Skip to main content

Advertisement

Log in

Clinical Evidence of the Role of the Cerebellum in the Suppression of Overt Articulatory Movements During Reading. A Study of Reading in Children and Adolescents Treated for Cerebellar Pilocytic Astrocytoma

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

It has been suggested that the cerebellum is involved in reading acquisition and in particular in the progression from automatic grapheme–phoneme conversion to the internalization of speech required for silent reading. This idea is in line with clinical and neuroimaging data showing a cerebellar role in subvocal rehearsal for printed verbalizable material and with computational “internal models” of the cerebellum suggesting its role in inner speech (i.e. covert speech without mouthing the words). However, studies examining a possible cerebellar role in the suppression of articulatory movements during silent reading acquisition in children are lacking. Here, we report clinical evidence that the cerebellum plays a part in this transition. Reading performances were compared between a group of 17 paediatric patients treated for benign cerebellar tumours and a group of controls matched for age, gender, and parental socio-educational level. The patients scored significantly lower on all reading, but the most striking difference concerned silent reading, perfectly acquired by almost all controls, contrasting with 41 % of the patients who were unable to read any item silently. Silent reading was correlated with the Working Memory Index. The present findings converge with previous reports on an implication of the cerebellum in inner speech and in the automatization of reading. This cerebellar implication is probably not specific to reading, as it also seems to affect non-reading tasks such as counting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2

Similar content being viewed by others

References

  1. Leiner HC, Leiner AL, Dow RS. Does the cerebellum contribute to mental skills? Behav Neurosci. 1986;100(4):443–54.

    Article  CAS  PubMed  Google Scholar 

  2. Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121(4):561–79.

    Article  PubMed  Google Scholar 

  3. Levisohn L, Cronin-Golomb A, Schmahmann JD. Neuropsychological consequences of cerebellar tumour resection in children: cerebellar cognitive affective syndrome in a paediatric population. Brain. 2000;123(5):1041–50.

    Article  PubMed  Google Scholar 

  4. Mariën P, Ackermann H, Adamaszek M, Barwood CHS, Beaton A, Desmond J, et al. Consensus paper: language and the cerebellum: an ongoing enigma. Cerebellum. 2014;13(3):386–410.

    PubMed  Google Scholar 

  5. Leggio MG, Chiricozzi FR, Clausi S, Tedesco AM, Molinari M. The neuropsychological profile of cerebellar damage: the sequencing hypothesis. Cortex. 2011;47(1):137–44.

    Article  PubMed  Google Scholar 

  6. Ackermann H, Gräber S, Hertrich I, Daum I. Cerebellar contributions to the perception of temporal cues within the speech and nonspeech domain. Brain Lang. 1999;67(3):228–41.

    Article  CAS  PubMed  Google Scholar 

  7. Ben-Yehudah G, Fiez JA. Impact of cerebellar lesions on reading and phonological processing. Ann N Y Acad Sci. 2008;1145:260–74.

    Article  PubMed  Google Scholar 

  8. Moretti R, Bava A, Torre P, Antonello RM, Cazzato G. Reading errors in patients with cerebellar vermis lesions. J Neurol. 2002;249(4):461–8.

    Article  PubMed  Google Scholar 

  9. Leroy-Boussion A. La lecture silencieuse. Psy. 1966;66(2):579–98.

    Article  Google Scholar 

  10. Baddeley A. Working memory: looking back and looking forward. Nat Rev Neurosci. 2003;4(10):829–39.

    Article  CAS  PubMed  Google Scholar 

  11. Baddeley A, Lewis VJ, Vallar G. Exploring the articulatory loop. In: Quarterly journal of experimental psychology. 1984;36 (A):233–252.

  12. Paulesu E, Frith CD, Frackowiak RS. The neural correlates of the verbal component of working memory. Nature. 1993;362(6418):342–5.

    Article  CAS  PubMed  Google Scholar 

  13. Desmond JE, Gabrieli JD, Wagner AD, Ginier BL, Glover GH. Lobular patterns of cerebellar activation in verbal working-memory and finger-tapping tasks as revealed by functional MRI. J Neurosci. 1997;17(24):9675–85.

