Skip to main content
Log in

Single-Session Cerebellar Transcranial Direct Current Stimulation Improves Postural Stability and Reduces Ataxia Symptoms in Spinocerebellar Ataxia

  • Research
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Spinocerebellar ataxia (SCA) results in balance and coordination impairment, and current treatments have limited efficacy. Recent evidence suggests that combining postural training with cerebellar transcranial direct current stimulation (ctDCS) can improve these symptoms. However, the combined effects of ctDCS and postural training on individuals with spinocerebellar ataxia remain underexplored. Ten volunteers with (SCA type 3) participated in a triple-blind, randomized, crossover study to receive a single session of ctDCS (2 mA for 20 min) and a sham ctDCS session separated by at least one week. The Biodex Balance System was used to assess balance at each session, measuring overall stability index, anteroposterior stability index, and medial-lateral stability index. As secondary outcomes, cerebellar ataxia symptoms were evaluated using the 8-item Scale for Assessment and Rating of Ataxia. The assessments were conducted before and after each session. The results indicated that ctDCS enhanced the overall stability index when compared to sham ctDCS (Z = -2.10, p = 0.03), although it did not significantly affect the anteroposterior or medial-lateral stability indices. Compared to the baseline, a single session of ctDCS reduced appendicular symptoms related to cerebellar ataxia, as evidenced by improvements in the nose-finger test (Z = -2.07, p = 0.04), fast alternating hand movements (Z = -2.15, p = 0.03), and heel-to-shin slide (Z = -1.91, p = 0.05). In conclusion, our study suggests that a single session of ctDCS, in combination with postural training, can enhance balance and alleviate ataxia symptoms in individuals with cerebellar ataxia. This study was approved by the local research ethics committee (No. 2.877.813) and registered on clinicaltrials.org (NCT04039048 - https://www.clinicaltrials.gov/study/NCT04039048) on 2019-07-28.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Katagiri N, Kawakami S, Okuyama S, Koseki T, Kudo D, Namba S, et al. Single-session cerebellar transcranial direct current stimulation affects postural control learning and cerebellar brain inhibition in healthy individuals. Cerebellum. 2021;20:203–11.

    Article  PubMed  Google Scholar 

  2. Benussi A, Dell’Era V, Cotelli MS, Turla M, Casali C, Padovani A, et al. Long term clinical and neurophysiological effects of cerebellar transcranial direct current stimulation in patients with neurodegenerative ataxia. Brain Stimul. 2017;10:242–50.

    Article  PubMed  Google Scholar 

  3. Benussi A, Koch G, Cotelli M, Padovani A, Borroni B. Cerebellar transcranial direct current stimulation in patients with ataxia: a double-blind, randomized, sham-controlled study. Mov Disord. 2015;30:1701–5.

    Article  PubMed  Google Scholar 

  4. Benussi A, Dell’Era V, Cantoni V, Bonetta E, Grasso R, Manenti R, et al. Cerebello-spinal tDCS in ataxia: a randomized, double-blind, sham-controlled, crossover trial. Neurology. 2018;91:e1090–101.

    Article  PubMed  Google Scholar 

  5. Ferrucci R, Marceglia S, Vergari M, Cogiamanian F, Mrakic-Sposta S, Mameli F, et al. Cerebellar transcranial direct current stimulation impairs the practice-dependent proficiency increase in working memory. J Cogn Neurosci. 2008;20:1687–97.

    Article  CAS  PubMed  Google Scholar 

  6. Galea JM, Jayaram G, Ajagbe L, Celnik P. Modulation of cerebellar excitability by polarity-specific noninvasive direct current stimulation. J Neurosci. 2009;29:9115–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Grimaldi G, Argyropoulos GP, Bastian A, Cortes M, Davis NJ, Edwards DJ, et al. Cerebellar transcranial direct current stimulation (ctDCS): a novel approach to understanding cerebellar function in health and disease. Neuroscientist. 2016;22:83–97.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ugawa Y, Uesaka Y, Terao Y, Hanajima R, Kanazawa I. Magnetic stimulation over the cerebellum in humans. Ann Neurol. 1995;37:703–13.

    Article  CAS  PubMed  Google Scholar 

  9. Ferrucci R, Brunoni AR, Parazzini M, Vergari M, Rossi E, Fumagalli M, et al. Modulating human procedural learning by cerebellar transcranial direct current stimulation. Cerebellum. 2013;12:485–92.

