Skip to main content
Log in

A Hypothetical Universal Model of Cerebellar Function: Reconsideration of the Current Dogma

  • Review
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The cerebellum is commonly studied in the context of the classical eyeblink conditioning model, which attributes an adaptive motor function to cerebellar learning processes. This model of cerebellar function has quite a few shortcomings and may in fact be somewhat deficient in explaining the myriad functions attributed to the cerebellum, functions ranging from motor sequencing to emotion and cognition. The involvement of the cerebellum in these motor and non-motor functions has been demonstrated in both animals and humans in electrophysiological, behavioral, tracing, functional neuroimaging, and PET studies, as well as in clinical human case studies. A closer look at the cerebellum’s evolutionary origin provides a clue to its underlying purpose as a tool which evolved to aid predation rather than as a tool for protection. Based upon this evidence, an alternative model of cerebellar function is proposed, one which might more comprehensively account both for the cerebellum’s involvement in a myriad of motor, affective, and cognitive functions and for the relative simplicity and ubiquitous repetitiveness of its circuitry. This alternative model suggests that the cerebellum has the ability to detect coincidences of events, be they sensory, motor, affective, or cognitive in nature, and, after having learned to associate these, it can then trigger (or “mirror”) these events after having temporally adjusted their onset based on positive/negative reinforcement. The model also provides for the cerebellum’s direction of the proper and uninterrupted sequence of events resulting from this learning through the inhibition of efferent structures (as demonstrated in our lab).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lavond DG, Kim JJ, Thompson RF. Mammalian brain substrates of aversive classical conditioning. Annu Rev Psychol. 1993;44:317–42.

    Article  PubMed  CAS  Google Scholar 

  2. Thompson RF, Steinmetz JE. The role of the cerebellum in classical conditioning of discrete behavioral responses. Neuroscience. 2009;162:732–55.

    Article  PubMed  CAS  Google Scholar 

  3. Freeman JH, Steinmetz AB. Neural circuitry and plasticity mechanisms underlying delay eyeblink conditioning. Learn Mem. 2011;18:666–77.

    Article  PubMed  Google Scholar 

  4. Gao Z, Van Beugen BJ, De Zeeuw CI. Distributed synergistic plasticity and cerebellar learning. Nat Rev Neurosci. 2012;13:619–35.

    Article  PubMed  CAS  Google Scholar 

  5. Steinmetz JE, Lavond DG, Thompson RF. Classical conditioning in rabbits using pontine nucleus stimulation as a conditioned stimulus and inferior olive stimulation as an unconditioned stimulus. Synapse. 1989;3(3):225–33.

    Article  PubMed  CAS  Google Scholar 

  6. Thompson RF. The neurobiology of learning and memory. Science. 1986;29(233):941–7.

    Article  Google Scholar 

  7. Thompson RF. Neural mechanisms of classical conditioning in mammals. Philos Trans Biol Sci. 1990;329(1253):161–70.

    Article  CAS  Google Scholar 

  8. Yeo CH. Cerebellum and classical conditioning of motor responses. N Y Acad Sci. 1991;627:292–304.

    Article  CAS  Google Scholar 

  9. Steinmetz JE, Logan CG, Rosen DJ, Thompson JK, Lavond DG, Thompson RF. Initial localization of the acoustic conditioned stimulus projection system to the cerebellum essential for classical eyeblink conditioning. Proc Natl Acad Sci. 1987;84:3531–5.

    Article  PubMed  CAS  Google Scholar 

  10. Sánchez-Campusano R, Gruart A, Delgado-García JM. Dynamic association in the cerebellar–motoneuron network during motor learning. J Neurosci. 2009;27(25):6620–32.

    Article  CAS  Google Scholar 

  11. Sánchez-Campusano R, Gruart A, Delgado-García JM. Dynamic changes in the cerebellar-interpositus/red-nucleus-motoneuron pathway during motor learning. Cerebellum. 2011;10(4):702–10.

