Skip to main content

Advertisement

Log in

Current Opinions and Consensus for Studying Tremor in Animal Models

  • Consensus Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Tremor is the most common movement disorder; however, we are just beginning to understand the brain circuitry that generates tremor. Various neuroimaging, neuropathological, and physiological studies in human tremor disorders have been performed to further our knowledge of tremor. But, the causal relationship between these observations and tremor is usually difficult to establish and detailed mechanisms are not sufficiently studied. To overcome these obstacles, animal models can provide an important means to look into human tremor disorders. In this manuscript, we will discuss the use of different species of animals (mice, rats, fruit flies, pigs, and monkeys) to model human tremor disorders. Several ways to manipulate the brain circuitry and physiology in these animal models (pharmacology, genetics, and lesioning) will also be discussed. Finally, we will discuss how these animal models can help us to gain knowledge of the pathophysiology of human tremor disorders, which could serve as a platform towards developing novel therapies for tremor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AMPA:

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

CF:

Climbing fiber

CS:

Complex spike

CV:

Coefficient of variation

DCN:

Deep cerebellar nucleus

EEG:

Electroencephalogram

ET:

Essential tremor

fMRI:

Functional magnetic resonance imaging

KO:

Knockout

GABAAR:

GABAA receptor

HCN channel:

Hyperpolarization-activated cyclic nucleotide-gated channel

IO:

Inferior olive

ISI:

Inter-spike interval

MES:

Maximal electroshock seizure

NMDA:

N-methyl-d-aspartate

PC:

Purkinje cells

pcd :

Purkinje cell degeneration

PD:

Parkinson disease

PET:

Positron emission tomography

SCA:

Spinocerebellar ataxia

References

  1. Bhatia KP, Bain P, Bajaj N, et al. Consensus statement on the classification of tremors. from the task force on tremor of the International Parkinson and Movement Disorder Society. Mov Disord. 2018;33:75–87.

    Article  PubMed  Google Scholar 

  2. Louis ED, Ferreira JJ. How common is the most common adult movement disorder? Update on the worldwide prevalence of essential tremor. Mov Disord. 2010;25:534–41.

    Article  PubMed  Google Scholar 

  3. Louis ED, Ottman R. How many people in the USA have essential tremor? Deriving a population estimate based on epidemiological data. Tremor Other Hyperkinet Mov. 2014;4:259.

    Google Scholar 

  4. Louis ED, Thawani SP, Andrews HF. Prevalence of essential tremor in a multiethnic, community-based study in northern Manhattan, New York, N. Y Neuroepidemiology. 2009;32:208–14.

    Article  Google Scholar 

  5. Morgan JC, Kurek JA, Davis JL, Sethi KD. Insights into pathophysiology from medication-induced tremor. Tremor Other Hyperkinet Mov. 2017;7:442.

    Google Scholar 

  6. Louis ED. Treatment of medically refractory essential tremor. N Engl J Med. 2016;375:792–3.

    Article  PubMed  Google Scholar 

  7. Louis ED, Huang CC, Dyke JP, Long Z, Dydak U. Neuroimaging studies of essential tremor: how well do these studies support/refute the neurodegenerative hypothesis? Tremor Other Hyperkinet Mov. 2014;4:235.

    Google Scholar 

  8. Filip P, Lungu OV, Manto MU, Bares M. Linking essential tremor to the cerebellum: Phys Evid. Cerebellum. 2016;15:774–80.

    Article  PubMed  Google Scholar 

  9. Louis ED. Linking essential tremor to the cerebellum: neuropathological evidence. Cerebellum. 2016;15:235–42.

    Article  PubMed  Google Scholar 

  10. Miwa H. Rodent models of tremor. Cerebellum. 2007;6:66–72.

    Article  CAS  PubMed  Google Scholar 

  11. Llinas R, Yarom Y. Electrophysiology of mammalian inferior olivary neurones in vitro. Different types of voltage-dependent ionic conductances. J Physiol. 1981;315:549–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Llinas R, Yarom Y. Properties and distribution of ionic conductances generating electroresponsiveness of mammalian inferior olivary neurones in vitro. J Physiol. 1981;315:569–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Llinas R, Yarom Y. Oscillatory properties of guinea-pig inferior olivary neurones and their pharmacological modulation: an in vitro study. J Physiol. 1986;376:163–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. De Montigny C, Lamarre Y. Effects produced by local applications of harmaline in the inferior olive. Can J Physiol Pharmacol 1975;53:845–849.

  15. de Montigny C, Lamarre Y. Rhythmic activity induced by harmaline in the olivo-cerebello-bulbar system of the cat. Brain Res. 1973;53:81–95.

    Article  PubMed  Google Scholar 

  16. Llinas R, Volkind RA. The olivo-cerebellar system: functional properties as revealed by harmaline-induced tremor. Exp Brain Res. 1973;18:69–87.

    Article  CAS  PubMed  Google Scholar 

  17. Beitz AJ, Saxon D. Harmaline-induced climbing fiber activation causes amino acid and peptide release in the rodent cerebellar cortex and a unique temporal pattern of Fos expression in the olivo-cerebellar pathway. J Neurocytol. 2004;33:49–74.

    Article  CAS  PubMed  Google Scholar 

  18. Llinas R, Muhlethaler M. An electrophysiological study of the in vitro, perfused brain stem-cerebellum of adult guinea-pig. J Physiol. 1988;404:215–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Batini C, Bernard JF, Buisseret-Delmas C, Conrath-Verrier M, Horcholle-Bossavit G. Harmaline-induced tremor. II. Unit activity correlation in the interposito-rubral and oculomotor systems of cat. Exp Brain Res. 1981;42:383–91.

    Article  CAS  PubMed  Google Scholar 

  20. Tian JB, Bishop GA. Stimulus-dependent activation of c-Fos in neurons and glia in the rat cerebellum. J Chem Neuroanat. 2002;23:157–70.

    Article  CAS  PubMed  Google Scholar 

  21. Simantov R, Snyder SH, Oster-Granite ML. Harmaline-induced tremor in the rat: abolition by 3-acetylpyridine destruction of cerebellar climbing fibers. Brain Res. 1976;114:144–51.

    Article  CAS  PubMed  Google Scholar 

  22. Martin FC, Handforth A. Carbenoxolone and mefloquine suppress tremor in the harmaline mouse model of essential tremor. Mov Disord. 2006;21:1641–9.

    Article  PubMed  Google Scholar 

  23. Lorden JF, Stratton SE, Mays LE, Oltmans GA. Purkinje cell activity in rats following chronic treatment with harmaline. Neuroscience. 1988;27:465–72.

    Article  CAS  PubMed  Google Scholar 

  24. Milner TE, Cadoret G, Lessard L, Smith AM. EMG analysis of harmaline-induced tremor in normal and three strains of mutant mice with Purkinje cell degeneration and the role of the inferior olive. J Neurophysiol. 1995;73:2568–77.

    Article  CAS  PubMed  Google Scholar 

  25. McMahon A, Fowler SC, Perney TM, Akemann W, Knopfel T, Joho RH. Allele-dependent changes of olivocerebellar circuit properties in the absence of the voltage-gated potassium channels Kv3.1 and Kv3.3. Eur J Neurosci. 2004;19:3317–27.

    Article  PubMed  Google Scholar 

  26. Hurlock EC, McMahon A, Joho RH. Purkinje-cell-restricted restoration of Kv3.3 function restores complex spikes and rescues motor coordination in Kcnc3 mutants. J Neurosci. 2008;28:4640–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bekar L, Libionka W, Tian GF, et al. Adenosine is crucial for deep brain stimulation-mediated attenuation of tremor. Nat Med. 2008;14:75–80.

    Article  CAS  PubMed  Google Scholar 

  28. Lang EJ. GABAergic and glutamatergic modulation of spontaneous and motor-cortex-evoked complex spike activity. J Neurophysiol. 2002;87:1993–2008.

    Article  CAS  PubMed  Google Scholar 

  29. Mignani S, Bohme GA, Birraux G, et al. 9-Carboxymethyl-5H,10H-imidazo[1,2-a]indeno[1,2-e]pyrazin-4-one-2-carbocylic acid (RPR117824): selective anticonvulsive and neuroprotective AMPA antagonist. Bioorg Med Chem. 2002;10:1627–37.

    Article  CAS  PubMed  Google Scholar 

  30. Paterson NE, Malekiani SA, Foreman MM, Olivier B, Hanania T. Pharmacological characterization of harmaline-induced tremor activity in mice. Eur J Pharmacol. 2009;616:73–80.

