. J Neurol Sci. 2015;355(1–2):125–30.

    Article  Google Scholar 

  11. Rivaud-Pechoux S, Dürr A, Gaymard B, Cancel G, Ploner CJ, Agid Y, et al. Eye movement abnormalities correlate with genotype in autosomal dominant cerebellar ataxia type I. Ann Neurol. 1998;43(3):297–302.

    Article  CAS  Google Scholar 

  12. Buttncr N, Geschwind D, Jen JC, Pcrlman S, Pulst SM, Baloh RW. Oculomotor phenotypes in autosomal dominant ataxias. Arch Neurol. 1998;55(10):1353–7.

    Article  Google Scholar 

  13. Dawson DM, Feudo P, Zubick HH, Rosenberg R, Fowler H. Electro-oculographic findings in Machado-Joseph disease. Neurology. 1982;32(11):1272–6.

    Article  CAS  Google Scholar 

  14. Schmitz-Hübsch T, Du Montcel ST, Baliko L, Berciano J, Boesch S, Depondt C, et al. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology. 2006;66(11):1717–20.

    Article  Google Scholar 

  15. Hüfner K, Frenzel C, Kremmyda O, Adrion C, Bardins S, Glasauer S, et al. Esophoria or esotropia in adulthood: a sign of cerebellar dysfunction? J Neurol. 2015;262(3):585–92.

    Article  Google Scholar 

  16. Rüb U, Gierga K, Brunt ER, De Vos RAI, Bauer M, Schöls L, et al. Spinocerebellar ataxias types 2 and 3: degeneration of the precerebellar nuclei isolates the three phylogenetically defined regions of the cerebellum. J Neural Transm. 2005;112(11):1523–45.

    Article  Google Scholar 

  17. Rüb U, Bürk K, Schöls L, Brunt ER, De Vos RAI, Orozco Diaz G, et al. Damage to the reticulotegmental nucleus of the pons in spinocerebellar ataxia type 1, 2, and 3. Neurology. 2004;63(7):1258–63.

    Article  Google Scholar 

  18. Tokumaru AM, Kamakura K, Maki T, Murayama S, Sakata I, Kaji T, et al. Magnetic resonance imaging findings of Machado-Joseph disease: histopathologic correlation. J Comput Assist Tomogr. 2003;27(2):241–8.

    Article  Google Scholar 

  19. Takagi M, Tamargo R, Zee DS. Effects of lesions of the cerebellar oculomotor vermis on eye movements in primate: binocular control. Prog Brain Res. 2003;142:19–33.

    Article  Google Scholar 

  20. Scherzed W, Brunt ER, Heinsen H, De Vos RA, Seidel K, Bürk K, et al. Pathoanatomy of cerebellar degeneration in spinocerebellar ataxia type 2 (SCA2) and type 3 (SCA3). Cerebellum. 2012;11(3):749–60.

    Article  CAS  Google Scholar 

  21. Swartz BE, Li S, Bespalova I, Burmeister M, Dulaney E, Robinson FR, et al. Pathogenesis of clinical signs in recessive ataxia with saccadic intrusions. Ann Neurol. 2003;54(6):824–8.

    Article  Google Scholar 

  22. Optican LM, Zee DS, Chu FC. Adaptive response to ocular muscle weakness in human pursuit and saccadic eye movements. J Neurophysiol. 1985;54(1):110–22.

    Article  CAS  Google Scholar 

  23. Das VE. Strabismus and the oculomotor system: insights from macaque models. Annu Rev Vis Sci. 2016;2(1):37–59.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the patients, their relatives, and the neurology department staff for participating in the study.

Author information

Authors and Affiliations

Authors

Contributions

João Lemos: contributed to acquisition, analysis and interpretation of the data, drafting of the manuscript, study supervision, concept and design, and critical revision of manuscript for intellectual content; Ana Novo: contributed to acquisition, analysis and interpretation of the data, drafting of the manuscript, and critical revision of manuscript for intellectual content; Cristina Duque: contributed to acquisition and analysis and interpretation of the data; Inês Cunha: contributed to acquisition and analysis and interpretation of the data; Joana Ribeiro: contributed to acquisition and analysis and interpretation of the data; João Castelhano: contributed to acquisition and analysis and interpretation of the data; Cristina Januário: contributed to analysis and interpretation of the data, study concept and design, and critical revision of manuscript for intellectual content.

Corresponding author

Correspondence to João Lemos.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

João Lemos, MD, PhD and João Castelhano, MBE, PhD conducted the statistical analysis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lemos, J., Novo, A., Duque, C. et al. Static and Dynamic Ocular Motor Abnormalities as Potential Biomarkers in Spinocerebellar Ataxia Type 3. Cerebellum 20, 402–409 (2021). https://doi.org/10.1007/s12311-020-01217-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-020-01217-4

Keywords

Navigation