    Article  PubMed  Google Scholar 

  12. Sánchez-Campusano R, Gruart A, Fernández-Mas R, Delgado-García JM. An agonist–antagonist cerebellar nuclear system controlling eyelid kinematics during motor learning. Front Neuroanat. 2012;6:8.

    Article  PubMed  Google Scholar 

  13. Sun LW. Trans-synaptic tracing of conditioned eyeblink circuits in the mouse cerebellum. Neuroscience. 2012;203:122–34.

    Article  PubMed  CAS  Google Scholar 

  14. Mintz M, Lavond D, Neufeld M, Guendelman D, Thompson RF. Anesthesia prevents acquisition but not expression of neural traces of eyeblink conditioning in rat. 16th Meeting of the European Neuroscience Association, Madrid; 1993.

  15. Hofbauer RK, Fiset P, Plourde G, Backman SB, Bushnell MC. Dose dependent effects of propofol on the central processing of thermal pain. Anesthesiology. 2004;100:386–94.

    Article  PubMed  CAS  Google Scholar 

  16. Gold PE, Weinberger NM, Sternberg DB. Epinephrine-induced learning under anesthesia: retention performance at several training–testing intervals. Behav Neurosci. 1985;99:1019–22.

    Article  PubMed  CAS  Google Scholar 

  17. Krupa DJ, Thompson RF. Inhibiting the expression of a classically conditioned behavior prevents its extinction. J Neurosci. 2003;23(33):10577–84.

    PubMed  CAS  Google Scholar 

  18. Thach WT, Perry JG, Kane SA, Goodkin HP. Cerebellar nuclei: rapid alternating movement, motor somatotopy, and a mechanism for the control of muscle synergy. Rev Neurol (Paris). 1993;149:607–28.

    CAS  Google Scholar 

  19. Goodkin HP, Keating JG, Martin TA, Thach WT. Preserved simple and impaired compound movements after infarction in the territory of the superior cerebellar artery. Can J Neurol Sci. 1993;20 Suppl 3:S93–S104.

    PubMed  Google Scholar 

  20. Berridge KC. Progressive degradation of serial grooming chains by descending decerebration. Behav Brain Res. 1989;33:241–53.

    Article  PubMed  CAS  Google Scholar 

  21. Cantalupo C, Hopkins W. The cerebellum and its contribution to complex tasks in higher primates: a comparative perspective. Cortex. 2010;46:821–30.

    Article  PubMed  Google Scholar 

  22. Molinari M, Leggio MG, Solida A, Ciorra R, Misciagna S, Silveri MC, et al. Cerebellum and procedural learning: evidence from focal cerebellar lesions. Brain. 1997;120:1753–62.

    Article  PubMed  Google Scholar 

  23. Torriero S, Oliveri M, Koch G, Caltagirone C, Petrosini L. Interference of left and right cerebellar rTMS with procedural learning. J Cognitive Neurosci. 2004;16(9):1605–11.

    Article  Google Scholar 

  24. Doyon J, Song AW, Karni A, Lalonde F, Adams MM, Ungerleider LG. Experience-dependent changes in cerebellar contributions to motor sequence learning. Proc Natl Acad Sci. 2002;99(2):1017–22.

    Article  PubMed  CAS  Google Scholar 

  25. Toni I, Krams M, Turner R, Passingham RE. The time course of changes during motor sequence learning: a whole-brain fMRI study. NeuroImage. 1998;8:50–61.

    Article  PubMed  CAS  Google Scholar 

  26. Doyon J, Bellec P, Amsel R, Penhune V, Monchi O, Carrier J, et al. Contributions of the basal ganglia and functionally related brain structures to motor learning. Behav Brain Res. 2009;199:61–75.

    Article  PubMed  Google Scholar 

  27. O'Halloran CJ, Kinsella GJ, Storey E. The cerebellum and neuropsychological functioning: a critical review. J Clin Exp Neurophysiol. 2012;34(1):35–56.

    Google Scholar 

  28. Dow RS. Cerebellar action potentials in response to stimulation of the cerebral cortex in monkeys and cats. J Neurophysiol. 1942;5:121–36.