    Article  CAS  PubMed  Google Scholar 

  31. Shaffer CL, Hurst RS, Scialis RJ, et al. Positive allosteric modulation of AMPA receptors from efficacy to toxicity: the interspecies exposure-response continuum of the novel potentiator PF-4778574. J Pharmacol Exp Ther. 2013;347:212–24.

    Article  CAS  PubMed  Google Scholar 

  32. Sugihara I, Lang EJ, Llinas R. Serotonin modulation of inferior olivary oscillations and synchronicity: a multiple-electrode study in the rat cerebellum. Eur J Neurosci. 1995;7:521–34.

    Article  CAS  PubMed  Google Scholar 

  33. Wiklund L, Sjolund B, Bjorklund A. Morphological and functional studies on the serotoninergic innervation of the inferior olive. J Physiol. 1981;77:183–6.

    CAS  Google Scholar 

  34. Barragan LA, Delhaye-Bouchaud N, Laget P. Drug-induced activation of the inferior olivary nucleus in young rabbits. Differential effects of harmaline and quipazine. Neuropharmacology. 1985;24:645–54.

    Article  CAS  PubMed  Google Scholar 

  35. Handforth A, Homanics GE, Covey DF, et al. T-type calcium channel antagonists suppress tremor in two mouse models of essential tremor. Neuropharmacology. 2010;59:380–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Park YG, Park HY, Lee CJ, et al. Ca(V)3.1 is a tremor rhythm pacemaker in the inferior olive. PNAS. 2010;107:10731–6.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Boecker H, Wills AJ, Ceballos-Baumann A, et al. The effect of ethanol on alcohol-responsive essential tremor: a positron emission tomography study. Ann Neurol. 1996;39:650–8.

    Article  CAS  PubMed  Google Scholar 

  38. Miwa H, Nishi K, Fuwa T, Mizuno Y. Differential expression of c-fos following administration of two tremorgenic agents: harmaline and oxotremorine. Neuroreport. 2000;11:2385–90.

    Article  CAS  PubMed  Google Scholar 

  39. Dupuis MJ-M, Evrard FLA, Jacquerye PG, Picard GR, Lermen OG. Disappearance of essential tremor after stroke. Mov Disord. 2010;25:2884–7.

    Article  PubMed  Google Scholar 

  40. Handforth A. Harmaline tremor: underlying mechanisms in a potential animal model of essential tremor. Tremor Other Hyperkinet Mov. 2012;2.

  41. Kronenbuerger M, Tronnier VM, Gerwig M, et al. Thalamic deep brain stimulation improves eyeblink conditioning deficits in essential tremor. Exp Neurol. 2008;211:387–96.

    Article  CAS  PubMed  Google Scholar 

  42. Louis ED, Lenka A. The olivary hypothesis of essential tremor: time to lay this model to rest? Tremor Other Hyperkinet Mov. 2017;7:473.

    Google Scholar 

  43. Lang EJ, Sugihara I, Llinas R. Olivocerebellar modulation of motor cortex ability to generate vibrissal movements in rat. J Physiol. 2006;571:101–20.

    Article  CAS  PubMed  Google Scholar 

  44. Vallbo AB, Wessberg J. Organization of motor output in slow finger movements in man. J Physiol. 1993;469:673–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schnitzler A, Timmermann L, Gross J. Physiological and pathological oscillatory networks in the human motor system. J Physiol. 2006;99:3–7.

    Google Scholar 

  46. Schnitzler A, Münks C, Butz M, Timmermann L, Gross J. Synchronized brain network associated with essential tremor as revealed by magnetoencephalography. Mov Disord. 2009;24:1629–35.

    Article  PubMed  Google Scholar 

  47. Nahab FB, Wittevrongel L, Ippolito D, et al. An open-label, single-dose, crossover study of the pharmacokinetics and metabolism of two oral formulations of 1-octanol in patients with essential tremor. Neurotherapeutics. 2011;8:753–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Papapetropoulos S, Lee MS, Boyer S. Proof-of-concept, double-blind, placebo-controlled study for CX-8998, a state-dependent T-type calcium (Cav3) channel antagonist, in essential tremor patients (T-CALM): efficacy and safety results. 2018. Abstract in Movement Disorders Society Meeting.

  49. Sauleau P, Lapouble E, Val-Laillet D, Malbert CH. The pig model in brain imaging and neurosurgery. Animal. 2009;3:1138–51.

    Article  CAS  PubMed  Google Scholar 

  50. Saikali S, Meurice P, Sauleau P, et al. A three-dimensional digital segmented and deformable brain atlas of the domestic pig. J Neurosci Methods. 2010;192:102–9.

    Article  PubMed  Google Scholar 

  51. Rose JE. The thalamus of the sheep: cellular and fibrous structure and comparison with pig, rabbit and cat. J Comp Neurol. 1942;77:469–523.

    Article  Google Scholar 

  52. Wakeman DR, Crain AM, Snyder EY. Large animal models are critical for rationally advancing regenerative therapies. Regen Med. 2006;1:405–13.

    Article  PubMed  Google Scholar 

  53. Felix B, Leger ME, Albe-Fessard D, Marcilloux JC, Rampin O, Laplace JP. Stereotaxic atlas of the pig brain. Brain Res Bull. 1999;49:1–137.

    Article  CAS  PubMed  Google Scholar 

  54. Shon YM, Lee KH, Goerss SJ, et al. High frequency stimulation of the subthalamic nucleus evokes striatal dopamine release in a large animal model of human DBS neurosurgery. Neurosci Lett. 2010;475:136–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Paek SB, Min HK, Kim I, et al. Frequency-dependent functional neuromodulatory effects on the motor network by ventral lateral thalamic deep brain stimulation in swine. Neuroimage. 2015;105:181–8.

    Article  PubMed  Google Scholar 

  56. Lee J, Kim I, Lee J, et al. Development of harmaline-induced tremor in a swine model. Tremor Other Hyperkinet Mov. 2018;8:532.

    Google Scholar 

  57. Raethjen J, Deuschl G. The oscillating central network of essential tremor. Clin Neurophysiol. 2012;123:61–4.

    Article  PubMed  Google Scholar 

  58. Chandran V, Pal PK. Essential tremor: beyond the motor features. Parkinsonism Relat Disord. 2012;18:407–13.

    Article  PubMed  Google Scholar 

  59. Cerasa A, Passamonti L, Novellino F, et al. Fronto-parietal overactivation in patients with essential tremor during Stroop task. Neuroreport. 2010;21:148–51.

    Article  PubMed  Google Scholar 

  60. Cerasa A, Quattrone A. Linking essential tremor to the cerebellum-neuroimaging evidence. Cerebellum. 2016;15:263–75.

    Article  CAS  PubMed  Google Scholar 

  61. Moloudizargari M, Mikaili P, Aghajanshakeri S, Asghari MH, Shayegh J. Pharmacological and therapeutic effects of Peganum harmala and its main alkaloids. Pharmacogn Rev. 2013;7:199–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Louis ED. Non-motor symptoms in essential tremor: a review of the current data and state of the field. Parkinsonism Relat Disord. 2016;22:S115–8.

    Article  PubMed  Google Scholar 

  63. Schwarz L, Riedel C, Hogler S, et al. Congenital infection with atypical porcine pestivirus (APPV) is associated with disease and viral persistence. Vet Res. 2017;48:1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yizhar O, Fenno LE, Davidson TJ, Mogri M, Deisseroth K. Optogenetics in neural systems. Neuron. 2011;71:9–34.

    Article  CAS  PubMed  Google Scholar 

  65. Nakai J, Ohkura M, Imoto K. A high signal-to-noise Ca(2+) probe composed of a single green fluorescent protein. Nat Biotechnol. 2001;19:137–41.

    Article  CAS  PubMed  Google Scholar 

  66. Louis ED, Babij R, Cortes E, Vonsattel J-PG, Faust PL. The inferior olivary nucleus: a postmortem study of essential tremor cases versus controls. Mov Disord. 2013;28:779–86.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Louis ED, Faust PL, Vonsattel JPG, et al. Neuropathological changes in essential tremor: 33 cases compared with 21 controls. Brain. 2007;130:3297–307.

    Article  PubMed  Google Scholar 

  68. Babij R, Lee M, Cortes E, Vonsattel J-PG, Faust PL, Louis ED. Purkinje cell axonal anatomy: quantifying morphometric changes in essential tremor versus control brains. Brain. 2013;136:3051–61.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Erickson-Davis CR, Faust PL, Vonsattel JPG, Gupta S, Honig LS, Louis ED. Hairy baskets associated with degenerative Purkinje cell changes in essential tremor. J Neuropathol Exp Neurol. 2010;69:262–71.

