Skip to main content
Log in

Neuromagnetic Cerebellar Activity Entrains to the Kinematics of Executed Finger Movements

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

This magnetoencephalography (MEG) study aims at characterizing the coupling between cerebellar activity and the kinematics of repetitive self-paced finger movements. Neuromagnetic signals were recorded in 11 right-handed healthy adults while they performed repetitive flexion–extensions of right-hand fingers at three different movement rates: slow (~ 1 Hz), medium (~ 2 Hz), and fast (~ 3 Hz). Right index finger acceleration was monitored with an accelerometer. Coherence analysis was used to index the coupling between right index finger acceleration and neuromagnetic signals. Dynamic imaging of coherent sources was used to locate coherent sources. Coupling directionality between primary sensorimotor (SM1), cerebellar, and accelerometer signals was assessed with renormalized partial directed coherence. Permutation-based statistics coupled with maximum statistic over the entire brain volume or restricted to the cerebellum were used. At all movement rates, maximum coherence peaked at SM1 cortex contralateral to finger movements at movement frequency (F0) and its first harmonic (F1). Significant (statistics restricted to the cerebellum) coherence consistently peaked at the right posterior lobe of the cerebellum at F0 with no influence of movement rate. Coupling between Acc and cerebellar signals was significantly stronger in the afferent than in the efferent direction with no effective contribution of cortico-cerebellar or cerebello-cortical pathways. This study demonstrates the existence of significant coupling between finger movement kinematics and neuromagnetic activity at the posterior cerebellar lobe ipsilateral to finger movement at F0. This coupling is mainly driven by spinocerebellar, presumably proprioceptive, afferences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Manto M, Bower JM, Conforto AB, Delgado-Garcia JM, da Guarda SN, Gerwig M, et al. Consensus paper: roles of the cerebellum in motor control--the diversity of ideas on cerebellar involvement in movement. Cerebellum. 2012;11:457–87.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Clarac F. Some historical reflections on the neural control of locomotion. Brain Res Rev. 2008;57:13–21.

    Article  PubMed  Google Scholar 

  3. Spencer RM, Verstynen T, Brett M, Ivry R. Cerebellar activation during discrete and not continuous timed movements: an fMRI study. NeuroImage. 2007;36:378–87.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Spencer RM, Ivry RB, Zelaznik HN. Role of the cerebellum in movements: control of timing or movement transitions? Exp Brain Res. 2005;161:383–96.

    Article  PubMed  Google Scholar 

  5. Jancke L, Specht K, Mirzazade S, Peters M. The effect of finger-movement speed of the dominant and the subdominant hand on cerebellar activation: a functional magnetic resonance imaging study. NeuroImage. 1999;9:497–507.

    Article  PubMed  CAS  Google Scholar 

  6. Ivry RB, Keele SW, Diener HC. Dissociation of the lateral and medial cerebellum in movement timing and movement execution. Exp Brain Res. 1988;73:167–80.

    Article  PubMed  CAS  Google Scholar 

  7. Eccles JC. Circuits in the cerebellar control of movement. Proc Natl Acad Sci U S A. 1967;58:336–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Thach WT, Goodkin HP, Keating JG. The cerebellum and the adaptive coordination of movement. Annu Rev Neurosci. 1992;15:403–42.

    Article  PubMed  CAS  Google Scholar 

  9. Bastian AJ, Martin TA, Keating JG, Thach WT. Cerebellar ataxia: abnormal control of interaction torques across multiple joints. J Neurophysiol. 1996;76:492–509.

    Article  PubMed  CAS  Google Scholar 

  10. Blakemore SJ, Wolpert DM, Frith CD. The cerebellum contributes to somatosensory cortical activity during self-produced tactile stimulation. NeuroImage. 1999;10:448–59.

    Article  PubMed  CAS  Google Scholar 

  11. Marty B, Bourguignon M, Op de Beeck M, Wens V, Goldman S, Van Bogaert P, et al. Effect of movement rate on corticokinematic coherence. Neurophysiol Clin. 2015;45:469–74.

    Article  PubMed  CAS  Google Scholar 

  12. Bourguignon M, Jousmaki V, Op de Beeck M, Van Bogaert P, Goldman S, De Tiege X. Neuronal network coherent with hand kinematics during fast repetitive hand movements. NeuroImage. 2012;59:1684–91.

    Article  PubMed  Google Scholar 

  13. Bourguignon M, De Tiege X, Op de Beeck M, Pirotte B, Van Bogaert P, Goldman S, et al. Functional motor-cortex mapping using corticokinematic coherence. NeuroImage. 2011;55:1475–9.