    Google Scholar 

  29. Dum RP, Strick PL. An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. J Neurophysiol. 2003;89:634–9.

    Article  PubMed  Google Scholar 

  30. Middleton FA, Strick PL. Cerebellar projections to the prefrontal cortex of the primate. J Neurosci. 2001;21(2):700–12.

    PubMed  CAS  Google Scholar 

  31. Lu X, Miyachi S, Takada M. Anatomical evidence for the involvement of medial cerebellar output from the interpositus nuclei in cognitive functions. Proc Natl Acad Sci. 2012;109(46):18980–4.

    Article  PubMed  CAS  Google Scholar 

  32. Middleton FA, Strick PL. Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science. 1994;266:458–61.

    Article  PubMed  CAS  Google Scholar 

  33. Takeda K, Funahashi S. Population vector analysis of primate prefrontal activity during spatial working memory. Cereb Cortex. 2004;14(12):1328–39.

    Article  PubMed  Google Scholar 

  34. Genovesio A, Tsujimoto S, Wise SP. Neuronal activity related to elapsed time in prefrontal cortex. J Neurophysiol. 2006;95(5):3281–5.

    Article  PubMed  Google Scholar 

  35. Tsujimoto S, Genovesio A, Wise SP. Evaluating self-generated decisions in frontal pole cortex of monkeys. Nat Neurosci. 2010;13(1):120–6.

    Article  PubMed  CAS  Google Scholar 

  36. Freedman DJ, Riesenhuber M, Poggio T, Miller EK. Categorical representation of visual stimuli in the primate prefrontal cortex. Science. 2001;291(5502):312–6.

    Article  PubMed  CAS  Google Scholar 

  37. Leiner HC, Leiner AL, Dow RS. Cognitive and language functions of the human cerebellum. Trends Neurosci. 1993;16(11):444–7.

    Article  PubMed  CAS  Google Scholar 

  38. Leiner HC, Leiner AL, Dow RS. Does the cerebellum contribute to mental skills? Behav Neurosci. 1986;100(4):443–54.

    Article  PubMed  CAS  Google Scholar 

  39. Balsters JH, Cussans E, Diedrichsen J, Phillips KA, Preuss TM, Rilling JK, et al. Evolution of the cerebellar cortex: the selective expansion of prefrontal-projecting cerebellar lobules. NeuroImage. 2010;49:2045–52.

    Article  PubMed  CAS  Google Scholar 

  40. Hendry SHC, Jones EG, Graham J. Thalamic relay nuclei for cerebellar and certain related fiber systems in the cat. J Comp Neurol. 1979;185:679–713.

    Article  PubMed  CAS  Google Scholar 

  41. Mehler WR. Further notes on the centre median nucleus of Luys. In: Purpura DP, Yahr MD, editors. The thalamus. New York: Columbia University Press; 1966. p. 109–22.

    Google Scholar 

  42. Mehler WR. Idea of a new anatomy of the thalamus. J Psychiatr Res. 1971;8:203–17.

    Article  PubMed  CAS  Google Scholar 

  43. Kelly RM, Strick PL. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci. 2003;23(23):8432–44.

    PubMed  CAS  Google Scholar 

  44. Middleton FA, Strick PL. Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Rev. 2000;31(2–3):236–50.

    Article  PubMed  CAS  Google Scholar 

  45. Krienen FM, Buckner RL. Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cereb Cortex. 2009;19:2485–97.

    Article  PubMed  Google Scholar 

  46. Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neurosci. 2009;32:413–34.

    Article  PubMed  CAS  Google Scholar 

  47. Schmahmann JD, Pandya DN. Prefrontal cortex projections to the basilar pons in rhesus monkey: implications for the cerebellar contribution to higher functions. Neurosci Lett. 1995;199:175–8.

    Article  PubMed  CAS  Google Scholar 

  48. Kamali A, Kramer LA, Frye RE, Butler IJ, Hasan KM. Diffusion tensor tractography of the human brain cortico-ponto-cerebellar pathways: a quantitative preliminary study. J Magn Reson Im. 2010;32:809–17.

