Skip to main content
Log in

An fMRI Investigation of Cerebellar Function During Verbal Working Memory in Methadone Maintenance Patients

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Working memory is impaired in opioid-dependent individuals, yet the neural underpinnings of working memory in this population are largely unknown. Previous studies in healthy adults have demonstrated that working memory is supported by a network of brain regions that includes a cerebro-cerebellar circuit. The cerebellum, in particular, may be important for inner speech mechanisms that assist verbal working memory. This study used functional magnetic resonance imaging to examine brain activity associated with working memory in five opioid-dependent, methadone-maintained patients and five matched, healthy controls. An item recognition task was administered in two conditions: (1) a low working memory load “match” condition in which participants determined whether target letters presented at the beginning of the trial matched a probe item, and (2) a high working memory load “manipulation” condition in which participants counted two alphabetical letters forward of each of the targets and determined whether either of these new items matched a probe item. Response times and accuracy scores were not significantly different between the groups. FMRI analyses indicated that, in association with higher working memory load (“manipulation” condition), the patient group exhibited hyperactivity in the superior and inferior cerebellum and amygdala relative to that of controls. At a more liberal statistical threshold, patients exhibited hypoactivity in the left prefrontal and medial frontal/pre-SMA regions. These results indicate that verbal working memory in opioid-dependent individuals involves a disrupted cerebro-cerebellar circuit and shed light on the neuroanatomical basis of working memory impairments in this population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Even though the authors of each study interpreted the hyperactivity as compensatory in their respective patient groups, it should be noted that the cocaine-dependent group [21] showed behavioral deficits, whereas the opioid-dependent group [22] performed at normal levels.

References

  1. Baddeley A. Working memory. Science. 1992;255(5044):556–9.

    Article  PubMed  CAS  Google Scholar 

  2. Ackermann H, Mathiak K, Ivry RB. Temporal organization of “internal speech” as a basis for cerebellar modulation of cognitive functions. Behav Cogn Neurosci Rev. 2004;3(1):14–22.

    Article  PubMed  Google Scholar 

  3. Levy BA. Role of articulation in auditory and visual short-term memory. J Verbal Learning Verbal Behav. 1971;10:123–32.

    Article  Google Scholar 

  4. Murray DJ. The effect of white noise upon the recall of vocalized lists. Can J Psychol. 1965;19(4):333–45.

    Article  PubMed  CAS  Google Scholar 

  5. Marvel CL, Desmond JE. Functional topography of the cerebellum in verbal working memory. Neuropsychol Rev. 2010;20(3):271–9.

    Article  PubMed  Google Scholar 

  6. Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neurosci. 2009;32:413–34.

    Article  PubMed  CAS  Google Scholar 

  7. Chang C, Crottaz-Herbette S, Menon V. Temporal dynamics of basal ganglia response and connectivity during verbal working memory. NeuroImage. 2007;34(3):1253–69.

    Article  PubMed  Google Scholar 

  8. Chein JM, Fiez JA. Dissociation of verbal working memory system components using a delayed serial recall task. Cereb Cortex. 2001;11(11):1003–14.

    Article  PubMed  CAS  Google Scholar 

  9. Chen SH, Desmond JE. Temporal dynamics of cerebro-cerebellar network recruitment during a cognitive task. Neuropsychologia. 2005;43(9):1227–37.

    Article  PubMed  Google Scholar 

  10. Chen SH, Desmond JE. Cerebrocerebellar networks during articulatory rehearsal and verbal working memory tasks. NeuroImage. 2005;24(2):332–8.

    Article  PubMed  Google Scholar 

  11. Desmond JE, Gabrieli JD, Wagner AD, Ginier BL, Glover GH. Lobular patterns of cerebellar activation in verbal working-memory and finger-tapping tasks as revealed by functional MRI. J Neurosci. 1997;17(24):9675–85.

    PubMed  CAS  Google Scholar 

  12. Kirschen MP, Chen SH, Schraedley-Desmond P, Desmond JE. Load- and practice-dependent increases in cerebro-cerebellar activation in verbal working memory: an fMRI study. NeuroImage. 2005;24(2):462–72.

    Article  PubMed  Google Scholar 

  13. Marvel CL, Desmond JE. The contributions of cerebro-cerebellar circuitry to executive verbal working memory. Cortex. 2010;46(7):880–95.

    Article  PubMed  Google Scholar 

  14. Ben-Yehudah G, Guediche S, Fiez JA. Cerebellar contributions to verbal working memory: beyond cognitive theory. Cerebellum. 2007;6(3):193–201.

    Article  PubMed  Google Scholar 

  15. Bohland JW, Guenther FH. An fMRI investigation of syllable sequence production. NeuroImage. 2006;32(2):821–41.

    Article  PubMed  Google Scholar 

  16. Durisko C, Fiez JA. Functional activation in the cerebellum during working memory and simple speech tasks. Cortex. 2010;46(7):896–906.

