Skip to main content
Log in

Single-Session Cerebellar Transcranial Direct Current Stimulation Affects Postural Control Learning and Cerebellar Brain Inhibition in Healthy Individuals

  • Original Article
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Cerebellar transcranial direct current stimulation (ctDCS) modulates cerebellar activity and postural control. However, the effects of ctDCS on postural control learning and the mechanisms associated with these effects remain unclear. To examine the effects of single-session ctDCS on postural control learning and cerebellar brain inhibition (CBI) of the primary motor cortex in healthy individuals. In this triple-blind, sham-controlled study, 36 participants were allocated randomly to one of three groups: (1) anodal ctDCS group, (2) cathodal ctDCS group, and (3) sham ctDCS group. ctDCS (2 mA) was applied to the cerebellar brain for 20 min prior to six blocks of standing postural control training (each block consisted of five trials of a 30-s tracking task). CBI and corticospinal excitability of the tibialis anterior muscle were assessed at baseline, immediately after, 1 day after, and 7 days after training. Skill acquisition following training was significantly reduced in both the anodal and cathodal ctDCS groups compared with the sham ctDCS group. Changes in performance measured 1 day after and 7 days after training did not differ among the groups. In the anodal ctDCS group, CBI significantly increased after training, whereas corticospinal excitability decreased. Anodal ctDCS-induced CBI changes were correlated with the learning formation of postural control (r = 0.55, P = 0.04). Single-session anodal and cathodal ctDCS could suppress the skill acquisition of postural control in healthy individuals. The CBI changes induced by anodal ctDCS may affect the learning process of postural control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527(3):633–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Ouchi Y, Okada H, Yoshikawa E, Nobezawa S, Futatsubashi M. Brain activation during maintenance of standing postures in humans. Brain. 1999;122(11):329–38.

    PubMed  Google Scholar 

  3. Taube W, Mouthon M, Leukel C, Hoogewoud HM, Annoni JM, Keller M. Brain activity during observation and motor imagery of different balance tasks: an fMRI study. Cortex. 2015;64:102–14.

    PubMed  Google Scholar 

  4. Ioffe ME, Chernikova LA, Ustinova KI. Role of cerebellum in learning postural tasks. Cerebellum. 2007;6:87–94.

    CAS  PubMed  Google Scholar 

  5. Poortvliet P, Hsieh B, Cresswell A, Au J, Meinzer M. Cerebellar transcranial direct current stimulation improves adaptive postural control. Clin Neurophysiol. 2018;129:33–41.

    PubMed  Google Scholar 

  6. Galea JM, Jayaram G, Ajagbe L, Celnik P. Modulation of cerebellar excitability by polarity-specific noninvasive direct current stimulation. J Neurosci. 2009;29:9115–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Inukai Y, Saito K, Sasaki R, Kotan S, Nakagawa M, Onishi H. Influence of transcranial direct current stimulation to the cerebellum on standing posture control. Front Hum Neurosci. 2016;10:325.

    PubMed  PubMed Central  Google Scholar 

  8. Foerster Á, Melo L, Mello M, Castro R, Shirahige L, Rocha S, et al. Cerebellar transcranial direct current stimulation (ctDCS) impairs balance control in healthy individuals. Cerebellum. 2017;16:872–5.

    PubMed  Google Scholar 

  9. Ehsani F, Samaei A, Zoghi M, Hedayati R, Jaberzadeh S. The effects of cerebellar transcranial direct current stimulation on static and dynamic postural stability in older individuals: a randomized double-blind sham-controlled study. Eur J Neurosci. 2017;46:2875–84.

    PubMed  Google Scholar 

  10. Zandvliet SB, Meskers CGM, Kwakkel G, van Wegen EEH. Short-term effects of cerebellar tDCS on standing balance performance in patients with chronic stroke and healthy age-matched elderly. Cerebellum. 2018;17:575–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Steiner KM, Enders A, Thier W, Batsikadze G, Ludolph N, Ilg W, et al. Cerebellar tDCS does not improve learning in a complex whole body dynamic balance task in young healthy subjects. PLoS One. 2016;11:0163598.

    Google Scholar 

  12. Ugawa Y, Uesaka Y, Terao Y, Hanajima R, Kanazawa I. Magnetic stimulation over the cerebellum in humans. Ann Neurol. 1995;37:703–13.