    Article  Google Scholar 

  49. Ramnani N, Behrens TE, Johansen-Berg H, Richter MC, Pinsk MA, Andersson JL, et al. The evolution of prefrontal inputs to the cortico-pontine system: diffusion imaging evidence from Macaque monkeys and humans. Cereb Cortex. 2006;16:811–8.

    Article  PubMed  Google Scholar 

  50. Stephan H, Andy OJ. Quantitative comparative neuroanatomy of primates: an attempt at a phylogenetic interpretation. Comp Evol Asp Vertebr Nerv Syst Ann. 1969;167:370–87.

    Google Scholar 

  51. Brown JT, Chan-Palay V, Palay SL. A study of afferent input to the inferior olivary complex in the rat by retrograde axonal transport of horseradish peroxidase. J Comp Neurol. 1977;176:l–22.

    Article  Google Scholar 

  52. Brown IE, Bower JM. The influence of somatosensory cortex on climbing fiber responses in the lateral hemispheres of the rat cerebellum after peripheral tactile stimulation. J Neurosci. 2002;22(15):6819–29.

    PubMed  CAS  Google Scholar 

  53. Sasaki K, Oka H, Matsuda Y, Shimono T, Mizuno N. Electrophysiological studies of the projections from the parietal association area to the cerebellar cortex. Exp Brain Res. 1975;23:91–102.

    Article  PubMed  CAS  Google Scholar 

  54. Schmahmann JD. From movement to thought: anatomic substrates of the cerebellar contribution to cognitive processing. Hum Brain Mapp. 1996;4:174–98.

    Article  PubMed  CAS  Google Scholar 

  55. Sousa-Pinto A. Experimental anatomical demonstration of a cortico-olivary projection from area 6 (supplementary motor area?) in the cat. Brain Res. 1969;16:73–83.

    Article  PubMed  CAS  Google Scholar 

  56. Swenson RS, Castro AJ. The afferent connections of the inferior olivary complex in rats. An anterograde study using autoradiographic and axonal degeneration techniques. Neuroscience. 1983;8:259–75.

    Article  PubMed  CAS  Google Scholar 

  57. Swenson RS, Sievert CF, Terreberry RR, Neafsey EJ, Castro AJ. Organization of cerebral cortico-olivary projections in the rat. Neurosci Res. 1989;7:43–54.

    Article  PubMed  CAS  Google Scholar 

  58. Walberg F. Descending connections to the inferior olive: an experimental study in the cat. J Comp Neurol. 1956;104:77–173.

    Article  PubMed  CAS  Google Scholar 

  59. Jang SH, Chang PH, Kwon HG. The neural connectivity of the inferior olivary nucleus in the human brain: a diffusion tensor tractography study. Neurosci Lett. 2012;523:67–70.

    Article  PubMed  CAS  Google Scholar 

  60. Azizi SA, Woodward DJ. Inferior olivary nuclear complex of the rat: morphology and comments on the principles of organization within the olivocerebellar system. J Comp Neurol. 1987;263:467–84.

    Article  PubMed  CAS  Google Scholar 

  61. Saint-Cyr JA. Anatomical organization of cortico- mesencephalo-olivary pathways in the cat as demonstrated by axonal transport techniques. J Comp Neurol. 1987;257:39–59.

    Article  PubMed  CAS  Google Scholar 

  62. Larsell O. The morphogenesis and adult pattern of the lobules and fissures of the cerebellum of the white rat. J Comp Neurol. 1952;97(2):281–356.

    Article  PubMed  CAS  Google Scholar 

  63. Fiez JA, Raichle ME. Linguistic processing. Internatl Rev Neurobiol. 1997;41:233–54.

    Article  CAS  Google Scholar 

  64. Klein D, Milner B, Zatorre RJ, Meyer E, Evans AC. The neural substrates underlying word generation: a bilingual functional-imaging study. Proc Natl Acad Sci. 1995;92:2899–903.