    Article  CAS  PubMed  Google Scholar 

  10. Poortvliet P, Hsieh B, Cresswell A, Au J, Meinzer M. Cerebellar transcranial direct current stimulation improves adaptive postural control. Clin Neurophysiol. 2018;129:33–41.

    Article  PubMed  Google Scholar 

  11. Yosephi MH, Ehsani F, Zoghi M, Jaberzadeh S. Multi-session anodal tDCS enhances the effects of postural training on balance and postural stability in older adults with high fall risk: primary motor cortex versus cerebellar stimulation. Brain Stimul. 2018;11:1239–50.

    Article  PubMed  Google Scholar 

  12. Mendonça MS, Goulardins JB, Souza C, de O, Monte- Silva K, Tanaka C. Aplicação simultânea de estimulação transcraniana por corrente contínua cerebelar anódica para reabilitação do equilíbrio na ataxia cerebelar: relato de caso. Rev Pesqui em Fisioter. 2021;11:427–34.

    Article  Google Scholar 

  13. Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, et al. Transcranial direct current stimulation: state of the art 2008. Brain Stimul. 2008;1:206–23.

    Article  PubMed  Google Scholar 

  14. Arnold BL, Schmitz RJ. Examination of balance measures produced by the biodex stability system. J Athl Train. 1998;33:323–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Schmitz-Hübsch T, du Montcel ST, Baliko L, Berciano J, Boesch S, Depondt C, et al. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology. 2006;66:1717–20.

    Article  PubMed  Google Scholar 

  16. Schober P, Boer C, Schwarte LA. Correlation coefficients: appropriate use and interpretation. Anesth Analg. 2018;126:1763–8.

    Article  PubMed  Google Scholar 

  17. Takakusaki K. Functional neuroanatomy for posture and gait control. J Mov Disord. 2017;10:1–17.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ivanenko Y, Gurfinkel VS. Human postural control. Front Neurosci. 2018;12:171.

    Article  Google Scholar 

  19. Woollacott MH, Shumway-Cook A, Nashner LM. Aging and posture control: changes in sensory organization and muscular coordination. Int J Aging Hum Dev. 1986;23:97–114.

    Article  CAS  PubMed  Google Scholar 

  20. Behrens M, Mau-Moeller A, Lischke A, Katlun F, Gube M, Zschorlich V, et al. Mental fatigue increases gait variability during dual-task walking in old adults. J Gerontol Biol Sci Med Sci. 2018;73:792–7.

    Article  Google Scholar 

  21. Brahms M, Heinzel S, Rapp M, Mückstein M, Hortobágyi T, Stelzel C, et al. The acute effects of mental fatigue on balance performance in healthy young and older adults - a systematic review and meta-analysis. Acta Psychol. 2022;225:103540.

    Article  Google Scholar 

  22. Nardone A, Tarantola J, Giordano A, Schieppati M. Fatigue effects on body balance. Electroencephalogr Clin Neurophysiol. 1997;105:309–20.

    Article  CAS  PubMed  Google Scholar 

  23. Malek N, Makawita C, Al-Sami Y, Aslanyan A, de Silva R. A systematic review of the spectrum and prevalence of non-motor symptoms in adults with hereditary cerebellar ataxias. Mov Disord Clin Pract. 2022;9:1027–39.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Martinez ARM, Nunes MB, Faber I, D’Abreu A, Lopes-Cendes Í, França MC Jr. Fatigue and its associated factors in spinocerebellar ataxia type 3/Machado-Joseph disease. Cerebellum. 2017;16:118–21.

    Article  PubMed  Google Scholar 

  25. Brusse E, Brusse-Keizer MGJ, Duivenvoorden HJ, van Swieten JC. Fatigue in spinocerebellar ataxia: patient self-assessment of an early and disabling symptom. Neurology. 2011;76:953–9.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gorniak SL. The relationship between task difficulty and motor performance complexity. Atten Percept Psychophys. 2019;81:12–9.

    Article  PubMed  Google Scholar 

  27. Singer RN, Gerson RF. Task classification and strategy utilization in motor skills. Res Q Exerc Sport. 1981;52:100–16.