    Article  PubMed  Google Scholar 

  70. Paris-Robidas S, Brochu E, Sintes M, et al. Defective dentate nucleus GABA receptors in essential tremor. Brain. 2012;135:105–16.

    Article  PubMed  Google Scholar 

  71. Louis ED. Re-thinking the biology of essential tremor: from models to morphology. Parkinsonism Relat Disord. 2014;20:S88–93.

    Article  PubMed  Google Scholar 

  72. Llinas R, Baker R, Sotelo C. Electrotonic coupling between neurons in cat inferior olive. J Neurophysiol. 1974;37:560–71.

    Article  CAS  PubMed  Google Scholar 

  73. Blenkinsop TA, Lang EJ. Block of inferior olive gap junctional coupling decreases Purkinje cell complex spike synchrony and rhythmicity. J Neurosci. 2006;26:1739–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Marshall SP, van der Giessen RS, de Zeeuw CI, Lang EJ. Altered olivocerebellar activity patterns in the connexin36 knockout mouse. Cerebellum. 2007;6:287–99.

    Article  CAS  PubMed  Google Scholar 

  75. Lang EJ, Sugihara I, Llinas R. GABAergic modulation of complex spike activity by the cerebellar nucleoolivary pathway in rat. J Neurophysiol. 1996;76:255–75.

    Article  CAS  PubMed  Google Scholar 

  76. De Zeeuw CI, Lang EJ, Sugihara I, et al. Morphological correlates of bilateral synchrony in the rat cerebellar cortex. J Neurosci. 1996;16:3412–26.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Yamamoto T, Fukuda M, Llinas R. Bilaterally synchronous complex spike Purkinje cell activity in the mammalian cerebellum. Eur J Neurosci. 2001;13:327–39.

    Article  CAS  PubMed  Google Scholar 

  78. Aizenman CD, Linden DJ. Regulation of the rebound depolarization and spontaneous firing patterns of deep nuclear neurons in slices of rat cerebellum. J Neurophysiol. 1999;82:1697–709.

    Article  CAS  PubMed  Google Scholar 

  79. Uusisaari M, Obata K, Knopfel T. Morphological and electrophysiological properties of GABAergic and non-GABAergic cells in the deep cerebellar nuclei. J Neurophysiol. 2007;97:901–11.

    Article  CAS  PubMed  Google Scholar 

  80. Blenkinsop TA, Lang EJ. Synaptic action of the olivocerebellar system on cerebellar nuclear spike activity. J Neurosci. 2011;31:14708–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Rowland NC, Jaeger D. Coding of tactile response properties in the rat deep cerebellar nuclei. J Neurophysiol. 2005;94:1236–51.

    Article  PubMed  Google Scholar 

  82. Cerminara NL, Rawson JA. Evidence that climbing fibers control an intrinsic spike generator in cerebellar Purkinje cells. J Neurosci. 2004;24:4510–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Rosen I, Scheid P. Cerebellar surface cooling influencing evoked activity in cortex and in interpositus nucleus. Brain Res. 1972;45:580–4.

    Article  CAS  PubMed  Google Scholar 

  84. Andersson G, Hesslow G. Activity of Purkinje cells and interpositus neurones during and after periods of high frequency climbing fibre activation in the cat. Exp Brain Res. 1987;67:533–42.

    CAS  PubMed  Google Scholar 

  85. Wise AK, Cerminara NL, Marple-Horvat DE, Apps R. Mechanisms of synchronous activity in cerebellar Purkinje cells. J Physiol. 2010;588:2373–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Heck DH, Thach WT, Keating JG. On-beam synchrony in the cerebellum as the mechanism for the timing and coordination of movement. PNAS. 2007;104:7658–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bell CC, Grimm RJ. Discharge properties of Purkinje cells recorded on single and double microelectrodes. J Neurophysiol. 1969;32:1044–55.

    Article  CAS  PubMed  Google Scholar 

  88. Marshall SP, Lang EJ. Local changes in the excitability of the cerebellar cortex produce spatially restricted changes in complex spike synchrony. J Neurosci. 2009;29:14352–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Handforth A. Linking essential tremor to the cerebellum-animal model evidence. Cerebellum. 2016;15:285–98.

    Article  PubMed  Google Scholar 

  90. Person AL, Raman IM. Purkinje neuron synchrony elicits time-locked spiking in the cerebellar nuclei. Nature. 2011;481:502–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hawkes R, Leclerc N. Purkinje cell axon collateral distributions reflect the chemical compartmentation of the rat cerebellar cortex. Brain Res. 1989;476:279–90.

    Article  CAS  PubMed  Google Scholar 

  92. Sugihara I, Shinoda Y. Molecular, topographic, and functional organization of the cerebellar nuclei: analysis by three-dimensional mapping of the olivonuclear projection and aldolase C labeling. J Neurosci. 2007;27:9696–710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chung SH, Marzban H, Hawkes R. Compartmentation of the cerebellar nuclei of the mouse. Neuroscience. 2009;161:123–38.

    Article  CAS  PubMed  Google Scholar 

  94. White JJ, Arancillo M, King A, et al. Pathogenesis of severe ataxia and tremor without the typical signs of neurodegeneration. Neurobiol Dis. 2016;86:86–98.

    Article  CAS  PubMed  Google Scholar 

  95. Jiao Y, Yan J, Zhao Y, et al. Carbonic anhydrase-related protein VIII deficiency is associated with a distinctive lifelong gait disorder in waddles mice. Genetics. 2005;171:1239–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kato K. Sequence of a novel carbonic anhydrase-related polypeptide and its exclusive presence in Purkinje cells. FEBS Lett. 1990;271:137–40.

    Article  CAS  PubMed  Google Scholar 

  97. Taniuchi K, Nishimori I, Takeuchi T, Ohtsuki Y, Onishi S. cDNA cloning and developmental expression of murine carbonic anhydrase-related proteins VIII, X, and XI. Brain Res Mol Brain Res. 2002;109:207–15.

    Article  CAS  PubMed  Google Scholar 

  98. Tripp BC, Smith K, Ferry JG. Carbonic anhydrase: new insights for an ancient enzyme. J Biol Chem. 2001;276:48615–8.

    Article  CAS  PubMed  Google Scholar 

  99. Hirota J, Ando H, Hamada K, Mikoshiba K. Carbonic anhydrase-related protein is a novel binding protein for inositol 1,4,5-trisphosphate receptor type 1. Biochem J. 2003;372:435–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Turkmen S, Guo G, Garshasbi M, et al. CA8 mutations cause a novel syndrome characterized by ataxia and mild mental retardation with predisposition to quadrupedal gait. PLoS Genet. 2009;5:e1000487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kaya N, Aldhalaan H, Al-Younes B, et al. Phenotypical spectrum of cerebellar ataxia associated with a novel mutation in the CA8 gene, encoding carbonic anhydrase (CA) VIII. Am J Med Genet B Neuropsychiatr Genet. 2011;156b:826–34.

    Article  CAS  PubMed  Google Scholar 

  102. Miterko LN, White JJ, Lin T, Brown AM, O’Donovan KJ, Sillitoe RV. Persistent motor dysfunction despite homeostatic rescue of cerebellar morphogenesis in the Car8 waddles mutant mouse. Neural Dev. 2019;14:6.

  103. Hirasawa M, Xu X, Trask RB, et al. Carbonic anhydrase related protein 8 mutation results in aberrant synaptic morphology and excitatory synaptic function in the cerebellum. Mol Cell Neurosci. 2007;35:161–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. White JJ, Arancillo M, Stay TL, et al. Cerebellar zonal patterning relies on Purkinje cell neurotransmission. J Neurosci. 2014;34:8231–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Arancillo M, White JJ, Lin T, Stay TL, Sillitoe RV. In vivo analysis of Purkinje cell firing properties during postnatal mouse development. J Neurophysiol. 2015;113:578–91.

    Article  PubMed  Google Scholar 

  106. White JJ, Sillitoe RV. Genetic silencing of olivocerebellar synapses causes dystonia-like behaviour in mice. Nat Commun. 2017;8:14912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Chaumont J, Guyon N, Valera AM, et al. Clusters of cerebellar Purkinje cells control their afferent climbing fiber discharge. PNAS. 2013;110:16223–8.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Witter L, Canto CB, Hoogland TM, de Gruijl JR, De Zeeuw CI. Strength and timing of motor responses mediated by rebound firing in the cerebellar nuclei after Purkinje cell activation. Front Neural Circuits. 2013;7:133.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Luna-Cancalon K, Sikora KM, Pappas SS, et al. Alterations in cerebellar physiology are associated with a stiff-legged gait in Atcay(ji-hes) mice. Neurobiol Dis. 2014;67:140–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Calderon DP, Fremont R, Kraenzlin F, Khodakhah K. The neural substrates of rapid-onset dystonia-parkinsonism. Nat Neurosci. 2011;14:357–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Fremont R, Tewari A, Angueyra C, Khodakhah K. A role for cerebellum in the hereditary dystonia DYT1. Elife. 2017;6.