    Article  PubMed  CAS  Google Scholar 

  65. Petersen SE, Fox PT, Posner MI, Mintun M, Raichle ME. Positron emission tomographic studies of the processing of single words. J Cognitive Neurosci. 1989;1(2):153–70.

    Article  CAS  Google Scholar 

  66. Booth JR, Wood L, Lu D, Houk JC, Bitan T. The role of the basal ganglia and cerebellum in language processing. Brain Res. 2007;1133:136–44.

    Article  PubMed  CAS  Google Scholar 

  67. De Smet HJ, Baillieux H, De Deyn PP, Mariën P, Paquier P. The cerebellum and language: the story so far. Folia Phoniatr Logop. 2007;59:165–70.

    Article  PubMed  Google Scholar 

  68. Grogan A, Green DW, Ali N, Crinion JT, Price CJ. Structural correlates of semantic and phonemic fluency ability in first and second languages. Cereb Cortex. 2009;19:2690–8.

    Article  PubMed  Google Scholar 

  69. Fink GR, Markowitsch HJ, Reinkemeier M, Bruckbauer T, Kessler J, Heiss WD. Cerebral representation of one’s own past: neural networks involved in autobiographical memory. J Neurosci. 1996;16:4275–82.

    PubMed  CAS  Google Scholar 

  70. Nyberg L, Tulving E, Habib R, Nilsson LG, Kapur S, Houle S, et al. Functional brain maps of retrieval mode and recovery of episodic information. NeuroReport. 1995;7:249–52.

    PubMed  CAS  Google Scholar 

  71. Hayter AL, Langdon DW, Ramnani N. Cerebellar contributions to working memory. NeuroImage. 2007;36:943–54.

    Article  PubMed  CAS  Google Scholar 

  72. Andreasen NC, O'Leary DS, Arndt S, Cizadlo T, Hurtig R, Rezai K, et al. Neural substrates of facial recognition. J Neuropsychiatr Clin Neurosci. 1996;8:139–46.

    CAS  Google Scholar 

  73. Haxby JV, Ungerleider LG, Horwitz B, Maisog JM, Rapoport SI, Grady CL. Face encoding and recognition in the human brain. Proc Natl Acad Sci. 1996;93(2):922–7.

    Article  PubMed  CAS  Google Scholar 

  74. Allen G, Buxton RB, Wong EC, Courchesne E. Attentional activation of the cerebellum independent of motor involvement. Science. 1997;275(5308):1940–3.

    Article  PubMed  CAS  Google Scholar 

  75. Desmond JE, Fiez JA. Neuroimaging studies of the cerebellum: language, learning and memory. Trends Cogn Sci. 1998;2(9):355–62.

    Article  PubMed  CAS  Google Scholar 

  76. Baillieux H, De Smet HJ, Paquier PF, De Deyn PP, Mariën P. Cerebellar neurocognition: insights into the bottom of the brain. Clin Neurol Neurosur. 2008;110:763–73.

    Article  Google Scholar 

  77. Grimaldi G, Manto M. Topography of cerebellar deficits in humans. Cerebellum. 2012;11:336–51.

    Article  PubMed  Google Scholar 

  78. Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121:561–79.

    Article  PubMed  Google Scholar 

  79. Allin M, Matsumoto H, Santhouse AM, Nosarti C, AlAsady MHS, Stewart AL, et al. Cognitive and motor function and the size of the cerebellum in adolescents born very pre-term. Brain. 2001;124(1):60–6.

    Article  PubMed  CAS  Google Scholar 

  80. Mariën P, Baillieux H, De Smet HJ, Engelborghs S, Wilssens I, De Deyn PP, et al. Cognitive, linguistic and affective disturbances following a right SCA infarction. Cortex. 2009;45(4):527–36.

    Article  PubMed  Google Scholar 

  81. Schweizer TA, Levine B, Rewilak D, O’Conner C, Turner G, Alexander MP, et al. Rehabilitation of executive functioning after focal damage to the cerebellum. Neurorehab Neural Repair. 2008;22(1):72–7.

