Skip to main content
Log in

Cerebellar-Stimulation Evoked Prefrontal Electrical Synchrony Is Modulated by GABA

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Cerebellar-prefrontal connectivity has been recognized as important for behaviors ranging from motor coordination to cognition. Many of these behaviors are known to involve excitatory or inhibitory modulations from the prefrontal cortex. We used cerebellar transcranial magnetic stimulation (TMS) with simultaneous electroencephalography (EEG) to probe cerebellar-evoked electrical activity in prefrontal cortical areas and used magnetic resonance spectroscopy (MRS) measures of prefrontal GABA and glutamate levels to determine if they are correlated with those potentials. Cerebellar-evoked bilateral prefrontal synchrony in the theta to gamma frequency range showed patterns that reflect strong GABAergic inhibitory function (r = − 0.66, p = 0.002). Stimulation of prefrontal areas evoked bilateral prefrontal synchrony in the theta to low beta frequency range that reflected, conversely, glutamatergic excitatory function (r = 0.66, p = 0.002) and GABAergic inhibitory function (r = − 0.65, p = 0.002). Cerebellar-evoked prefrontal synchronization had opposite associations with cognition and motor coordination: it was positively associated with working memory performance (r = 0.57, p = 0.008) but negatively associated with coordinated motor function as measured by rapid finger tapping (r = − 0.59, p = 0.006). The results suggest a relationship between regional GABA levels and interregional effects on synchrony. Stronger cerebellar-evoked prefrontal synchrony was associated with better working memory but surprisingly worse motor coordination, which suggests competing effects for motor activity and cognition. The data supports the use of a TMS-EEG-MRS approach to study the neurochemical basis of large-scale oscillations modulated by the cerebellar-prefrontal connectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Engelhardt E. Cerebrocerebellar system and Turck’s bundle. J Hist Neurosci. 2013;22(4):353–65.

    Article  PubMed  Google Scholar 

  2. Esterman M, Thai M, Okabe H, DeGutis J, Saad E, Laganiere SE, et al. Network-targeted cerebellar transcranial magnetic stimulation improves attentional control. NeuroImage. 2017;156:190–8.

    Article  PubMed  Google Scholar 

  3. Schmahmann JD, Pandya DN. The cerebrocerebellar system. Int Rev Neurobiol. 1997;41:31–60.

    Article  PubMed  CAS  Google Scholar 

  4. Ernst TM, Thurling M, Muller S, Kahl F, Maderwald S, Schlamann M, et al. Modulation of 7 T fMRI signal in the cerebellar cortex and nuclei during acquisition, extinction, and reacquisition of conditioned Eyeblink responses. Hum Brain Mapp. 2017;38(8):3957–74.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kansal K, Yang Z, Fishman AM, Sair HI, Ying SH, Jedynak BM, et al. Structural cerebellar correlates of cognitive and motor dysfunctions in cerebellar degeneration. Brain. 2017;140(3):707–20.

    PubMed  Google Scholar 

  6. King M, Hernandez-Castillo C, Diedrichsen J. Towards a multi-function mapping of the cerebellar cortex. Brain. 2017;140(3):522–4.

    Article  PubMed  Google Scholar 

  7. Middleton FA, Strick PL. Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science (New York, NY). 1994;266(5184):458–61.

    Article  CAS  Google Scholar 

  8. Middleton FA, Strick PL. Cerebellar projections to the prefrontal cortex of the primate. J Neurosci. 2001;21(2):700–12.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Krienen FM, Buckner RL. Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cereb Cortex. 2009;19(10):2485–97.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Halko MA, Farzan F, Eldaief MC, Schmahmann JD, Pascual-Leone A. Intermittent theta-burst stimulation of the lateral cerebellum increases functional connectivity of the default network. J Neurosci Off J Soc Neurosci. 2014;34(36):12049–56.

    Article  CAS  Google Scholar 

  11. Rastogi A, Cash R, Dunlop K, Vesia M, Kucyi A, Ghahremani A, et al. Modulation of cognitive cerebello-cerebral functional connectivity by lateral cerebellar continuous theta burst stimulation. NeuroImage. 2017;158:48–57.