  112. Walter JT, Alvina K, Womack MD, Chevez C, Khodakhah K. Decreases in the precision of Purkinje cell pacemaking cause cerebellar dysfunction and ataxia. Nat Neurosci. 2006;9:389–97.

    Article  CAS  PubMed  Google Scholar 

  113. Fremont R, Calderon DP, Maleki S, Khodakhah K. Abnormal high-frequency burst firing of cerebellar neurons in rapid-onset dystonia-parkinsonism. J Neurosci. 2014;34:11723–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hoebeek FE, Stahl JS, van Alphen AM, et al. Increased noise level of purkinje cell activities minimizes impact of their modulation during sensorimotor control. Neuron. 2005;45:953–65.

    Article  CAS  PubMed  Google Scholar 

  115. Alvina K, Khodakhah K. The therapeutic mode of action of 4-aminopyridine in cerebellar ataxia. J Neurosci. 2010;30:7258–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Jayabal S, Chang HH, Cullen KE, Watt AJ. 4-Aminopyridine reverses ataxia and cerebellar firing deficiency in a mouse model of spinocerebellar ataxia type 6. Sci Rep. 2016;6:29489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Glasauer S, Kalla R, Buttner U, Strupp M, Brandt T. 4-aminopyridine restores visual ocular motor function in upbeat nystagmus. J Neurol Neurosurg Psychiatry. 2005;76:451–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kalla R, Glasauer S, Buttner U, Brandt T, Strupp M. 4-Aminopyridine restores vertical and horizontal neural integrator function in downbeat nystagmus. Brain. 2007;130:2441–51.

    Article  PubMed  Google Scholar 

  119. Lohle M, Schrempf W, Wolz M, Reichmann H, Storch A. Potassium channel blocker 4-aminopyridine is effective in interictal cerebellar symptoms in episodic ataxia type 2--a video case report. Mov Disord. 2008;23:1314–6.

    Article  PubMed  Google Scholar 

  120. Strupp M, Kalla R, Dichgans M, Freilinger T, Glasauer S, Brandt T. Treatment of episodic ataxia type 2 with the potassium channel blocker 4-aminopyridine. Neurology. 2004;62:1623–5.

    Article  CAS  PubMed  Google Scholar 

  121. Schniepp R, Wuehr M, Ackl N, et al. 4-Aminopyridine improves gait variability in cerebellar ataxia due to CACNA1A mutation. J Neurol. 2011;258:1708–11.

    Article  PubMed  Google Scholar 

  122. Schniepp R, Jakl V, Wuehr M, et al. Treatment with 4-aminopyridine improves upper limb tremor of a patient with multiple sclerosis: a video case report. Mult Scler. 2013;19:506–8.

    Article  PubMed  Google Scholar 

  123. Hopfner F, Helmich RC. The etiology of essential tremor: genes versus environment. Parkinsonism Relat Disord. 2018;46:S92–s96.

    Article  PubMed  Google Scholar 

  124. Lou JS, Jankovic J. Essential tremor: clinical correlates in 350 patients. Neurology. 1991;41:234–8.

    Article  CAS  PubMed  Google Scholar 

  125. Louis ED. Clinical practice. Essential tremor. N Engl J Med. 2001;345:887–91.

    Article  CAS  PubMed  Google Scholar 

  126. Deuschl G, Petersen I, Lorenz D, Christensen K. Tremor in the elderly: essential and aging-related tremor. Mov Disord. 2015;30:1327–34.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Liu X, Hernandez N, Kisselev S, et al. Identification of candidate genes for familial early-onset essential tremor. Eur J Hum Genet. 2016;24:1009–15.

    Article  CAS  PubMed  Google Scholar 

  128. Kuhlenbaumer G, Hopfner F, Deuschl G. Genetics of essential tremor: meta-analysis and review. Neurology. 2014;82:1000–7.

    Article  PubMed  Google Scholar 

  129. Fahn S. The 200-year journey of Parkinson disease: reflecting on the past and looking towards the future. Parkinsonism Relat Disord. 2018;46(Suppl 1):S1–s5.

    Article  PubMed  Google Scholar 

  130. Schober A. Classic toxin-induced animal models of Parkinson’s disease: 6-OHDA and MPTP. Cell Tissue Res. 2004;318:215–24.

    Article  PubMed  Google Scholar 

  131. Yao C, El Khoury R, Wang W, et al. LRRK2-mediated neurodegeneration and dysfunction of dopaminergic neurons in a Caenorhabditis elegans model of Parkinson’s disease. Neurobiol Dis. 2010;40:73–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Rocha EM, Smith GA, Park E, et al. Glucocerebrosidase gene therapy prevents alpha-synucleinopathy of midbrain dopamine neurons. Neurobiol Dis. 2015;82:495–503.

    Article  CAS  PubMed  Google Scholar 

  133. Choe M, Cortes E, Vonsattel JP, Kuo SH, Faust PL, Louis ED. Purkinje cell loss in essential tremor: random sampling quantification and nearest neighbor analysis. Mov Disord. 2016;31:393–401.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Kuo SH, Erickson-Davis C, Gillman A, Faust PL, Vonsattel JPG, Louis ED. Increased number of heterotopic Purkinje cells in essential tremor. J Neurol Neurosurg Psychiatry. 2011;82:1038–40.

    Article  PubMed  Google Scholar 

  135. Louis ED, Kuo SH, Tate WJ, et al. Heterotopic Purkinje cells: a comparative postmortem study of essential tremor and spinocerebellar ataxias 1, 2, 3, and 6. Cerebellum. 2018;17:104–10.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Kuo SH, Tang G, Louis ED, et al. Lingo-1 expression is increased in essential tremor cerebellum and is present in the basket cell pinceau. Acta Neuropathol. 2013;125:879–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Miyazaki T, Yamasaki M, Takeuchi T, Sakimura K, Mishina M, Watanabe M. Ablation of glutamate receptor GluRdelta2 in adult Purkinje cells causes multiple innervation of climbing fibers by inducing aberrant invasion to parallel fiber innervation territory. J Neurosci. 2010;30:15196–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Watanabe M. Molecular mechanisms governing competitive synaptic wiring in cerebellar Purkinje cells. Tohoku J Exp Med. 2008;214:175–90.

    Article  CAS  PubMed  Google Scholar 

  139. Lin CY, Louis ED, Faust PL, Koeppen AH, Vonsattel JPG, Kuo SH. Abnormal climbing fibre-Purkinje cell synaptic connections in the essential tremor cerebellum. Brain. 2014;137:3149–59.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Kuo SH, Lin CY, Wang J, et al. Climbing fiber-Purkinje cell synaptic pathology in tremor and cerebellar degenerative diseases. Acta Neuropathol. 2017;133:121–38.

    Article  PubMed  Google Scholar 

  141. Lee D, Gan SR, Faust PL, Louis ED, Kuo SH. Climbing fiber-Purkinje cell synaptic pathology across essential tremor subtypes. Parkinsonism Relat Disord. 2018;51:24–9.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Qiao S, Kim SH, Heck D, Goldowitz D, LeDoux MS, Homayouni R. Dab2IP GTPase activating protein regulates dendrite development and synapse number in cerebellum. PLoS One. 2013;8:e53635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Yuzaki M. New (but old) molecules regulating synapse integrity and plasticity: Cbln1 and the delta2 glutamate receptor. Neuroscience. 2009;162:633–43.

    Article  CAS  PubMed  Google Scholar 

  144. Yuzaki M. Cbln1 and its family proteins in synapse formation and maintenance. Curr Opin Neurobiol. 2011;21:215–20.

    Article  CAS  PubMed  Google Scholar 

  145. Schols L, Peters S, Szymanski S, et al. Extrapyramidal motor signs in degenerative ataxias. Arch Neurol. 2000;57:1495–500.

    Article  CAS  PubMed  Google Scholar 

  146. Gan SR, Wang J, Figueroa KP, et al. Postural tremor and ataxia progression in spinocerebellar ataxias. Tremor Other Hyperkinet Mov. 2017;7:492.

    Google Scholar 

  147. Pulst SM, Nechiporuk A, Nechiporuk T, et al. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet. 1996;14:269–76.