    CAS  PubMed  Google Scholar 

  14. Chen SHA, Desmond JE. Temporal dynamics of cerebro-cerebellar network recruitment during a cognitive task. Neuropsychologia. 2005;43(9):1227–37.

    Article  PubMed  Google Scholar 

  15. Chen SHA, Desmond JE. Cerebrocerebellar networks during articulatory rehearsal and verbal working memory tasks. Neuroimage. 2005;24(2):332–8.

    Article  PubMed  Google Scholar 

  16. Sternberg S. High-speed scanning in human memory. Science. 1966;153:652–4.

    Article  CAS  PubMed  Google Scholar 

  17. Kirschen MP, Chen SHA, Schraedley-Desmond P, Desmond JE. Load- and practice- dependent increases in cerebro-cerebellar activation in verbal working memory: an fMRI study. Neuroimage. 2005;24(2):462–72.

    Article  PubMed  Google Scholar 

  18. Kirschen MP, Chen SHA, Desmond JE. Modality specific cerebro-cerebellar activations in verbal working memory: an fMRI study. Behav Neurol. 2010;23(1–2):51–63.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Marvel CL, Desmond JE. Functional topography of the cerebellum in verbal working memory. Neuropsychol Rev. 2010;20(3):271–9.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Nicolson RI, Fawcett AJ. Automaticity: a new framework for dyslexia research? Cognition. 1990;35(2):159–82.

    Article  CAS  PubMed  Google Scholar 

  21. Nicolson RI, Fawcett AJ, Dean P. Developmental dyslexia: the cerebellar deficit hypothesis. Trends Neurosci. 2001;24(9):508–11.

    Article  CAS  PubMed  Google Scholar 

  22. Fawcett AJ, Nicolson RI. Performance of dyslexic children on cerebellar and cognitive tests. J Mot Behav. 1999;31(1):68–78.

    Article  PubMed  Google Scholar 

  23. Nicolson RI, Fawcett AJ, Berry EL, Jenkins IH, Dean P, Brooks DJ. Association of abnormal cerebellar activation with motor learning difficulties in dyslexic adults. Lancet. 1999;353(9165):1662–7.

    Article  CAS  PubMed  Google Scholar 

  24. Ito M. Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci. 2008;9(4):304–13.

    Article  CAS  PubMed  Google Scholar 

  25. Daneman M, Newson M. Assessing the importance of subvocalization during normal silent reading. Read Writ. 1992;4(1):55–77.

    Article  Google Scholar 

  26. Von Aster M, Dellatolas G. ZAREKI-R: Manuel d’utilisation. Paris: ECPA; 2006.

    Google Scholar 

  27. Trouillas P, Takayanagi T, Hallett M, Currier RD, Subramony SH, Wessel K, et al. International Cooperative Ataxia Rating Scale for pharmacological assessment of the cerebellar syndrome. The Ataxia Neuropharmacology Committee of the World Federation of Neurology J Neurol Sci. 1997;145(2):205–11.

    CAS  Google Scholar 

  28. Wechsler d. WISC-IV Echelle d'Intelligence de Wechsler pour Enfants et Adolescents. 4 th ed. Paris : ECPA; 2005.

  29. Lefavrais P. Alouette-R Test d’Analyse de la Lecture et de la Dyslexie. Paris: ECPA; 2005.

    Google Scholar 

  30. Kaufman AS, Kaufman NL. Kaufman Assessment Battery for Children. 2nd ed. Circle Pines, MN: American Guidance Service; 2004.

    Google Scholar 

  31. Puget S, Boddaert N, Viguier D, Kieffer V, Bulteau C, Garnett M, et al. Injuries to inferior vermis and dentate nuclei predict poor neurological and neuropsychological outcome in children with malignant posterior fossa tumors. Cancer. 2009;115(6):1338–47.