    Article  PubMed  Google Scholar 

  12. Ito M. The cerebellum and neural control. New York: Raven Press; 1984.

    Google Scholar 

  13. Kelly RM, Strick PL. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci Off J Soc Neurosci. 2003;23(23):8432–44.

    Article  CAS  Google Scholar 

  14. Gordon N. The cerebellum and cognition. Eur J Paediatr Neurol. 2007;11(4):232–4.

    Article  PubMed  Google Scholar 

  15. Buckner RL. The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron. 2013;80(3):807–15.

    Article  PubMed  CAS  Google Scholar 

  16. Van Overwalle F, Baetens K, Marien P, Vandekerckhove M. Social cognition and the cerebellum: a meta-analysis of over 350 fMRI studies. NeuroImage. 2014;86:554–72.

    Article  PubMed  Google Scholar 

  17. Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. NeuroImage. 2009;44(2):489–501.

    Article  PubMed  Google Scholar 

  18. Balsters JH, Laird AR, Fox PT, Eickhoff SB. Bridging the gap between functional and anatomical features of cortico-cerebellar circuits using meta-analytic connectivity modeling. Hum Brain Mapp. 2014;35(7):3152–69.

    Article  PubMed  Google Scholar 

  19. O'Reilly JX, Beckmann CF, Tomassini V, Ramnani N, Johansen-Berg H. Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex. 2010;20(4):953–65.

    Article  PubMed  Google Scholar 

  20. Stoodley CJ, Schmahmann JD. The cerebellum and language: evidence from patients with cerebellar degeneration. Brain Lang. 2009;110(3):149–53.

    Article  PubMed  Google Scholar 

  21. Pleger B, Timmann D. The role of the human cerebellum in linguistic prediction, word generation and verbal working memory: evidence from brain imaging, non-invasive cerebellar stimulation and lesion studies. Neuropsychologia. 2018 (in press).

  22. LaBar KS, Gitelman DR, Parrish TB, Mesulam MM. Neuroanatomic overlap of working memory and spatial attention networks: a functional MRI comparison within subjects. NeuroImage. 1999;10(6):695–704.

    Article  PubMed  CAS  Google Scholar 

  23. Chen SH, Desmond JE. Cerebrocerebellar networks during articulatory rehearsal and verbal working memory tasks. NeuroImage. 2005;24(2):332–8.

    Article  PubMed  Google Scholar 

  24. Tomasi D, Chang L, Caparelli EC, Ernst T. Different activation patterns for working memory load and visual attention load. Brain Res. 2007;1132(1):158–65.

    Article  PubMed  CAS  Google Scholar 

  25. Ravizza SM, McCormick CA, Schlerf JE, Justus T, Ivry RB, Fiez JA. Cerebellar damage produces selective deficits in verbal working memory. Brain. 2006;129:306–20.

    Article  PubMed  Google Scholar 

  26. Ferrucci R, Marceglia S, Vergari M, Cogiamanian F, Mrakic-Sposta S, Mameli F, et al. Cerebellar transcranial direct current stimulation impairs the practice-dependent proficiency increase in working memory. J Cogn Neurosci. 2008;20(9):1687–97.

    Article  PubMed  CAS  Google Scholar 

  27. Boehringer A, Macher K, Dukart J, Villringer A, Pleger B. Cerebellar transcranial direct current stimulation modulates verbal working memory. Brain Stimul. 2013;6(4):649–53.

    Article  PubMed  Google Scholar 

  28. Desmond JE, Chen SH, Shieh PB. Cerebellar transcranial magnetic stimulation impairs verbal working memory. Ann Neurol. 2005;58(4):553–60.

    Article  PubMed  Google Scholar 

  29. Stelzer A, Wong RK. GABAA responses in hippocampal neurons are potentiated by glutamate. Nature. 1989;337(6203):170–3.

    Article  PubMed  CAS  Google Scholar 

  30. Whittington MA, Traub RD, Jefferys JG. Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature. 1995;373(6515):612–5.

    Article  PubMed  CAS  Google Scholar 

  31. Engel AK, Fries P, Singer W. Dynamic predictions: oscillations and synchrony in top-down processing. Nat Rev Neurosci. 2001;2(10):704–16.