    Article  PubMed  Google Scholar 

  14. Piitulainen H, Bourguignon M, De Tiege X, Hari R, Jousmaki V. Corticokinematic coherence during active and passive finger movements. Neuroscience. 2013;238:361–70.

    Article  PubMed  CAS  Google Scholar 

  15. Bourguignon M, Piitulainen H, De Tiege X, Jousmaki V, Hari R. Corticokinematic coherence mainly reflects movement-induced proprioceptive feedback. NeuroImage. 2015;106:382–90.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bourguignon M, Jousmaki V, Marty B, Wens V, Op de Beeck M, Van Bogaert P, et al. Comprehensive functional mapping scheme for non-invasive primary sensorimotor cortex mapping. Brain Topogr. 2013;26:511–23.

    Article  PubMed  Google Scholar 

  17. Butz M, Timmermann L, Gross J, Pollok B, Dirks M, Hefter H, et al. Oscillatory coupling in writing and writer's cramp. J Physiol Paris. 2006;99:14–20.

    Article  PubMed  Google Scholar 

  18. Timmermann L, Gross J, Dirks M, Volkmann J, Freund H, Schnitzler A. The cerebral oscillatory network of parkinsonian resting tremor. Brain. 2003;126:199–212.

    Article  PubMed  Google Scholar 

  19. Pollok B, Sudmeyer M, Gross J, Schnitzler A. The oscillatory network of simple repetitive bimanual movements. Brain Res Cogn Brain Res. 2005;25:300–11.

    Article  PubMed  Google Scholar 

  20. Pollok B, Krause V, Butz M, Schnitzler A. Modality specific functional interaction in sensorimotor synchronization. Hum Brain Mapp. 2009;30:1783–90.

    Article  PubMed  Google Scholar 

  21. Gross J, Timmermann L, Kujala J, Dirks M, Schmitz F, Salmelin R, et al. The neural basis of intermittent motor control in humans. Proc Natl Acad Sci U S A. 2002;99:2299–302.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Jerbi K, Lachaux JP, N'Diaye K, Pantazis D, Leahy RM, Garnero L, et al. Coherent neural representation of hand speed in humans revealed by MEG imaging. Proc Natl Acad Sci U S A. 2007;104:7676–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Piitulainen H, Bourguignon M, De Tiege X, Hari R, Jousmaki V. Coherence between magnetoencephalography and hand-action-related acceleration, force, pressure, and electromyogram. NeuroImage. 2013;72:83–90.

    Article  PubMed  Google Scholar 

  24. Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971;9:97–113.

    Article  PubMed  CAS  Google Scholar 

  25. De Tiege X, Op de Beeck M, Funke M, Legros B, Parkkonen L, Goldman S, et al. Recording epileptic activity with MEG in a light-weight magnetic shield. Epilepsy Res. 2008;82:227–31.

    Article  PubMed  Google Scholar 

  26. Carrette E, Op de Beeck M, Bourguignon M, Boon P, Vonck K, Legros B, et al. Recording temporal lobe epileptic activity with MEG in a light-weight magnetic shield. Seizure. 2011;20:414–8.

    Article  PubMed  Google Scholar 

  27. Taulu S, Simola J, Kajola M. Applications of the signal space separation method. Signal Process IEEE Trans. 2005;53:3359–72.

    Article  Google Scholar 

  28. Bortel R, Sovka P. Approximation of statistical distribution of magnitude squared coherence estimated with segment overlapping. Signal Process. 2007;87:1100–17.

    Article  Google Scholar 

  29. Halliday DM, Rosenberg JR, Amjad AM, Breeze P, Conway BA, Farmer SF. A framework for the analysis of mixed time series/point process data--theory and application to the study of physiological tremor, single motor unit discharges and electromyograms. Prog Biophys Mol Biol. 1995;64:237–78.

    Article  PubMed  CAS  Google Scholar 

  30. Marty B, Bourguignon M, Jousmaki V, Wens V, Op de Beeck M, Van Bogaert P, et al. Cortical kinematic processing of executed and observed goal-directed hand actions. NeuroImage. 2015;119:221–8.

    Article  PubMed  Google Scholar 

  31. Reuter M, Schmansky NJ, Rosas HD, Fischl B. Within-subject template estimation for unbiased longitudinal image analysis. NeuroImage. 2012;61:1402–18.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gramfort A, Luessi M, Larson E, Engemann DA, Strohmeier D, Brodbeck C, et al. MNE software for processing MEG and EEG data. NeuroImage. 2014;86:446–60.