    Article  CAS  PubMed  Google Scholar 

  148. Scoles DR, Pulst SM. Spinocerebellar ataxia type 2. Adv Exp Med Biol. 2018;1049:175–95.

    Article  CAS  PubMed  Google Scholar 

  149. Pulst SM. Degenerative ataxias, from genes to therapies: the 2015 Cotzias lecture. Neurology. 2016;86:2284–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Hayes S, Turecki G, Brisebois K, et al. CAG repeat length in RAI1 is associated with age at onset variability in spinocerebellar ataxia type 2 (SCA2). Hum Mol Genet. 2000;9:1753–8.

    Article  CAS  PubMed  Google Scholar 

  151. Figueroa KP, Coon H, Santos N, Velazquez L, Mederos LA, Pulst SM. Genetic analysis of age at onset variation in spinocerebellar ataxia type 2. Neurol Genet. 2017;3:e155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Nechiporuk T, Huynh DP, Figueroa K, Sahba S, Nechiporuk A, Pulst SM. The mouse SCA2 gene: cDNA sequence, alternative splicing and protein expression. Hum Mol Genet. 1998;7:1301–9.

    Article  CAS  PubMed  Google Scholar 

  153. Huynh DP, Figueroa K, Hoang N, Pulst SM. Nuclear localization or inclusion body formation of ataxin-2 are not necessary for SCA2 pathogenesis in mouse or human. Nat Genet. 2000;26:44–50.

    Article  CAS  PubMed  Google Scholar 

  154. Dansithong W, Paul S, Figueroa KP, et al. Ataxin-2 regulates RGS8 translation in a new BAC-SCA2 transgenic mouse model. PLoS Genet. 2015;11:e1005182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Hansen ST, Meera P, Otis TS, Pulst SM. Changes in Purkinje cell firing and gene expression precede behavioral pathology in a mouse model of SCA2. Hum Mol Genet. 2013;22:271–83.

    Article  CAS  PubMed  Google Scholar 

  156. Hausser M, Clark BA. Tonic synaptic inhibition modulates neuronal output pattern and spatiotemporal synaptic integration. Neuron. 1997;19:665–78.

    Article  CAS  PubMed  Google Scholar 

  157. Raman IM, Bean BP. Ionic currents underlying spontaneous action potentials in isolated cerebellar Purkinje neurons. J Neurosci. 1999;19:1663–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Smith SL, Otis TS. Persistent changes in spontaneous firing of Purkinje neurons triggered by the nitric oxide signaling cascade. J Neurosci. 2003;23:367–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Kasumu AW, Hougaard C, Rode F, et al. Selective positive modulator of calcium-activated potassium channels exerts beneficial effects in a mouse model of spinocerebellar ataxia type 2. Chem Biol. 2012;19:1340–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Kasumu AW, Liang X, Egorova P, Vorontsova D, Bezprozvanny I. Chronic suppression of inositol 1,4,5-triphosphate receptor-mediated calcium signaling in cerebellar purkinje cells alleviates pathological phenotype in spinocerebellar ataxia 2 mice. J Neurosci. 2012;32:12786–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Egorova P, Popugaeva E, Bezprozvanny I. Disturbed calcium signaling in spinocerebellar ataxias and Alzheimer’s disease. Semin Cell Dev Biol. 2015;40:127–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Lee KH, Mathews PJ, Reeves AM, et al. Circuit mechanisms underlying motor memory formation in the cerebellum. Neuron. 2015;86:529–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Meera P, Pulst SM, Otis TS. Cellular and circuit mechanisms underlying spinocerebellar ataxias. J Physiol. 2016;594:4653–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Beliveau E, Tremblay C, Aubry-Lafontaine E, et al. Accumulation of amyloid-beta in the cerebellar cortex of essential tremor patients. Neurobiol Dis. 2015;82:397–408.

    Article  CAS  PubMed  Google Scholar 

  165. Shin H, Lee DK, Lee JM, et al. Atrophy of the cerebellar vermis in essential tremor: segmental volumetric MRI analysis. Cerebellum. 2016;15:174–81.

    Article  PubMed  Google Scholar 

  166. Benito-Leon J. Essential tremor: a neurodegenerative disease? Tremor Other Hyperkinet Mov. 2014;4:252.

    Google Scholar 

  167. Stolze H, Petersen G, Raethjen J, Wenzelburger R, Deuschl G. The gait disorder of advanced essential tremor. Brain. 2001;124:2278–86.

    Article  CAS  PubMed  Google Scholar 

  168. La Regina MC, Yates-Siilata K, Woods L, Tolbert D. Preliminary characterization of hereditary cerebellar ataxia in rats. Lab Anim Sci. 1992;42:19–26.

    PubMed  Google Scholar 

  169. Figueroa KP, Paul S, Cali T, et al. Spontaneous shaker rat mutant - a new model for X-linked tremor/ataxia. Dis Model Mech. 2016;9:553–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Anderson CJ, Figueroa KP, Dorval AD, Pulst SM. Deep cerebellar stimulation reduces ataxic motor symptoms in the shaker rat. Ann Neurol. 2019.

  171. Scoles DR, Meera P, Schneider MD, et al. Antisense oligonucleotide therapy for spinocerebellar ataxia type 2. Nature. 2017;544:362–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Rub U, Del Turco D, Burk K, et al. Extended pathoanatomical studies point to a consistent affection of the thalamus in spinocerebellar ataxia type 2. Neuropathol Appl Neurobiol. 2005;31:127–40.

    Article  CAS  PubMed  Google Scholar 

  173. Tass P, Smirnov D, Karavaev A, et al. The causal relationship between subcortical local field potential oscillations and parkinsonian resting tremor. J Neural Eng. 2010;7:16009.

    Article  PubMed  Google Scholar 

  174. Williams ER, Soteropoulos DS, Baker SN. Spinal interneuron circuits reduce approximately 10-Hz movement discontinuities by phase cancellation. PNAS. 2010;107:11098–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Servais L, Hourez R, Bearzatto B, Gall D, Schiffmann SN, Cheron G. Purkinje cell dysfunction and alteration of long-term synaptic plasticity in fetal alcohol syndrome. PNAS. 2007;104:9858–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Rasch MJ, Gretton A, Murayama Y, Maass W, Logothetis NK. Inferring spike trains from local field potentials. J Neurophysiol. 2008;99:1461–76.

    Article  PubMed  Google Scholar 

  177. Sieghart W. Structure and pharmacology of gamma-aminobutyric acid A receptor subtypes. Pharmacol Rev. 1995;47:181–234.

    CAS  PubMed  Google Scholar 

  178. Deuschl G, Raethjen J, Hellriegel H, Elble R. Treatment of patients with essential tremor. Lancet Neurol. 2011;10:14–4.

  179. Vicini S, Ferguson C, Prybylowski K, Kralic J, Morrow AL, Homanics GE. GABA(A) receptor alpha1 subunit deletion prevents developmental changes of inhibitory synaptic currents in cerebellar neurons. J Neurosci. 2001;21:3009–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Sur C, Wafford KA, Reynolds DS, et al. Loss of the major GABA(A) receptor subtype in the brain is not lethal in mice. J Neurosci. 2001;21:3409–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Kralic JE, Criswell HE, Osterman JL, et al. Genetic essential tremor in gamma-aminobutyric acid A receptor alpha1 subunit knockout mice. J Clin Invest. 2005;115:774–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Thier S, Kuhlenbaumer G, Lorenz D, et al. GABA(A) receptor- and GABA transporter polymorphisms and risk for essential tremor. Eur J Neurol. 2011;18:1098–100.

    Article  CAS  PubMed  Google Scholar 

  183. Deng H, Xie WJ, Le WD, Huang MS, Jankovic J. Genetic analysis of the GABRA1 gene in patients with essential tremor. Neurosci Lett. 2006;401:16–9.

    Article  CAS  PubMed  Google Scholar 

  184. Arain F, Zhou C, Ding L, Zaidi S, Gallagher MJ. The developmental evolution of the seizure phenotype and cortical inhibition in mouse models of juvenile myoclonic epilepsy. Neurobiol Dis. 2015;82:164–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Arain FM, Boyd KL, Gallagher MJ. Decreased viability and absence-like epilepsy in mice lacking or deficient in the GABAA receptor alpha1 subunit. Epilepsia. 2012;53:e161–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Cossette P, Liu L, Brisebois K, et al. Mutation of GABRA1 in an autosomal dominant form of juvenile myoclonic epilepsy. Nat Genet. 2002;31:184–9.

    Article  CAS  PubMed  Google Scholar 

  187. Allen AS, Berkovic SF, Cossette P, et al. De novo mutations in epileptic encephalopathies. Nature. 2013;501:217–21.

    Article  CAS  PubMed  Google Scholar 

  188. Carvill GL, Weckhuysen S, McMahon JM, et al. GABRA1 and STXBP1: novel genetic causes of Dravet syndrome. Neurology. 2014;82:1245–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Lachance-Touchette P, Brown P, Meloche C, et al. Novel alpha1 and gamma2 GABAA receptor subunit mutations in families with idiopathic generalized epilepsy. Eur J Neurosci. 2011;34:237–49.