    Article  PubMed  CAS  Google Scholar 

  32. Liebe S, Hoerzer GM, Logothetis NK, Rainer G. Theta coupling between V4 and prefrontal cortex predicts visual short-term memory performance. Nat Neurosci. 2012;15(3):456–62. S1-2

    Article  PubMed  CAS  Google Scholar 

  33. Rosanova M, Casali A, Bellina V, Resta F, Mariotti M, Massimini M. Natural frequencies of human corticothalamic circuits. J Neurosci. 2009;29(24):7679–85.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Thut G, Veniero D, Romei V, Miniussi C, Schyns P, Gross J. Rhythmic TMS causes local entrainment of natural oscillatory signatures. Curr Biol. 2011;21(14):1176–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Kawasaki M, Uno Y, Mori J, Kobata K, Kitajo K. Transcranial magnetic stimulation-induced global propagation of transient phase resetting associated with directional information flow. Front Hum Neurosci. 2014;8:173.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Puts NA, Edden RA. In vivo magnetic resonance spectroscopy of GABA: a methodological review. Prog Nucl Magn Reson Spectrosc. 2012;60:29–41.

    Article  PubMed  CAS  Google Scholar 

  37. Ende G. Proton magnetic resonance spectroscopy: relevance of glutamate and GABA to neuropsychology. Neuropsychol Rev. 2015;25(3):315–25.

    Article  PubMed  Google Scholar 

  38. O'Gorman RL, Michels L, Edden RA, Murdoch JB, Martin E. In vivo detection of GABA and glutamate with MEGA-PRESS: reproducibility and gender effects. J Magn Reson Imaging. 2011;33(5):1262–7.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Keefe RS, Harvey PD, Goldberg TE, Gold JM, Walker TM, Kennel C, et al. Norms and standardization of the brief assessment of cognition in schizophrenia (BACS). Schizophr Res. 2008;102(1–3):108–15.

    Article  PubMed  Google Scholar 

  40. Lewis DA, Hashimoto T, Volk DW. Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci. 2005;6(4):312–24.

    Article  PubMed  CAS  Google Scholar 

  41. Hines RM, Hines DJ, Houston CM, Mukherjee J, Haydon PG, Tretter V, et al. Disrupting the clustering of GABAA receptor alpha2 subunits in the frontal cortex leads to reduced gamma-power and cognitive deficits. Proc Natl Acad Sci U S A. 2013;110(41):16628–33.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Witt ST, Laird AR, Meyerand ME. Functional neuroimaging correlates of finger-tapping task variations: an ALE meta-analysis. NeuroImage. 2008;42(1):343–56.

    Article  PubMed  Google Scholar 

  43. Ashendorf L, Horwitz JE, Gavett BE. Abbreviating the finger tapping test. Arch Clin Neuropsychol. 2015;30(2):99–104.

    Article  PubMed  Google Scholar 

  44. Barbas H, Pandya DN. Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey. J Comp Neurol. 1989;286(3):353–75.

    Article  PubMed  CAS  Google Scholar 

  45. Barbas H. Two prefrontal limbic systems: their common and unique features. The association cortex: structure and function. Amsterdam: Harwood Academic Publishers; 1997. p. 99–116.

    Google Scholar 

  46. Wijtenburg SA, Knight-Scott J. Reconstructing very short TE phase rotation spectral data collected with multichannel phased-array coils at 3 T. Magn Reson Imaging. 2011;29(7):937–42.

    Article  PubMed  Google Scholar 

  47. Soher BJ, Young K, Bernstein A, Aygula Z, Maudsley AA. GAVA: spectral simulation for in vivo MRS applications. J Magn Reson. 2007;185(2):291–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Provencher SW. Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med. 1993;30(6):672–9.

    Article  PubMed  CAS  Google Scholar 

  49. Wijtenburg SA, Gaston FE, Spieker EA, Korenic SA, Kochunov P, Hong LE, et al. Reproducibility of phase rotation STEAM at 3T: focus on glutathione. Magn Reson Med. 2014;72(3):603–9.

    Article  PubMed  CAS  Google Scholar 

  50. Aufhaus E, Weber-Fahr W, Sack M, Tunc-Skarka N, Oberthuer G, Hoerst M, et al. Absence of changes in GABA concentrations with age and gender in the human anterior cingulate cortex: a MEGA-PRESS study with symmetric editing pulse frequencies for macromolecule suppression. Magn Reson Med. 2013;69(2):317–20.