    Article  PubMed  Google Scholar 

  17. Ravizza SM, McCormick CA, Schlerf JE, Justus T, Ivry RB, Fiez JA. Cerebellar damage produces selective deficits in verbal working memory. Brain. 2006;129(Pt 2):306–20.

    PubMed  Google Scholar 

  18. Marvel CL, Desmond JE. From storage to manipulation: How the neural correlates of verbal working memory reflect varying demands on inner speech. Brain & Language (2011), doi:10.1016/j.bandl.2011.08.005.

  19. Yucel M, Lubman DI, Solowij N, Brewer WJ. Understanding drug addiction: a neuropsychological perspective. Aust N Z J Psychiatry. 2007;41(12):957–68.

    Article  PubMed  Google Scholar 

  20. Desmond JE, Chen SH, DeRosa E, Pryor MR, Pfefferbaum A, Sullivan EV. Increased frontocerebellar activation in alcoholics during verbal working memory: an fMRI study. NeuroImage. 2003;19(4):1510–20.

    Article  PubMed  Google Scholar 

  21. Hester R, Garavan H. Executive dysfunction in cocaine addiction: evidence for discordant frontal, cingulate, and cerebellar activity. J Neurosci. 2004;24(49):11017–22.

    Article  PubMed  CAS  Google Scholar 

  22. Yucel M, Lubman DI, Harrison BJ, Fornito A, Allen NB, Wellard RM, et al. A combined spectroscopic and functional MRI investigation of the dorsal anterior cingulate region in opiate addiction. Mol Psychiatr. 2007;12(7):611, 691–702.

    Google Scholar 

  23. Xiao Z, Lee T, Zhang JX, Wu Q, Wu R, Weng X, et al. Thirsty heroin addicts show different fMRI activations when exposed to water-related and drug-related cues. Drug Alcohol Depend. 2006;83(2):157–62.

    Article  PubMed  Google Scholar 

  24. APA, First MB, Spitzer RL, Gibbon M, Williams JBW. Structured Clinical Interview for DSM-IV Axis I Disorders, Clinical Version (SCID-CV). Washington: American Psychiatric Press; 1996.

    Google Scholar 

  25. Czermak C, Lehofer M, Gasser-Steiner P, Ettinger S, Lemonis L, Rohrhofer A, et al. Test–retest reliability of a lifetime drug use questionnaire. Addict Behav. 2005;30(2):361–8.

    Article  PubMed  Google Scholar 

  26. Psychology Software Tools I, E-Prime v1.1. Pittsburgh; 2002.

  27. Talairach J, Tournoux P. Co-planar stereotaxic atlas of the human brain 3-D proportional system, an approach to cerebral imaging. New York: Thieme Medical; 1988. p. 122.

    Google Scholar 

  28. Lancaster JL, Rainey LH, Summerlin JL, Freitas CS, Fox PT, Evans AC, et al. Automated labeling of the human brain: a preliminary report on the development and evaluation of a forward-transform method. Hum Brain Mapp. 1997;5:238–42.

    Article  PubMed  CAS  Google Scholar 

  29. Schmahmann JD, Doyon J, Petrides M, Evans AC, Toga AW. MRI atlas of the human cerebellum. San Diego: Academic; 2000.

    Google Scholar 

  30. Nichols TE, Holmes AP. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp. 2002;15(1):1–25.

    Article  PubMed  Google Scholar 

  31. Desmond JE, Lim KO. On- and offline Talairach registration for structural and functional MRI studies. Hum Brain Mapp. 1997;5:58–73.

    Article  PubMed  CAS  Google Scholar 

  32. Yuan Y, Zhu Z, Shi J, Zou Z, Yuan F, Liu Y, et al. Gray matter density negatively correlates with duration of heroin use in young lifetime heroin-dependent individuals. Brain Cogn. 2009;71(3):223–8.

    Article  PubMed  Google Scholar 

  33. Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46(7):831–44.

    Article  PubMed  Google Scholar 

  34. Koob GF. Brain stress systems in the amygdala and addiction. Brain Res. 2009;1293:61–75.

    Article  PubMed  CAS  Google Scholar 

  35. Mintzer MZ, Stitzer ML. Cognitive impairment in methadone maintenance patients. Drug Alcohol Depend. 2002;67(1):41–51.

    Article  PubMed  Google Scholar 

  36. Padula CB, Schweinsburg AD, Tapert SF. Spatial working memory performance and fMRI activation interaction in abstinent adolescent marijuana users. Psychol Addict Behav. 2007;21(4):478–87.

    Article  PubMed  Google Scholar 

  37. Schweinsburg AD, Nagel BJ, Schweinsburg BC, Park A, Theilmann RJ, Tapert SF. Abstinent adolescent marijuana users show altered fMRI response during spatial working memory. Psychiatr Res. 2008;163(1):40–51.