    Article  Google Scholar 

  82. Baillieux H, De Smet HJ, Dobbeleir A, Paquier PF, De Deyn PP, Mariën P. Cognitive and affective disturbances following focal cerebellar damage in adults: a neuropsychological and SPECT study. Cortex. 2010;46(7):869–79.

    Article  PubMed  Google Scholar 

  83. Kim SG, Ugurbil K, Strick PL. Activation of a cerebellar output nucleus during cognitive processing. Science. 1994;265:949–51.

    Article  PubMed  CAS  Google Scholar 

  84. Exner C, Weniger G, Irle E. Cerebellar lesions in the PICA but not SCA territory impair cognition. Neurology. 2004;63:2132–5.

    Article  PubMed  Google Scholar 

  85. Schmahmann JD, Weilburg JB, Sherman JC. The neuropsychiatry of the cerebellum—insights from the clinic. Cerebellum. 2007;6(3):254–67.

    Article  PubMed  Google Scholar 

  86. Bartolo PD, Mandolesi L, Federico F, Foti F, Cutuli D, Gelfo F, et al. Cerebellar involvement in cognitive flexibility. Neurobiol Learn Mem. 2009;92:310–7.

    Article  PubMed  Google Scholar 

  87. Ivry RB, Keele SW, Diener HC. Dissociation of the lateral and medial cerebellum in movement timing and movement execution. Exp Brain Res. 1988;73:167–80.

    Article  PubMed  CAS  Google Scholar 

  88. Leggio MG, Tedesco AM, Chiricozzi FR, Clausi S, Orsini A, Molinari M. Cognitive sequencing impairment in patients with focal or atrophic cerebellar damage. Brain. 2008;131:1332–43.

    Article  PubMed  CAS  Google Scholar 

  89. Levisohn L, Cronin-Golomb A, Schmahmann JD. Neuropsychological consequences of cerebellar tumor resection in children. Cerebellar cognitive affective syndrome in a paediatric population. Brain. 2000;123:1041–50.

    Article  PubMed  Google Scholar 

  90. Wallesch CW, Horn A. Long-term effects of cerebellar pathology on cognitive functions. Brain Cog. 1990;14:19–25.

    Article  CAS  Google Scholar 

  91. Foti F, Mandolesi L, Cutuli D, Laricchiuta D, De Bartolo P, Gelfo F, et al. Cerebellar damage loosens the strategic use of the spatial structure of the search space. Cerebellum. 2010;9:29–41.

    Article  PubMed  Google Scholar 

  92. Fiez JA, Petersen SE, Cheney MK, Raichle ME. Impaired non-motor learning and error detection associated with cerebellar damage: a single case study. Brain. 1992;115(1):155–78.

    Article  PubMed  Google Scholar 

  93. Petersen SE, Fiez JA. The processing of single words studied with positron emission tomography. Annu Rev Neurosci. 1993;16:509–30.

    Article  PubMed  CAS  Google Scholar 

  94. Silveri MC, Leggio MG, Molinari M. The cerebellum contributes to linguistic production: a case of agrammatic speech following a right cerebellar lesion. Neurology. 1994;44:2047–50.

    Article  PubMed  CAS  Google Scholar 

  95. Stoodley CJ, Schmahmann JD. The cerebellum and language: evidence from patients with cerebellar degeneration. Brain Lang. 2009;110:149–53.

    Article  PubMed  Google Scholar 

  96. Grasby PM, Frith CD, Friston KJ, Bench C, Frackowiak RSJ, Dolan RJ. Functional mapping of brain areas implicated in auditory–verbal memory function. Brain. 1993;116(1):1–20.

    Article  PubMed  Google Scholar 

  97. Schmahmann JD. The cerebellar cognitive affective syndrome: clinical correlations of the dysmetria of thought hypothesis. Int Rev Psychol. 2001;13(4):313–22.

    Article  Google Scholar 

  98. Richter S, Gerwig M, Aslan B, Wilhelm H, Schloss B, Dimitrova A, et al. Cognitive functions in patients with MR defined chronic focal cerebellar lesions. J Neurol. 2007;254:1193–203.