    Article  PubMed  CAS  Google Scholar 

  51. Geramita M, van der Veen JW, Barnett AS, Savostyanova AA, Shen J, Weinberger DR, et al. Reproducibility of prefrontal gamma-aminobutyric acid measurements with J-edited spectroscopy. NMR Biomed. 2011;24(9):1089–98.

    Article  PubMed  CAS  Google Scholar 

  52. Rowland LM, Summerfelt A, Wijtenburg A, Du XM, Chiappelli JJ, Krishna N, et al. Frontal glutamate and gamma-aminobutyric acid levels and their associations with mismatch negativity and digit sequencing task performance in schizophrenia. JAMA Psychiatry. 2016;73(2):166–74.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Rowland LM, Krause BW, Wijtenburg SA, McMahon RP, Chiappelli J, Nugent KL, et al. Medial frontal GABA is lower in older schizophrenia: a MEGA-PRESS with macromolecule suppression study. Mol Psychiatry. 2016;21(2):198–204.

    Article  PubMed  CAS  Google Scholar 

  54. Brasil-Neto JP, McShane LM, Fuhr P, Hallett M, Cohen LG. Topographic mapping of the human motor cortex with magnetic stimulation: factors affecting accuracy and reproducibility. Electroencephalogr Clin Neurophysiol. 1992;85(1):9–16.

    Article  PubMed  CAS  Google Scholar 

  55. Schutter DJ, van Honk J. The cerebellum in emotion regulation: a repetitive transcranial magnetic stimulation study. Cerebellum (London, England). 2009;8(1):28–34.

    Article  Google Scholar 

  56. Schutter DJ, van Honk J. An electrophysiological link between the cerebellum, cognition and emotion: frontal theta EEG activity to single-pulse cerebellar TMS. NeuroImage. 2006;33(4):1227–31.

    Article  PubMed  Google Scholar 

  57. Pinto AD, Chen R. Suppression of the motor cortex by magnetic stimulation of the cerebellum. Exp Brain Res. 2001;140(4):505–10.

    Article  PubMed  CAS  Google Scholar 

  58. Jenkinson N, Miall RC. Disruption of saccadic adaptation with repetitive transcranial magnetic stimulation of the posterior cerebellum in humans. Cerebellum (London, England). 2010;9(4):548–55.

    Article  Google Scholar 

  59. Hardwick RM, Lesage E, Miall RC. Cerebellar transcranial magnetic stimulation: the role of coil geometry and tissue depth. Brain Stimul. 2014;7(5):643–9.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Cattaneo Z, Renzi C, Casali S, Silvanto J, Vecchi T, Papagno C, et al. Cerebellar vermis plays a causal role in visual motion discrimination. Cortex. 2014;58:272–80.

    Article  PubMed  Google Scholar 

  61. Demirtas-Tatlidede A, Freitas C, Cromer JR, Safar L, Ongur D, Stone WS, et al. Safety and proof of principle study of cerebellar vermal theta burst stimulation in refractory schizophrenia. Schizophr Res. 2010;124(1–3):91–100.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Avanzino L, Bove M, Trompetto C, Tacchino A, Ogliastro C, Abbruzzese G. 1-Hz repetitive TMS over ipsilateral motor cortex influences the performance of sequential finger movements of different complexity. Eur J Neurosci. 2008;27(5):1285–91.

    Article  PubMed  Google Scholar 

  63. Kammer T, Puls K, Erb M, Grodd W. Transcranial magnetic stimulation in the visual system. II. Characterization of induced phosphenes and scotomas. Exp Brain Res. 2005;160(1):129–40.

    Article  PubMed  Google Scholar 

  64. Salminen-Vaparanta N, Vanni S, Noreika V, Valiulis V, Moro L, Revonsuo A. Subjective characteristics of TMS-induced phosphenes originating in human V1 and V2. Cereb Cortex. 2014;24(10):2751–60.

    Article  PubMed  Google Scholar 

  65. Farzan F, Barr MS, Wong W, Chen R, Fitzgerald PB, Daskalakis ZJ. Suppression of gamma-oscillations in the dorsolateral prefrontal cortex following long interval cortical inhibition: a TMS-EEG study. Neuropsychopharmacology. 2009;34(6):1543–51.