    Article  Google Scholar 

  38. Schweinsburg AD, Schweinsburg BC, Nagel BJ, Eyler LT, Tapert SF. Neural correlates of verbal learning in adolescent alcohol and marijuana users. Addiction. 2011;106(3):564–73.

    Article  PubMed  Google Scholar 

  39. Kling MA, Carson RE, Borg L, Zametkin A, Matochik JA, Schluger J, et al. Opioid receptor imaging with positron emission tomography and [(18)F]cyclofoxy in long-term, methadone-treated former heroin addicts. J Pharmacol Exp Ther. 2000;295(3):1070–6.

    PubMed  CAS  Google Scholar 

  40. Harper C. The neuropathology of alcohol-specific brain damage, or does alcohol damage the brain? J Neuropathol Exp Neurol. 1998;57(2):101–10.

    Article  PubMed  CAS  Google Scholar 

  41. Harper C, Dixon G, Sheedy D, Garrick T. Neuropathological alterations in alcoholic brains. Studies arising from the New South Wales Tissue Resource Centre. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27(6):951–61.

    Article  PubMed  CAS  Google Scholar 

  42. Bonson KR, Grant SJ, Contoreggi CS, Links JM, Metcalfe J, Weyl HL, et al. Neural systems and cue-induced cocaine craving. Neuropsychopharmacol. 2002;26(3):376–86.

    Article  CAS  Google Scholar 

  43. Olbrich HM, Valerius G, Paris C, Hagenbuch F, Ebert D, Juengling FD. Brain activation during craving for alcohol measured by positron emission tomography. Aust N Z J Psychiatry. 2006;40(2):171–8.

    Article  PubMed  Google Scholar 

  44. Fales CL, Barch DM, Burgess GC, Schaefer A, Mennin DS, Gray JR, et al. Anxiety and cognitive efficiency: differential modulation of transient and sustained neural activity during a working memory task. Cogn Affect Behav Neurosci. 2008;8(3):239–53.

    Article  PubMed  CAS  Google Scholar 

  45. Fitzgerald PB, Laird AR, Maller J, Daskalakis ZJ. A meta-analytic study of changes in brain activation in depression. Hum Brain Mapp. 2008;29(6):683–95.

    Article  PubMed  Google Scholar 

  46. Ho BC, Mola C, Andreasen NC. Cerebellar dysfunction in neuroleptic naive schizophrenia patients: clinical, cognitive, and neuroanatomic correlates of cerebellar neurologic signs. Biol Psychiatr. 2004;55(12):1146–53.

    Article  Google Scholar 

  47. Hoppenbrouwers SS, Schutter DJ, Fitzgerald PB, Chen R, Daskalakis ZJ. The role of the cerebellum in the pathophysiology and treatment of neuropsychiatric disorders: a review. Brain Res Rev. 2008;59(1):185–200.

    Article  PubMed  CAS  Google Scholar 

  48. Kim JJ, Lee MC, Kim J, Kim IY, Kim SI, Han MH, et al. Grey matter abnormalities in obsessive-compulsive disorder: statistical parametric mapping of segmented magnetic resonance images. Br J Psychiatr. 2001;179:330–4.

    Article  CAS  Google Scholar 

  49. Marvel CL, Paradiso S. Cognitive and neurological impairment in mood disorders. Psychiatr Clin North Am. 2004;27(1):19–36. vii–viii.

    Article  PubMed  Google Scholar 

  50. Marvel CL, Schwartz BL, Isaacs KL. Word production deficits in schizophrenia. Brain Lang. 2004;89(1):182–91.

    Article  PubMed  Google Scholar 

  51. Nakao T, Nakagawa A, Nakatani E, Nabeyama M, Sanematsu H, Yoshiura T, et al. Working memory dysfunction in obsessive-compulsive disorder: a neuropsychological and functional MRI study. J Psychiatr Res. 2009;43(8):784–91.

    Article  PubMed  Google Scholar 

  52. Lancaster JL, Woldorff MG, Parsons LM, Liotti M, Freitas CS, Rainey L, et al. Automated Talairach atlas labels for functional brain mapping. Hum Brain Mapp. 2000;10(3):120–31.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Jonathan Cooper for his assistance with scoring the data. MRI scans were obtained at the Kirby Center of the Kennedy Krieger Institute in Baltimore, MD. Parts of this research were presented at the Society for Neuroscience Annual Meeting 2009, and Organization for Human Brain Mapping Annual Meeting 2011. Funding for this study was provided by NIH grants K01 DA030442 (Marvel), K24 DA023186 (Strain), R01 MH060234 (Desmond), and the Nellie Ball Research Trust (Marvel).

Conflicts of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cherie L. Marvel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marvel, C.L., Faulkner, M.L., Strain, E.C. et al. An fMRI Investigation of Cerebellar Function During Verbal Working Memory in Methadone Maintenance Patients. Cerebellum 11, 300–310 (2012). https://doi.org/10.1007/s12311-011-0311-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-011-0311-0

Keywords

Navigation