    Article  PubMed  Google Scholar 

  99. Beaton AA. Dyslexia and the cerebellar deficit hypothesis. Cortex. 2002;38(4):479–90.

    Article  PubMed  Google Scholar 

  100. Courchesne E, Yeung- Courchesne R, Press GA, Hesselink JR, Jernigan TL. Hypoplasia of cerebellar vermal lobules VI and VII in autism. N Engl J Med. 1988;318:1349–54.

    Article  PubMed  CAS  Google Scholar 

  101. Ashtari M, Kumra S, Bhaskar SL, Clarke T, Thaden E, Cervellione KL, et al. Attention-deficit/hyperactivity disorder: a preliminary diffusion tensor imaging study. Biol Psychiatry. 2005;57:448–55.

    Article  PubMed  Google Scholar 

  102. Leroi I, O'Hearn E, March L. Psychopathology in patients with degenerative diseases: a comparison to Huntington's disease. Am J Psychiatry. 2002;159:1306–14.

    Article  PubMed  Google Scholar 

  103. Haines DE, Dietrichs E. An HRP study of hypothalamo-cerebellar and cerebello-hypothalamic connections in squirrel monkey (Saimiri sciureus). J Comp Neurol. 1984;229:559–75.

    Article  PubMed  CAS  Google Scholar 

  104. Heath RG, Harper JW. Ascending projections of the cerebellar fastigial nucleus to the hippocampus, amygdala, and other temporal lobe sites: evoked potential and histological studies in monkeys and cats. Exp Neurol. 1974;45:268–87.

    Article  PubMed  CAS  Google Scholar 

  105. Sacchetti B, Scelfo B, Strata P. Cerebellum and emotional behavior. Neuroscience. 2009;162:756–62.

    Article  PubMed  CAS  Google Scholar 

  106. Leggio MG, Neri P, Graziano A, Mandolesi L, Molinari M, Petrosini L. Cerebellar contribution to spatial event processing: characterization of procedural learning. Exp Brain Res. 1999;127:1–11.

    Article  PubMed  CAS  Google Scholar 

  107. Petrosini L, Molinari M, Dell'Anna ME. Cerebellar contribution to spatial event processing: Morris water maze and T-maze. Eur J Neurosci. 1996;8(9):1882–96.

    Article  PubMed  CAS  Google Scholar 

  108. Petrosini L, Leggio MG, Molinari M. The cerebellum in the spatial problem solving: a co-star or a guest star? Prog Neurobiol. 1998;56:191–210.

    Article  PubMed  CAS  Google Scholar 

  109. Molinari M, Leggio M. Cerebellar information processing and visuospatial functions. Cerebellum. 2007;6:214–20.

    Article  PubMed  Google Scholar 

  110. Joyal CC, Meyer C, Jacquart G, Mahler P, Caston J, Lalonde R. Effects of midline and lateral cerebellar lesions on motor coordination and spatial orientation. Brain Res. 1996;739(1–2):1–11.

    Article  PubMed  CAS  Google Scholar 

  111. Mandolesi L, Leggio MG, Graziano A, Neri P, Petrosini L. Cerebellar contribution to spatial event processing: involvement in procedural and working memory components. Eur J Neurosci. 2001;14:2011–22.

    Article  PubMed  CAS  Google Scholar 

  112. Torriero S, Oliveri M, Koch G, Gerfo EL, Salerno S, Ferlazzo F, et al. Changes in cerebello-motor connectivity during procedural learning by actual execution and observation. J Cogn Neurosci. 2010;23(2):338–48.

    Article  PubMed  Google Scholar 

  113. Ferrucci R, Brunoni AR, Parazzini M, Vergari M, Rossi E, Fumagalli M, et al. Modulating human procedural learning by cerebellar transcranial direct current stimulation. Cerebellum. 2013. doi:10.1007/s12311-012-0436-9.