    Article  PubMed  CAS  Google Scholar 

  66. Cannon TD, Hennah W, van Erp TGM, Thompson PM, Lonnqvist J, Huttunen M, et al. Association of DISC1/TRAX haplotypes with schizophrenia, reduced prefrontal gray matter, and impaired short-and long-term memory. Arch Gen Psychiatry. 2005;62(11):1205–13.

    Article  PubMed  CAS  Google Scholar 

  67. Du X, Summerfelt A, Chiappelli J, Holcomb HH, Hong LE. Individualized brain inhibition and excitation profile in response to paired-pulse TMS. J Mot Behav. 2014;46(1):39–48.

    Article  PubMed  Google Scholar 

  68. Sommer M, Classen J, Cohen LG, Hallett M. Time course of determination of movement direction in the reaction time task in humans. J Neurophysiol. 2001;86(3):1195–201.

    Article  PubMed  CAS  Google Scholar 

  69. Du X, Kochunov P, Summerfelt A, Chiappelli J, Choa FS, Hong LE. The role of white matter microstructure in inhibitory deficits in patients with schizophrenia. Brain Stimul. 2017;10(2):283–90.

    Article  PubMed  Google Scholar 

  70. Ilmoniemi RJ, Kicic D. Methodology for combined TMS and EEG. Brain Topogr. 2010;22(4):233–48.

    Article  PubMed  Google Scholar 

  71. Semlitsch HV, Anderer P, Schuster P, Presslich O. A solution for reliable and valid reduction of ocular artifacts, applied to the P300 ERP. Psychophysiology. 1986;23(6):695–703.

    Article  PubMed  CAS  Google Scholar 

  72. Lachaux J-P, Rodriguez E, Martinerie J, Varela FJ. Measuring phase synchrony in brain signals. Hum Brain Mapp. 1999;8(4):194–208.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  73. Groppe DM, Urbach TP, Kutas M. Mass univariate analysis of event-related brain potentials/fields I: a critical tutorial review. Psychophysiology. 2011;48(12):1711–25.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Bullmore ET, Suckling J, Overmeyer S, Rabe-Hesketh S, Taylor E, Brammer MJ. Global, voxel, and cluster tests, by theory and permutation, for a difference between two groups of structural MR images of the brain. IEEE Trans Med Imaging. 1999;18(1):32–42.

    Article  PubMed  CAS  Google Scholar 

  75. Groppe DM, Urbach TP, Kutas M. Mass univariate analysis of event-related brain potentials/fields II: simulation studies. Psychophysiology. 2011;48(12):1726–37.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Pedroarena C, Llinas R. Dendritic calcium conductances generate high-frequency oscillation in thalamocortical neurons. Proc Natl Acad Sci U S A. 1997;94(2):724–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Lynch JC, Hoover JE, Strick PL. Input to the primate frontal eye field from the substantia nigra, superior colliculus, and dentate nucleus demonstrated by transneuronal transport. Exp Brain Res. 1994;100(1):181–6.

    Article  PubMed  CAS  Google Scholar 

  78. Allen G, McColl R, Barnard H, Ringe WK, Fleckenstein J, Cullum CM. Magnetic resonance imaging of cerebellar–prefrontal and cerebellar–parietal functional connectivity. NeuroImage. 2005;28(1):39–48.

    Article  PubMed  Google Scholar 

  79. Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC. Theta burst stimulation of the human motor cortex. Neuron. 2005;45(2):201–6.

    Article  PubMed  CAS  Google Scholar 

  80. Fernandez L, Major BP, Teo WP, Byrne LK, Enticott PG. Assessing cerebellar brain inhibition (CBI) via transcranial magnetic stimulation (TMS): a systematic review. Neurosci Biobehav Rev. 2018;86:176–206.

    Article  PubMed  Google Scholar 

  81. Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A, et al. Corticocortical inhibition in human motor cortex. J Physiol. 1993;471:501–19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Buzsaki G, Logothetis N, Singer W. Scaling brain size, keeping timing: evolutionary preservation of brain rhythms. Neuron. 2013;80(3):751–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Pellicciari MC, Veniero D, Miniussi C. Characterizing the cortical oscillatory response to TMS pulse. Front Cell Neurosci. 2017;11:38.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Dayan E, Censor N, Buch ER, Sandrini M, Cohen LG. Noninvasive brain stimulation: from physiology to network dynamics and back. Nat Neurosci. 2013;16(7):838–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Formaggio E, Cavinato M, Storti SF, Tonin P, Piccione F, Manganotti P. Assessment of event-related EEG power after single-pulse TMS in unresponsive wakefulness syndrome and minimally conscious state patients. Brain Topogr. 2016;29(2):322–33.