    CAS  PubMed  Google Scholar 

  13. Fernandez L, Major BP, Teo WP, Byrne LK, Enticott PG. Assessing cerebellar brain inhibition (CBI) via transcranial magnetic stimulation (TMS): a systematic review. Neurosci Biobehav Rev. 2018;86:176–206.

    PubMed  Google Scholar 

  14. Jayaram G, Galea JM, Bastian AJ, Celnik P. Human locomotor adaptive learning is proportional to depression of cerebellar excitability. Cereb Cortex. 2011;21:1901–9.

    PubMed  PubMed Central  Google Scholar 

  15. Jayaram G, Tang B, Pallegadda R, Vasudevan EV, Celnik P, Bastian A. Modulating locomotor adaptation with cerebellar stimulation. J Neurophysiol. 2012;107:2950–7.

    PubMed  PubMed Central  Google Scholar 

  16. Julious SA. Sample size of 12 per group rule of thumb for a pilot study. Pharm Stat. 2005;4:287–91.

    Google Scholar 

  17. Ferrucci R, Cortese F, Priori A. Cerebellar tDCS: how to do it. Cerebellum. 2015;14:27–30.

    PubMed  Google Scholar 

  18. Batsikadze G, Rezaee Z, Chang DI, Gerwig M, Herlitze S, Dutta A, et al. Effects of cerebellar transcranial direct current stimulation on cerebellar-brain inhibition in humans: a systematic evaluation. Brain Stimul. 2019;12:1177–86.

    PubMed  Google Scholar 

  19. Gandiga PC, Hummel FC, Cohen LG. Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin Neurophysiol. 2006;117:845–50.

    PubMed  Google Scholar 

  20. Cacchio A, Cimini N, Alosi P, Santilli V, Marrelli A. Reliability of transcranial magnetic stimulation-related measurements of tibialis anterior muscle in healthy subjects. Clin Neurophysiol. 2009;120:414–9.

    PubMed  Google Scholar 

  21. Kang N, Lee RD, Lee JH, Hwang MH. Functional balance and postural control improvements in patients with stroke after non-invasive brain stimulation: a meta-analysis. Arch Phys Med Rehabil. 2020;101(1):141–53.

    PubMed  Google Scholar 

  22. Takakusaki K. Functional neuroanatomy for posture and gait control. J Mov Disord. 2017;10:1–17.

    PubMed  PubMed Central  Google Scholar 

  23. Dayan E, Cohen LG. Neuroplasticity subserving motor skill learning. Neuron. 2011;72(3):443–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Woods AJ, Antal A, Bikson M, Boggio PS, Brunoni AR, Celnik P, et al. A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin Neurophysiol. 2016;127:1031–48.

    CAS  PubMed  Google Scholar 

  25. Datta A, Bansal V, Diaz J, Patel J, Reato D, Bikson M. Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimul. 2009;2:201–7.

    PubMed  PubMed Central  Google Scholar 

  26. Benussi A, Dell'Era V, Cotelli MS, Turla M, Casali C, Padovani A, et al. Long term clinical and neurophysiological effects of cerebellar transcranial direct current stimulation in patients with neurodegenerative ataxia. Brain Stimul. 2017;10:242–50.

    PubMed  Google Scholar 

  27. Winn P. How best to consider the structure and function of the pedunculopontine tegmental nucleus: evidence from animal studies. J Neurol Sci. 2006;248:234–50.

    PubMed  Google Scholar 

  28. Matsugi A, Okada Y. Cerebellar transcranial direct current stimulation modulates the effect of cerebellar transcranial magnetic stimulation on the excitability of spinal reflex. Neurosci Res. 2020;150:37–43.

    PubMed  Google Scholar 

  29. Takahashi Y, Fujiwara T, Yamaguchi T, Kawakami M, Mizuno K, Liu M. The effects of patterned electrical stimulation combined with voluntary contraction on spinal reciprocal inhibition in healthy individuals. Neuroreport. 2017;28(8):434–8.

    CAS  PubMed  Google Scholar 

  30. Wessel MJ, Zimerman M, Timmermann JE, Heise KF, Gerloff C, Hummel FC. Enhancing consolidation of a new temporal motor skill by cerebellar noninvasive stimulation. Cereb Cortex. 2016;26:1660–7.

    PubMed  Google Scholar 

  31. Herzfeld DJ, Pastor D, Haith AM, Rossetti Y, Shadmehr R, O'Shea J. Contributions of the cerebellum and the motor cortex to acquisition and retention of motor memories. Neuroimage. 2014;98:147–58.