    Article  PubMed  Google Scholar 

  190. Zhou C, Huang Z, Ding L, et al. Altered cortical GABAA receptor composition, physiology, and endocytosis in a mouse model of a human genetic absence epilepsy syndrome. J Biol Chem. 2013;288:21458–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Goodkin HP, Joshi S, Mtchedlishvili Z, Brar J, Kapur J. Subunit-specific trafficking of GABA(A) receptors during status epilepticus. J Neurosci. 2008;28:2527–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Frankle WG, Cho RY, Mason NS, et al. [11C]flumazenil binding is increased in a dose-dependent manner with tiagabine-induced elevations in GABA levels. PLoS One. 2012;7:e32443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Zhou C, Ding L, Deel ME, Ferrick EA, Emeson RB, Gallagher MJ. Altered intrathalamic GABAA neurotransmission in a mouse model of a human genetic absence epilepsy syndrome. Neurobiol Dis. 2015;73:407–17.

    Article  CAS  PubMed  Google Scholar 

  194. De Stasi AM, Farisello P, Marcon I, et al. Unaltered network activity and interneuronal firing during spontaneous cortical dynamics in vivo in a mouse model of severe myoclonic epilepsy of infancy. Cereb Cortex. 2016;26:1778–94.

    Article  PubMed  PubMed Central  Google Scholar 

  195. Hedrich UB, Liautard C, Kirschenbaum D, et al. Impaired action potential initiation in GABAergic interneurons causes hyperexcitable networks in an epileptic mouse model carrying a human Na(V)1.1 mutation. J Neurosci. 2014;34:14874–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Louis ED, Hernandez N, Dyke JP, Ma RE, Dydak U. In vivo dentate nucleus gamma-aminobutyric acid concentration in essential tremor vs. controls. Cerebellum. 2018;17:165–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Wisden W, Herb A, Wieland H, Keinanen K, Luddens H, Seeburg PH. Cloning, pharmacological characteristics and expression pattern of the rat GABAA receptor alpha 4 subunit. FEBS Lett. 1991;289:227–30.

    Article  CAS  PubMed  Google Scholar 

  198. Olsen RW, Sieghart W. GABA A receptors: subtypes provide diversity of function and pharmacology. Neuropharmacology. 2009;56:141–8.

    Article  CAS  PubMed  Google Scholar 

  199. Pym LJ, Cook SM, Rosahl T, McKernan RM, Atack JR. Selective labelling of diazepam-insensitive GABAA receptors in vivo using [3H]Ro 15-4513. Br J Pharmacol. 2005;146:817–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Brooks-Kayal AR, Russek SJ. Regulation of GABAA receptor gene expression and epilepsy. In: th, Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV, eds. Jasper’s basic mechanisms of the epilepsies. Bethesda (MD): National Center for Biotechnology Information (US).

  201. Grabenstatter HL, Cogswell M, Cruz Del Angel Y, et al. Effect of spontaneous seizures on GABAA receptor alpha4 subunit expression in an animal model of temporal lobe epilepsy. Epilepsia. 2014;55:1826–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Grabenstatter HL, Del Angel YC, Carlsen J, et al. The effect of STAT3 inhibition on status epilepticus and subsequent spontaneous seizures in the pilocarpine model of acquired epilepsy. Neurobiol Dis. 2014;62:73–85.

    Article  CAS  PubMed  Google Scholar 

  203. Grabenstatter HL, Russek SJ, Brooks-Kayal AR. Molecular pathways controlling inhibitory receptor expression. Epilepsia. 2012;53(S9):71–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Roberts DS, Raol YH, Bandyopadhyay S, et al. Egr3 stimulation of GABRA4 promoter activity as a mechanism for seizure-induced up-regulation of GABA(A) receptor alpha4 subunit expression. PNAS. 2005;102:11894–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Lorenz D, Deuschl G. Update on pathogenesis and treatment of essential tremor. Curr Opin Neurol. 2007;20:447–52.

    Article  CAS  PubMed  Google Scholar 

  206. Lee CH, MacKinnon R. Structures of the human HCN1 hyperpolarization-activated channel. Cell. 2017;168:111–20 e111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Biel M, Wahl-Schott C, Michalakis S, Zong X. Hyperpolarization-activated cation channels: from genes to function. Physiol Rev. 2009;89:847–85.

    Article  CAS  PubMed  Google Scholar 

  208. Notomi T, Shigemoto R. Immunohistochemical localization of Ih channel subunits, HCN1-4, in the rat brain. J Comp Neurol. 2004;471:241–76.

    Article  CAS  PubMed  Google Scholar 

  209. Zolles G, Wenzel D, Bildl W, et al. Association with the auxiliary subunit PEX5R/Trip8b controls responsiveness of HCN channels to cAMP and adrenergic stimulation. Neuron. 2009;62:814–25.

    Article  CAS  PubMed  Google Scholar 

  210. Heuermann RJ, Jaramillo TC, Ying SW, et al. Reduction of thalamic and cortical Ih by deletion of TRIP8b produces a mouse model of human absence epilepsy. Neurobiol Dis. 2016;85:81–92.

    Article  CAS  PubMed  Google Scholar 

  211. Lyman KA, Han Y, Chetkovich DM. Animal models suggest the TRIP8b-HCN interaction is a therapeutic target for major depressive disorder. Expert Opin Ther Targets. 2017;21:235–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Han Y, Heuermann RJ, Lyman KA, Fisher D, Ismail QA, Chetkovich DM. HCN-channel dendritic targeting requires bipartite interaction with TRIP8b and regulates antidepressant-like behavioral effects. Mol Psychiatry. 2017;22:458–65.

    Article  CAS  PubMed  Google Scholar 

  213. Lyman KA, Han Y, Heuermann RJ, et al. Allostery between two binding sites in the ion channel subunit TRIP8b confers binding specificity to HCN channels. J Biol Chem. 2017;292:17718–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Shaikh AG, Miura K, Optican LM, Ramat S, Tripp RM, Zee DS. Hypothetical membrane mechanisms in essential tremor. J Transl Med. 2008;6:68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. DiFrancesco D, Borer JS. The funny current: cellular basis for the control of heart rate. Drugs. 2007;67(Suppl 2):15–24.

    Article  PubMed  Google Scholar 

  216. Bal T, McCormick DA. Synchronized oscillations in the inferior olive are controlled by the hyperpolarization-activated cation current I(h). J Neurophysiol. 1997;77:3145–56.

    Article  CAS  PubMed  Google Scholar 

  217. Wahl-Schott C, Biel M. HCN channels: structure, cellular regulation and physiological function. Cell Mol Life Sci. 2009;66:470–94.

    Article  CAS  PubMed  Google Scholar 

  218. Morgan JC, Sethi KD. Drug-induced tremors. Lancet Neurol. 2005;4:866–76.

    Article  CAS  PubMed  Google Scholar 

  219. Young RR, Growdon JH, Shahani BT. Beta-adrenergic mechanisms in action tremor. N Engl J Med. 1975;293:950–3.

    Article  CAS  PubMed  Google Scholar 

  220. Leigh PN, Jefferson D, Twomey A, Marsden CD. Beta-adrenoreceptor mechanisms in essential tremor; a double-blind placebo controlled trial of metoprolol, sotalol and atenolol. J Neurol Neurosurg Psychiatry. 1983;46:710–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Drayer DE. Lipophilicity, hydrophilicity, and the central nervous system side effects of beta blockers. Pharmacotherapy. 1987;7:87–91.

    Article  CAS  PubMed  Google Scholar 

  222. Ondo W. Essential tremor: what we can learn from current pharmacotherapy. Tremor Other Hyperkinet Mov. 2016;6:356.

    Google Scholar 

  223. Rainbow TC, Parsons B, Wolfe BB. Quantitative autoradiography of beta 1- and beta 2-adrenergic receptors in rat brain. PNAS. 1984;81:1585–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Daly JW, Padgett W, Creveling CR, Cantacuzene D, Kirk KL. Cyclic AMP-generating systems: regional differences in activation by adrenergic receptors in rat brain. J Neurosci. 1981;1:49–59.

    Article  PubMed  PubMed Central  Google Scholar 

  225. Long MA, Deans MR, Paul DL, Connors BW. Rhythmicity without synchrony in the electrically uncoupled inferior olive. J Neurosci. 2002;22:10898–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Luthi A, McCormick DA. H-current: properties of a neuronal and network pacemaker. Neuron. 1998;21:9–12.