    Article  PubMed  Google Scholar 

  86. Pellicciari MC, Ponzo V, Caltagirone C, Koch G. Restored asymmetry of prefrontal cortical oscillatory activity after bilateral theta burst stimulation treatment in a patient with major depressive disorder: a TMS-EEG study. Brain Stimul. 2017;10(1):147–9.

    Article  PubMed  Google Scholar 

  87. Fujisawa S, Amarasingham A, Harrison MT, Buzsaki G. Behavior-dependent short-term assembly dynamics in the medial prefrontal cortex. Nat Neurosci. 2008;11(7):823–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Traub RD, Whittington MA, Stanford IM, Jefferys JG. A mechanism for generation of long-range synchronous fast oscillations in the cortex. Nature. 1996;383(6601):621–4.

    Article  PubMed  CAS  Google Scholar 

  89. Chagnac-Amitai Y, Connors BW. Horizontal spread of synchronized activity in neocortex and its control by GABA-mediated inhibition. J Neurophysiol. 1989;61(4):747–58.

    Article  PubMed  CAS  Google Scholar 

  90. Yuste R, MacLean JN, Smith J, Lansner A. The cortex as a central pattern generator. Nat Rev Neurosci. 2005;6(6):477–83.

    Article  PubMed  CAS  Google Scholar 

  91. Zucker RS, Regehr WG. Short-term synaptic plasticity. Annu Rev Physiol. 2002;64:355–405.

    Article  PubMed  CAS  Google Scholar 

  92. Schutter DJ, van Honk J, d'Alfonso AA, Peper JS, Panksepp J. High frequency repetitive transcranial magnetic over the medial cerebellum induces a shift in the prefrontal electroencephalography gamma spectrum: a pilot study in humans. Neurosci Lett. 2003;336(2):73–6.

    Article  PubMed  CAS  Google Scholar 

  93. Stoodley CJ, Valera EM, Schmahmann JD. Functional topography of the cerebellum for motor and cognitive tasks: an fMRI study. NeuroImage. 2012;59(2):1560–70.

    Article  PubMed  Google Scholar 

  94. Marvel CL, Desmond JE. The contributions of cerebro-cerebellar circuitry to executive verbal working memory. Cortex. 2010;46(7):880–95.

    Article  PubMed  Google Scholar 

  95. Tomlinson SP, Davis NJ, Morgan HM, Bracewell RM. Cerebellar contributions to verbal working memory. Cerebellum. 2014;13(3):354–61.

    Article  PubMed  Google Scholar 

  96. Ben-Yehudah G, Guediche S, Fiez JA. Cerebellar contributions to verbal working memory: beyond cognitive theory. Cerebellum. 2007;6(3):193–201.

    Article  PubMed  Google Scholar 

  97. Hayter AL, Langdon DW, Ramnani N. Cerebellar contributions to working memory. NeuroImage. 2007;36(3):943–54.

    Article  PubMed  CAS  Google Scholar 

  98. Oliveri M, Torriero S, Koch G, Salerno S, Petrosini L, Caltagirone C. The role of transcranial magnetic stimulation in the study of cerebellar cognitive function. Cerebellum. 2007;6(1):95–101.

    Article  PubMed  Google Scholar 

  99. Tomlinson SP, Davis NJ, Bracewell RM. Brain stimulation studies of non-motor cerebellar function: a systematic review. Neurosci Biobehav Rev. 2013;37(5):766–89.

    Article  PubMed  Google Scholar 

  100. Gountouna VE, Job DE, McIntosh AM, Moorhead TW, Lymer GK, Whalley HC, et al. Functional magnetic resonance imaging (fMRI) reproducibility and variance components across visits and scanning sites with a finger tapping task. NeuroImage. 2010;49(1):552–60.