    Article  PubMed  Google Scholar 

  33. Gross J, Kujala J, Hamalainen M, Timmermann L, Schnitzler A, Salmelin R. Dynamic imaging of coherent sources: studying neural interactions in the human brain. Proc Natl Acad Sci U S A. 2001;98:694–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Van Veen BD, van Drongelen W, Yuchtman M, Suzuki A. Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Trans Biomed Eng. 1997;44:867–80.

    Article  PubMed  Google Scholar 

  35. Rosenberg JR, Amjad AM, Breeze P, Brillinger DR, Halliday DM. The Fourier approach to the identification of functional coupling between neuronal spike trains. Prog Biophys Mol Biol. 1989;53:1–31.

    Article  PubMed  CAS  Google Scholar 

  36. Schelter B, Timmer J, Eichler M. Assessing the strength of directed influences among neural signals using renormalized partial directed coherence. J Neurosci Methods. 2009;179:121–30.

    Article  PubMed  Google Scholar 

  37. Schelter B, Winterhalder M, Eichler M, Peifer M, Hellwig B, Guschlbauer B, et al. Testing for directed influences among neural signals using partial directed coherence. J Neurosci Methods. 2006;152:210–9.

    Article  PubMed  Google Scholar 

  38. Schneider T, Neumaier A. Algorithm 808: ARFIT—A Matlab package for the estimation of parameters and Eigenmodes of multivariate autoregressive models. ACM Trans Math Softw. 2001;27:58–65.

    Article  Google Scholar 

  39. Faes L, Pinna GD, Porta A, Maestri R, Nollo G. Surrogate data analysis for assessing the significance of the coherence function. IEEE Trans Biomed Eng. 2004;51:1156–66.

    Article  PubMed  Google Scholar 

  40. Nichols TE, Holmes AP. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp. 2002;15:1–25.

    Article  PubMed  Google Scholar 

  41. Bourguignon M, De Tiege X, de Beeck MO, Van Bogaert P, Goldman S, Jousmaki V, et al. Primary motor cortex and cerebellum are coupled with the kinematics of observed hand movements. NeuroImage. 2012;66:500–7.

    Article  PubMed  Google Scholar 

  42. Piitulainen H, Bourguignon M, Hari R, Jousmaki V. MEG-compatible pneumatic stimulator to elicit passive finger and toe movements. NeuroImage. 2015;112:310–7.

    Article  PubMed  Google Scholar 

  43. Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. NeuroImage. 2009;44:489–501.

    Article  PubMed  Google Scholar 

  44. Ruspantini I, Saarinen T, Belardinelli P, Jalava A, Parviainen T, Kujala J, et al. Corticomuscular coherence is tuned to the spontaneous rhythmicity of speech at 2-3 Hz. J Neurosci Off J Soc Neurosci. 2012;32:3786–90.

    Article  CAS  Google Scholar 

  45. Macdougall H, Moore S. Marching to the beat of the same drummer: the spontaneous tempo of human locomotion. J Appl Physiol. 2005;99:1164–73.

    Article  PubMed  Google Scholar 

  46. Bisio A, Avanzino L, Lagravinese G, Biggio M, Ruggeri P, Bove M. Spontaneous movement tempo can be influenced by combining action observation and somatosensory stimulation. Front Behav Neurosci. 2015;9.

  47. Bove M, Tacchino A, Pelosin E, Moisello C, Abbruzzese G, Ghilardi MF. Spontaneous movement tempo is influenced by observation of rhythmical actions. Brain Res Bull. 2009;80:122–7.

    Article  PubMed  Google Scholar 

  48. Bosco G, Poppele RE. Proprioception from a spinocerebellar perspective. Physiol Rev. 2001;81:539–68.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by research grants from the Fonds de la Recherche Scientifique (FRS-FNRS, Belgium; Grant references: J.0097.13F, J.0095.16F). Mathieu Bourguignon has been supported by the program Attract of Innoviris (Grant 2015-BB2B-10). Gilles Naeije is supported by a research grant of the Fonds Erasme (Brussels, Belgium). Xavier De Tiège is Postdoctoral Clinical Master Specialist at the Fonds de la Recherche Scientifique (FRS-FNRS, Belgium). The MEG project at the CUB Hôpital Erasme is financially supported by the Fonds Erasme (Research Convention “Les Voies du Savoir”, Brussels, Belgium). Brice Marty also thanks Professor Stéphane Swillens at the Université libre de Bruxelles (ULB) for his support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brice Marty.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marty, B., Wens, V., Bourguignon, M. et al. Neuromagnetic Cerebellar Activity Entrains to the Kinematics of Executed Finger Movements. Cerebellum 17, 531–539 (2018). https://doi.org/10.1007/s12311-018-0943-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-018-0943-4

Keywords

Navigation