    Article  CAS  PubMed  Google Scholar 

  227. Matsumoto-Makidono Y, Nakayama H, Yamasaki M, et al. Ionic basis for membrane potential resonance in neurons of the inferior olive. Cell Rep. 2016;16:994–1004.

    Article  CAS  PubMed  Google Scholar 

  228. Biggio G, Costa E, Guidotti A. Pharmacologically induced changes in the 3′:5′-cyclic guanosine monophosphate content of rat cerebellar cortex: difference between apomorphine, haloperidol and harmaline. J Pharmacol Exp Ther. 1977;200:207–15.

    CAS  PubMed  Google Scholar 

  229. Flora ED, Perera CL, Cameron AL, Maddern GJ. Deep brain stimulation for essential tremor: a systematic review. Mov Disord. 2010;25:1550–9.

    Article  PubMed  Google Scholar 

  230. Lewis AS, Chetkovich DM. HCN channels in behavior and neurological disease: too hyper or not active enough? Mol Cell Neurosci. 2011;46:357–67.

    Article  CAS  PubMed  Google Scholar 

  231. Ohno Y, Shimizu S, Tatara A, et al. Hcn1 is a tremorgenic genetic component in a rat model of essential tremor. PLoS One. 2015;10:e0123529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Nishitani A, Tanaka M, Shimizu S, et al. Involvement of aspartoacylase in tremor expression in rats. Exp Anim. 2016;65:293–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Nava C, Dalle C, Rastetter A, et al. De novo mutations in HCN1 cause early infantile epileptic encephalopathy. Nat Genet. 2014;46:640–5.

    Article  CAS  PubMed  Google Scholar 

  234. Hopfner F, Deuschl G. Is essential tremor a single entity. Eur J Neurol. 2018;25:71–82.

    Article  CAS  PubMed  Google Scholar 

  235. Clark LN, Louis ED. Essential tremor. Handb Clin Neurol. 2018;147:229–39.

    Article  PubMed  PubMed Central  Google Scholar 

  236. Clark LN, Louis ED. Challenges in essential tremor genetics. Rev Neurol. 2015;171:466–74.

    Article  CAS  PubMed  Google Scholar 

  237. Odgerel Z, Hernandez N, Park J, Ottman R, Louis ED, Clark LN. Whole genome sequencing and rare variant analysis in essential tremor families. bioRxiv The Preprint Server for Biology 2018; https://doi.org/10.1101/248443.

  238. Bergareche A, Bednarz M, Sanchez E, et al. SCN4A pore mutation pathogenetically contributes to autosomal dominant essential tremor and may increase susceptibility to epilepsy. Hum Mol Genet. 2015;24:7111–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Leng XR, Qi XH, Zhou YT, Wang YP. Gain-of-function mutation p.Arg225Cys in SCN11A causes familial episodic pain and contributes to essential tremor. J Hum Genet. 2017;62:641–6.

    Article  CAS  PubMed  Google Scholar 

  240. Trimmer JS. Subcellular localization of K+ channels in mammalian brain neurons: remarkable precision in the midst of extraordinary complexity. Neuron. 2015;85:238–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Salinas M, Duprat F, Heurteaux C, Hugnot JP, Lazdunski M. New modulatory alpha subunits for mammalian Shab K+ channels. J Biol Chem. 1997;272:24371–9.

    Article  CAS  PubMed  Google Scholar 

  242. Smith P, Arias R, Sonti S, et al. A Drosophila model of essential tremor. Sci Rep. 2018;8:7664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Llinas RR. The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science. 1988;242:1654–64.

    Article  CAS  PubMed  Google Scholar 

  244. Perez-Reyes E. Molecular physiology of low-voltage-activated t-type calcium channels. Physiol Rev. 2003;83:117–61.

    Article  CAS  PubMed  Google Scholar 

  245. Sarnthein J, Jeanmonod D. High thalamocortical theta coherence in patients with Parkinson’s disease. J Neurosci. 2007;27:124–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Sinton CM, Krosser BI, Walton KD, Llinas RR. The effectiveness of different isomers of octanol as blockers of harmaline-induced tremor. Pflugers Arch. 1989;414:31–6.

    Article  CAS  PubMed  Google Scholar 

  247. Coutelier M, Blesneac I, Monteil A, et al. A recurrent mutation in CACNA1G alters Cav3.1 T-type calcium-channel conduction and causes autosomal-dominant cerebellar ataxia. Am J Hum Genet. 2015;97:726–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Cain SM, Snutch TP. Voltage-gated calcium channels and disease. Biofactors. 2011;37:197–205.

    Article  CAS  PubMed  Google Scholar 

  249. Eckle VS, Shcheglovitov A, Vitko I, et al. Mechanisms by which a CACNA1H mutation in epilepsy patients increases seizure susceptibility. J Physiol. 2014;592:795–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Huc S, Monteil A, Bidaud I, Barbara G, Chemin J, Lory P. Regulation of T-type calcium channels: signalling pathways and functional implications. Biochim Biophys Acta. 2009;1793:947–52.

    Article  CAS  PubMed  Google Scholar 

  251. Kumar P, Kumar D, Jha SK, Jha NK, Ambasta RK. Ion channels in neurological disorders. Adv Protein Chem Struct Biol. 2016;103:97–136.

    Article  CAS  PubMed  Google Scholar 

  252. Zhang Y, Zhang XF, Fleming MR, et al. Kv3.3 channels bind Hax-1 and Arp2/3 to assemble a stable local actin network that regulates channel gating. Cell. 2016;165:434–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Bilen J, Bonini NM. Drosophila as a model for human neurodegenerative disease. Annu Rev Genet. 2005;39:153–71.

    Article  CAS  PubMed  Google Scholar 

  254. Brand AH, Perrimon N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development. 1993;118:401–15.

    CAS  PubMed  Google Scholar 

  255. McGurk L, Berson A, Bonini NM. Drosophila as an in vivo model for human neurodegenerative disease. Genetics. 2015;201:377–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Merner ND, Girard SL, Catoire H, et al. Exome sequencing identifies FUS mutations as a cause of essential tremor. Am J Hum Genet. 2012;91:313–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Willcox BJ, Donlon TA, He Q, et al. FOXO3A genotype is strongly associated with human longevity. PNAS. 2008;105:13987–92.

    Article  PubMed  PubMed Central  Google Scholar 

  258. Reiter LT, Potocki L, Chien S, Gribskov M, Bier E. A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Res. 2001;11:1114–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Holmes G. The cerebellum of man. Brain. 1939;62:1939.

    Article  Google Scholar 

  260. Walker AE, Botterell EH. The syndrome of the superior cerebellar peduncle in the monkey. Brain. 1937;60:329–53.

    Article  Google Scholar 

  261. Thach WT, Goodkin HP, Keating JG. The cerebellum and the adaptive coordination of movement. Annu Rev Neurosci. 1992;15:403–42.

    Article  CAS  PubMed  Google Scholar 

  262. Goldberger ME, Growdon JH. Pattern of recovery following cerebellar deep nuclear lesions in monkeys. Exp Neurol. 1973;39:307–22.

    Article  CAS  PubMed  Google Scholar 

  263. Vilis T, Hore J. Central neural mechanisms contributing to cerebellar tremor produced by limb perturbations. J Neurophysiol. 1980;43:279–91.

    Article  CAS  PubMed  Google Scholar 

  264. Vilis T, Hore J. Effects of changes in mechanical state of limb on cerebellar intention tremor. J Neurophysiol. 1977;40:1214–24.

    Article  CAS  PubMed  Google Scholar 

  265. Gemba H, Sasaki K, Yoneda Y, Hashimoto S, Mizuno N. Tremor in the monkey with a cerebellar lesion. Exp Neurol. 1980;69:173–82.

    Article  CAS  PubMed  Google Scholar 

  266. Monzee J, Drew T, Smith AM. Effects of muscimol inactivation of the cerebellar nuclei on precision grip. J Neurophysiol. 2004;91:1240–9.

    Article  CAS  PubMed  Google Scholar 

  267. Elble RJ, Schieber MH, Thach WT Jr. Activity of muscle spindles, motor cortex and cerebellar nuclei during action tremor. Brain Res. 1984;323:330–4.

    Article  CAS  PubMed  Google Scholar 

  268. Matsushita M, Iwahori N. Structural organization of the interpositus and the dentate nuclei. Brain Res. 1971;35:17–36.

    Article  CAS  PubMed  Google Scholar 

  269. Harvey RJ, Porter R, Rawson JA. Discharges of intracerebellar nuclear cells in monkeys. J Physiol. 1979;297:559–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Flament D, Vilis T, Hore J. Dependence of cerebellar tremor on proprioceptive but not visual feedback. Exp Neurol. 1984;84:314–25.