    Article  CAS  PubMed  Google Scholar 

  28. MacLullich AMJ, Edmond CL, Ferguson KJ, Wardlaw JM, Starr JM, Seckl JR, et al. Size of the neocerebellar vermis is associated with cognition in healthy elderly men. Brain Cogn. 2004;56:344–8.

    Article  PubMed  Google Scholar 

  29. Casamento-Moran A, Mooney RA, Chib VS, Celnik PA. Cerebellar excitability regulates physical fatigue perception. J Neurosci. 2023;43:3094–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ludlow CL. Central nervous system control of voice and swallowing. J Clin Neurophysiol. 2015;32:294–303.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Grimaldi G, Manto M. Anodal transcranial direct current stimulation (tDCS) decreases the amplitudes of long-latency stretch reflexes in cerebellar ataxia. Ann Biomed Eng. 2013;41:2437–47.

    Article  PubMed  Google Scholar 

  32. Maas RPPWM, Teerenstra S, Toni I, Klockgether T, Schutter DJLG, van de Warrenburg BPC. Cerebellar transcranial direct current stimulation in spinocerebellar ataxia type 3: a randomized, double-blind, sham-controlled trial. Neurotherapeutics. 2022;19:1259–72.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mitoma H, Buffo A, Gelfo F, Guell X, Fucà E, Kakei S et al. Consensus paper. Cerebellar reserve: from cerebellar physiology to cerebellar disorders. The Cerebellum. 2020:131–53. https://doi.org/10.1007/s12311-019-01091-9

  34. Mitoma H, Manto M, Hampe CS. Time is cerebellum. Cerebellum. 2018;17:387–91.

    Article  PubMed  Google Scholar 

  35. Tezenas du Montcel S, Petit E, Olubajo T, Faber J, Lallemant-Dudek P, Bushara K, et al. Baseline clinical and blood biomarkers in patients with preataxic and early-stage disease spinocerebellar ataxia 1 and 3. Neurology. 2023;100:e1836–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nuttall FQ. Body mass index: obesity, BMI, and health: a critical review. Nutr Today. 2015;50:117–28.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Diallo A, Jacobi H, Schmitz-Hübsch T, Cook A, Labrum R, Durr A, et al. Body mass index decline is related to spinocerebellar ataxia disease progression. Mov Disord Clin Pract. 2017;4:689–97.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yang J-S, Chen P-P, Lin M-T, Qian M-Z, Lin H-X, Chen X-P, et al. Association between body mass index and disease severity in chinese spinocerebellar ataxia type 3 patients. Cerebellum. 2018;17:494–8.

    Article  PubMed  Google Scholar 

  39. Roeske S, Filla I, Heim S, Amunts K, Helmstaedter C, Wüllner U, et al. Progressive cognitive dysfunction in spinocerebellar ataxia type 3. Mov Disord. 2013;28:1435–8.

    Article  PubMed  Google Scholar 

  40. Benussi A, Cantoni V, Manes M, Libri I, Dell’Era V, Datta A, et al. Motor and cognitive outcomes of cerebello-spinal stimulation in neurodegenerative ataxia. Brain. 2021;144:2310–21.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the patients for their commitment to the study.

Funding

this research was supported by grant (nº 310369/2022-3) from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001. Kátia Monte-Silva is supported by CNPq/Brazil (Grant No.310369/2022-3).

Author information

Authors and Affiliations

Authors

Contributions

RB, AB, and KMS designed the study. RB, JVF, and KMS conducted the literature search and extracted the information. RB evaluated the volunteers. JVF and AA performed the interventions on the volunteers. RB, GB, and KMS analyzed the data. RB and KMS drafted the manuscript. All the authors reviewed and approved the manuscript.

Corresponding author

Correspondence to Kátia Monte-Silva.

Ethics declarations

Ethics Approval

This study was approved by the local research ethics committee (No. 2.877.813), registered at clinicaltrials.org (NCT04039048), and performed according to the Declaration of Helsinki.

Consent to Participate

informed consent was obtained from all individual participants included in the study.

Consent for Publication

The authors affirm that human research participants provided informed consent for publication of the images in Fig. 2.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brito, R., Fabrício, J.V., Araujo, A. et al. Single-Session Cerebellar Transcranial Direct Current Stimulation Improves Postural Stability and Reduces Ataxia Symptoms in Spinocerebellar Ataxia. Cerebellum (2024). https://doi.org/10.1007/s12311-024-01696-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12311-024-01696-9

Keywords

Navigation