    PubMed  PubMed Central  Google Scholar 

  32. Thirugnanasambandam N, Sparing R, Dafotakis M, Meister IG, Paulus W, Nitsche MA, et al. Isometric contraction interferes with transcranial direct current stimulation (tDCS) induced plasticity: evidence of state-dependent neuromodulation in human motor cortex. Restor Neurol Neurosci. 2011;29:311–20.

    PubMed  Google Scholar 

  33. Ridding MC, Ziemann U. Determinants of the induction of cortical plasticity by non-invasive brain stimulation in healthy subjects. J Physiol. 2010;588:2291–304.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ni Z, Pinto AD, Lang AE, Chen R. Involvement of the cerebellothalamocortical pathway in Parkinson disease. Ann Neurol. 2010;68(6):816–24.

    PubMed  Google Scholar 

  35. Schirinzi T, Di Lorenzo F, Ponzo V, Palmieri MG, Bentivoglio AR, Schillaci O, et al. Mild cerebello-thalamo-cortical impairment in patients with normal dopaminergic scans (SWEDD). Parkinsonism Relat Disord. 2016;28:23–8.

    PubMed  Google Scholar 

  36. Carrillo F, Palomar FJ, Conde V, Diaz-Corrales FJ, Porcacchia P, Fernández-Del-Olmo M, et al. Study of cerebello-thalamocortical pathway by transcranial magnetic stimulation in Parkinson’s disease. Brain Stimul. 2013;6(4):582–9.

    PubMed  Google Scholar 

  37. Schirinzi T, Di Lorenzo F, Sancesario GM, Di Lazzaro G, Ponzo V, Pisani A, et al. Amyloid-mediated cholinergic dysfunction in motor impairment related to Alzheimer’s disease. J Alzheimers Dis. 2018;64(2):525–32.

    CAS  PubMed  Google Scholar 

  38. Di Lorenzo F, Bonnì S, Picazio S, Motta C, Caltagirone C, Martorana A, et al. Effects of cerebellar theta burst stimulation on contralateral motor cortex excitability in patients with Alzheimer’s disease. Brain Topogr. 2020;33(5):613–7.

    PubMed  Google Scholar 

  39. Koch G, Bonnì S, Casula EP, Iosa M, Paolussi S, Pellicciari MC, et al. Effect of cerebellar stimulation on gait and balance recovery in patients with hemiparetic stroke: a randomized clinical trial. JAMA Neurol. 2019;76(2):170–8.

    PubMed  Google Scholar 

  40. Koch G, Esposito R, Motta C, Casula EP, Di Lorenzo F, Bonnì S, et al. Improving visuo-motor learning with cerebellar theta burst stimulation: behavioral and neurophysiological evidence. Neuroimage. 2020;208:116424.

    PubMed  Google Scholar 

  41. Mannarelli D, Pauletti C, Currà A, Marinelli L, Corrado A, Delle Chiaie R, et al. The cerebellum modulates attention network functioning: evidence from a cerebellar transcranial direct current stimulation and attention network test study. Cerebellum. 2019;18:457–68.

    PubMed  Google Scholar 

  42. Yamaguchi T, Moriya K, Tanabe S, Kondo K, Otaka Y, Tanaka S. Transcranial direct-current stimulation combined with attention increases cortical excitability and improves motor learning in healthy volunteers. J Neuroeng Rehabil. 2020;17(1):23.

    PubMed  PubMed Central  Google Scholar 

  43. Kellermann T, Regenbogen C, De Vos M, Mößnang C, Finkelmeyer A, Habel U. Effective connectivity of the human cerebellum during visual attention. J Neurosci. 2012;32(33):11453–60.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Partial financial support was received from the Funds for a Grant-in-Aid for Young Scientists (18 K17723) to Tomofumi Yamaguchi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomofumi Yamaguchi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Research Involving Human Participants

This study was approved by the Ethics Review Board of Yamagata Prefectural University of Health Sciences (approval number: 1806-06) and was performed in accordance with the ethical standards established by the Declaration of Helsinki.

Informed Consent

All participants provided their written, informed consent before participating in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katagiri, N., Kawakami, S., Okuyama, S. et al. Single-Session Cerebellar Transcranial Direct Current Stimulation Affects Postural Control Learning and Cerebellar Brain Inhibition in Healthy Individuals. Cerebellum 20, 203–211 (2021). https://doi.org/10.1007/s12311-020-01208-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-020-01208-5

Keywords

Navigation