    Article  CAS  PubMed  Google Scholar 

  271. Elble RJ, Deuschl G. Tremor. In: Brown WF, Bolton CF, Aminoff M, eds. Neuromuscular function and disease: basic, clinical and electrodiagnostic aspects. Philadelphia: W. B. Saunders Co., 2002: 1759–1779.

  272. Hore J, Flament D. Changes in motor cortex neural discharge associated with the development of cerebellar limb ataxia. J Neurophysiol. 1988;60:1285–302.

    Article  CAS  PubMed  Google Scholar 

  273. Gorassini M, Prochazka A, Taylor JL. Cerebellar ataxia and muscle spindle sensitivity. J Neurophysiol. 1993;70:1853–62.

    Article  CAS  PubMed  Google Scholar 

  274. Zackowski KM, Bastian AJ, Hakimian S, et al. Thalamic stimulation reduces essential tremor but not the delayed antagonist muscle timing. Neurology. 2002;58:402–10.

    Article  CAS  PubMed  Google Scholar 

  275. Groppa S, Herzog J, Falk D, Riedel C, Deuschl G, Volkmann J. Physiological and anatomical decomposition of subthalamic neurostimulation effects in essential tremor. Brain. 2014;137:109–21.

    Article  PubMed  Google Scholar 

  276. Li Volsi G, Pacitti C, Perciavalle V, Sapienza S, Urbano A. Interpositus nucleus influences on pyramidal tract neurons in the cat. Neuroscience. 1982;7:1929–36.

    Article  CAS  PubMed  Google Scholar 

  277. Carpenter MB, Hanna GR. Effects of thalamic lesions upon cerebellar dyskinesia in the rhesus monkey. J Comp Neurol. 1962;119:127–47.

    Article  CAS  PubMed  Google Scholar 

  278. Asanuma C, Thach WT, Jones EG. Distribution of cerebellar terminations and their relation to other afferent terminations in the ventral lateral thalamic region of the monkey. Brain Res. 1983;286:237–65.

    Article  CAS  PubMed  Google Scholar 

  279. Stepniewska I, Sakai ST, Qi HX, Kaas JH. Somatosensory input to the ventrolateral thalamic region in the macaque monkey: potential substrate for parkinsonian tremor. J Comp Neurol. 2003;455:378–95.

    Article  PubMed  Google Scholar 

  280. Elble RJ. Tremor disorders. Curr Opin Neurol. 2013;26:413–9.

    Article  CAS  PubMed  Google Scholar 

  281. Voogd J. What we do not know about cerebellar systems neuroscience. Front Syst Neurosci. 2014;8:227.

    Article  PubMed  PubMed Central  Google Scholar 

  282. Schieber MH, Thach WT, Jr. Trained slow tracking. II. Bidirectional discharge patterns of cerebellar nuclear, motor cortex, and spindle afferent neurons. J Neurophysiol 1985;54:1228–1270.

  283. Thach WT, Schieber MH, Mink J, Kane S, Horne M. Cerebellar relation to muscle spindles in hand tracking. Prog Brain Res. 1986;64:217–24.

    Article  CAS  PubMed  Google Scholar 

  284. Ohye C, Shibazaki T, Hirai T, et al. A special role of the parvocellular red nucleus in lesion-induced spontaneous tremor in monkeys. Behav Brain Res. 1988;28:241–3.

    Article  CAS  PubMed  Google Scholar 

  285. Nathan PW, Smith MC. The rubrospinal and central tegmental tracts in man. Brain. 1982;105:223–69.

    Article  CAS  PubMed  Google Scholar 

  286. Carpenter MB. A study of the red nucleus in the rhesus monkey; anatomic degenerations and physiologic effects resulting from localized lesions of the red nucleus. J Comp Neurol. 1956;105:195–249.

    Article  CAS  PubMed  Google Scholar 

  287. Carpenter MB, Correll JW. Spinal pathways mediating cerebellar dyskinesia in rhesus monkey. J Neurophysiol. 1961;24:534–51.

    Article  CAS  PubMed  Google Scholar 

  288. Hakimian S, Norris SA, Greger B, Keating JG, Anderson CH, Thach WT. Time and frequency characteristics of Purkinje cell complex spikes in the awake monkey performing a nonperiodic task. J Neurophysiol. 2008;100:1032–40.

    Article  PubMed  PubMed Central  Google Scholar 

  289. Keating JG, Thach WT. Nonclock behavior of inferior olive neurons: interspike interval of Purkinje cell complex spike discharge in the awake behaving monkey is random. J Neurophysiol. 1995;73:1329–40.

    Article  CAS  PubMed  Google Scholar 

  290. Keating JG, Thach WT. No clock signal in the discharge of neurons in the deep cerebellar nuclei. J Neurophysiol. 1997;77:2232–4.

    Article  CAS  PubMed  Google Scholar 

  291. Musacchio T, Purrer V, Papagianni A, et al. Non-motor symptoms of essential tremor are independent of tremor severity and have an impact on quality of life. Tremor Other Hyperkinet Mov. 2016;6:361.

    Google Scholar 

  292. Frison G, Favretto D, Zancanaro F, Fazzin G, Ferrara SD. A case of beta-carboline alkaloid intoxication following ingestion of Peganum harmala seed extract. Forensic Sci Int. 2008;179:e37–43.

    Article  CAS  PubMed  Google Scholar 

  293. Haubenberger D, Hallett M. Essential tremor. N Engl J Med. 2018;378:1802–10.

    Article  PubMed  Google Scholar 

  294. Fekete R, Jankovic J. Revisiting the relationship between essential tremor and Parkinson’s disease. Mov Disord. 2011;26:391–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Sheng-Han Kuo has received funding from the National Institutes of Health, NINDS #R01 NS104423 (principal investigator) NINDS #K08 NS083738 (principal investigator), and the Louis V. Gerstner Jr. Scholar Award, Parkinson’s Foundation, and International Essential Tremor Foundation. Elan D. Louis has received research support from the National Institutes of Health: NINDS #R01 NS094607 (principal investigator), NINDS #R01 NS085136 (principal investigator), NINDS #R01 NS073872 (principal investigator), NINDS #R01 NS085136 (principal investigator), and NINDS #R01 NS088257 (principal investigator). He has also received support from the Claire O’Neil Essential Tremor Research Fund (Yale University). Phyllis L. Faust has received funding from the National Institutes of Health: NINDS #R01 NS088257 (principal investigator) and NINDS #R01 NS085136 (principal investigator). Adrian Handforth has received support from Veterans Affairs and the International Essential Tremor Foundation. Su-youne Chang has received NINDS #R01 NS088260 (principal investigator). Ming-Kai Pan has received research support from Ministry of Science and Technology in Taiwan: MOST #104-2314-B-002-076-MY3 and 107-2321-B-002-020 (principal investigator). Eric J. Lang has received funding from the National Institutes of Health: NINDS #R21 NS101386 (principal investigator). Stefan M. Pulst has received funding from the National Institutes of Health: NINDS #R37 NS033123 (principal investigator), NINDS #R01 NS097903 (principal investigator), NINDS #U01 NS103883 (principal investigator), NINDS #R21 NS103009 (principal investigator), NINDS #R21 NS104799 (principal investigator), NINDS #R21 NS079852 (principal investigator), and Utah Neuroscience Initiative Collaborative Pilot Project Award. Collin J. Anderson has received funding from National Ataxia Foundation Postdoc Fellowship. Roy V. Sillitoe has received funds from BCM IDDRC grant U54HD083092 (Neurovisualization Core), the National Institutes of Health NINDS #R01NS089664 (principal investigator) and #R01NS100874 (principal investigator), and the Hamill Foundation. Amanda M. Brown is supported by the National Institutes of Health NINDS #F31 NS101891. Dane M. Chetkovich is supported by the National Institutes of Health NINDS #R01NS059934 (principal investigator), NIMH #R01MH106511 (principal investigator), and NIMH #R21MH113262 (principal investigator). Lorriane Clark recieves support from the National Institutes of Health NINDS #R01 NS073872 (principal investigator) and NINDS #R21 NS0988930 (principal investigator). Rodger J. Elble receives support from the Neuroscience Research Foundation of Kiwanis International Illinois-Eastern Iowa District.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sheng-Han Kuo or Elan D. Louis.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuo, SH., Louis, E.D., Faust, P.L. et al. Current Opinions and Consensus for Studying Tremor in Animal Models. Cerebellum 18, 1036–1063 (2019). https://doi.org/10.1007/s12311-019-01037-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-019-01037-1

Keywords

Navigation