    Article  PubMed  Google Scholar 

  32. SAS Institute INC SAS/STAT. User’s guide, version 6. 4th ed., Vol. 1. Cary, NC; 1989.

  33. Pitsika M, Tsitouras V. Cerebellar mutism. J Neurosurg Pediatr. 2013;12(6):604–14.

    Article  PubMed  Google Scholar 

  34. Castro-Caldas A, Petersson KM, Reis A, Stone-Elander S, Ingvar M. The illiterate brain. Learning to read and write during childhood influences the functional organization of the adult brain. Brain. 1998;121(Pt 6):1053–63.

    Article  PubMed  Google Scholar 

  35. Dellatolas G, Willadino Braga L, Do N Souza L, Filho GN, Queiroz E, Deloche G. Cognitive consequences of early phase of literacy. J Int Neuropsychol Soc. 2003;9(5):771–82.

    PubMed  Google Scholar 

  36. Gathercole SE, Willis C, Emslie H, Baddeley AD. The influences of number of syllables and word-likeness on children’s repetition of nonwords. Applied Psycholinguistics. 1991;12:349–67.

    Article  Google Scholar 

  37. De Jong PF, van der Leij A. Specific contributions of phonological abilities to early reading acquisition: results from a Dutch latent variable longitudinal study. Journal of Educational Psychology. 1999;91(3):450–76.

    Article  Google Scholar 

  38. Ben-Yehudah G, Guediche S, Fiez JA. Cerebellar contributions to verbal working memory: beyond cognitive theory. Cerebellum. 2007;6(3):193–201.

    Article  PubMed  Google Scholar 

  39. Marvel CL, Faulkner ML, Strain EC, Mintzer MZ, Desmond JE. An fMRI investigation of cerebellar function during verbal working memory in methadone maintenance patients. Cerebellum. 2012;11(1):300–10.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Vygotski L. Pensée et mots. In Pensée et langage. 3 rd ed. 1st ed: 1933. Paris: La dispute; 1997. pp. 415–500.

  41. Schlösser R, Hutchinson M, Joseffer S, Rusinek H, Saarimaki A, Stevenson J, et al. Functional magnetic resonance imaging of human brain activity in a verbal fluency task. J Neurol Neurosurg Psychiatr. 1998;64(4):492–8.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Murray DJ. The effect of white noise upon the recall of vocalized lists. Can J Psychol. 1965;19(4):333–45.

    Article  CAS  PubMed  Google Scholar 

  43. Ravizza SM, Delgado MR, Chein JM, Becker JT, Fiez JA. Functional dissociations within the inferior parietal cortex in verbal working memory. Neuroimage. 2004;22(2):562–73.

    Article  PubMed  Google Scholar 

  44. Marvel CL, Desmond JE. The contributions of cerebro-cerebellar circuitry to executive verbal working memory. Cortex. 2010;46(7):880–95.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neurosci. 2009;32:413–34.

    Article  CAS  PubMed  Google Scholar 

  46. Ravizza SM, McCormick CA, Schlerf JE, Justus T, Ivry RB, Fiez JA. Cerebellar damage produces selective deficits in verbal working memory. Brain. 2006;129:306–20.

    Article  PubMed  Google Scholar 

  47. Koziol LF, Budding D, Andreasen N, D’Arrigo S, Bulgheroni S, Imamizu H, et al. Consensus paper: the cerebellum’s role in movement and cognition. Cerebellum. 2014;13(1):151–77.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

N. Ait Khelifa-Gallois was supported by grants from Cancéropôle Ile de France and Ligue contre le cancer. We thank the participants for their contribution to this study.

Declaration

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Ait Khelifa-Gallois.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(JPEG 7 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ait Khelifa-Gallois, N., Puget, S., Longaud, A. et al. Clinical Evidence of the Role of the Cerebellum in the Suppression of Overt Articulatory Movements During Reading. A Study of Reading in Children and Adolescents Treated for Cerebellar Pilocytic Astrocytoma. Cerebellum 14, 97–105 (2015). https://doi.org/10.1007/s12311-014-0612-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-014-0612-1

Keywords

Navigation