    Article  PubMed  Google Scholar 

  101. Manto M, Bower JM, Conforto AB, Delgado-Garcia JM, da Guarda SN, Gerwig M, et al. Consensus paper: roles of the cerebellum in motor control—the diversity of ideas on cerebellar involvement in movement. Cerebellum. 2012;11(2):457–87.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Ugawa Y, Uesaka Y, Terao Y, Hanajima R, Kanazawa I. Magnetic stimulation over the cerebellum in humans. Ann Neurol. 1995;37(6):703–13.

    Article  PubMed  CAS  Google Scholar 

  103. Floyer-Lea A, Wylezinska M, Kincses T, Matthews PM. Rapid modulation of GABA concentration in human sensorimotor cortex during motor learning. J Neurophysiol. 2006;95(3):1639–44.

    Article  PubMed  CAS  Google Scholar 

  104. Stagg CJ, Wylezinska M, Matthews PM, Johansen-Berg H, Jezzard P, Rothwell JC, et al. Neurochemical effects of theta burst stimulation as assessed by magnetic resonance spectroscopy. J Neurophysiol. 2009;101(6):2872–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Dubin MJ, Mao X, Banerjee S, Goodman Z, Lapidus KA, Kang G, et al. Elevated prefrontal cortex GABA in patients with major depressive disorder after TMS treatment measured with proton magnetic resonance spectroscopy. J Psychiatry Neurosci. 2016;41(3):E37–45.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Fellous JM, Sejnowski TJ. Cholinergic induction of oscillations in the hippocampal slice in the slow (0.5-2 Hz), theta (5-12 Hz), and gamma (35-70 Hz) bands. Hippocampus. 2000;10(2):187–97.

    Article  PubMed  CAS  Google Scholar 

  107. Basar E, Guntekin B. A review of brain oscillations in cognitive disorders and the role of neurotransmitters. Brain Res. 2008;1235:172–93.

    Article  PubMed  CAS  Google Scholar 

  108. Forkel SJ, Thiebaut de Schotten M, Kawadler JM, Dell'Acqua F, Danek A, Catani M. The anatomy of fronto-occipital connections from early blunt dissections to contemporary tractography. Cortex. 2014;56:73–84.

    Article  PubMed  Google Scholar 

  109. Batini C, Compoint C, Buisseret-Delmas C, Daniel H, Guegan M. Cerebellar nuclei and the nucleocortical projections in the rat: retrograde tracing coupled to GABA and glutamate immunohistochemistry. J Comp Neurol. 1992;315(1):74–84.

    Article  PubMed  CAS  Google Scholar 

  110. Kwong WH, Chan WY, Lee KK, Fan M, Yew DT. Neurotransmitters, neuropeptides and calcium binding proteins in developing human cerebellum: a review. Histochem J. 2000;32(9):521–34.

    Article  PubMed  CAS  Google Scholar 

  111. Wulff P, Ponomarenko AA, Bartos M, Korotkova TM, Fuchs EC, Bahner F, et al. Hippocampal theta rhythm and its coupling with gamma oscillations require fast inhibition onto parvalbumin-positive interneurons. Proc Natl Acad Sci U S A. 2009;106(9):3561–6.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Gonzalez-Burgos G, Hashimoto T, Lewis DA. Alterations of cortical GABA neurons and network oscillations in schizophrenia. Curr Psychiatry Rep. 2010;12(4):335–44.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Muthukumaraswamy SD, Edden RA, Jones DK, Swettenham JB, Singh KD. Resting GABA concentration predicts peak gamma frequency and fMRI amplitude in response to visual stimulation in humans. Proc Natl Acad Sci U S A. 2009;106(20):8356–61.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

LEH has received or plans to receive research funding or consulting fee on research projects from Mitsubishi, Your Energy Systems LLC, Neuralstem, Taisho, Heptares, Pfizer, Sound Pharma, Takeda, and Regeneron. All other authors declare no conflict of interest.

Funding

Support was received from NIH grants MH085646, MH103222, MH108148, MH067533, a NARSAD award, State of Maryland contract (M00B6400091), and a generous private philanthropic donation from the Clare E. Forbes Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Du.

Electronic supplementary material

ESM 1

(DOCX 334 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, X., Rowland, L.M., Summerfelt, A. et al. Cerebellar-Stimulation Evoked Prefrontal Electrical Synchrony Is Modulated by GABA. Cerebellum 17, 550–563 (2018). https://doi.org/10.1007/s12311-018-0945-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-018-0945-2

Keywords

Navigation