  114. Leggio MG, Molinari M, Neri P, Graziano A, Mandolesi L, Petrosini L. Representation of actions in rats: the role of cerebellum in learning spatial performances by observation. Proc Natl Acad Sci. 2000;97(5):2320–5.

    Article  PubMed  CAS  Google Scholar 

  115. Paulin MG. Evolutionary origins and principles of distributed neural computation for state estimation and movement control in vertebrates. Complexity. 2005;10(3):56–65.

    Article  Google Scholar 

  116. Paulin MG. Evolution of the cerebellum as a neuronal machine for Bayesian state estimation. J Neural Eng. 2005;2:S219–34.

    Article  PubMed  CAS  Google Scholar 

  117. Milsom WK, Chatburn J, Zimmer MB. Pontine influences on respiratory control in ectothermic and heterothermic vertebrates. Resp Physiol Neurobi. 2004;143(2–3):263–80.

    Google Scholar 

  118. Bell CC. Evolution of cerebellum-like structures. Brain Behav Evol. 2002;59(5–6):312–26.

    Article  PubMed  Google Scholar 

  119. Sreedharan S, Almén MS, Carlini VP, Haitina T, Stephansson O, Sommer WH, et al. The G protein coupled receptor Gpr153 shares common evolutionary origin with Gpr162 and is highly expressed in central regions including the thalamus, cerebellum and the arcuate nucleus. FEBS J. 2011;278:4881–94.

    Article  PubMed  CAS  Google Scholar 

  120. Bell CC, Han V, Sawtell NB. Cerebellum-like structures and their implications for cerebellar function. Annu Rev Neurosci. 2008;31:1–24.

    Article  PubMed  CAS  Google Scholar 

  121. Hobbs MJ, Young JZ. Cephalopod cerebellum. Brain Res. 1973;55:424–30.

    Article  PubMed  CAS  Google Scholar 

  122. Young JZ. Cerebellum and control of eye-movements in Cephalopods. Nature. 1976;264:572–4.

    Article  PubMed  CAS  Google Scholar 

  123. Hochner B, Shomrat T, Fiorito G. The octopus: a model for a comparative analysis of the evolution of learning and memory mechanisms. Biol Bull. 2006;210:308–17.

    Article  PubMed  Google Scholar 

  124. Kalmijn AJ. Electric and magnetic-field detection in elasmobranch fishes. Science. 1982;218(4575):916–8.

    Article  PubMed  CAS  Google Scholar 

  125. Collin SP, Whitehead D. The functional roles of passive electroreception in non-electric fishes. Anim Biol. 2004;54(1):1–25.

    Article  Google Scholar 

  126. Kajiura SM. Electroreception in neonatal bonnethead sharks, Sphyrna tiburo. Mar Biol. 2003;143:603–11.

    Article  Google Scholar 

  127. Hill WF. Learning: a survey of psychological interpretations. 3rd ed. Suffolk: Chaucer Press; 1980.

    Google Scholar 

  128. Taub AH, Mintz M. Amygdala conditioning modulates sensory input to the cerebellum. Neurobiol Learn Mem. 2010;94(4):521–9.

    Article  PubMed  Google Scholar 

  129. Zackowski KM, Thach WT, Bastian AJ. Cerebellar subjects show impaired coupling of reach and grasp movements. Exp Brain Res. 2002;146(4):511–22.

    Article  PubMed  CAS  Google Scholar 

  130. Erickson KM, van Kan PL. Kinematics of reach-to-grasp movements in subjects with cerebellar deficits. JNPT. 2005;29(4):206–7.

    Google Scholar 

  131. Brodal A, Destombes A, Lacerda A, Angaut P. A cerebellar projection onto the pontine nuclei. An experimental anatomical study in the cat. Exp Brain Res. 1972;19:115–39.

    Google Scholar 

  132. Kitai ST, Kocsis JD, Kiyohara T. Electrophysiological properties of nucleus reticularis tegmenti pontis cells. Antidromic and synaptic activation. Exp Brain Res. 1976;24:295–309.

    PubMed  CAS  Google Scholar 

  133. Tsukahara N, Bando T. Red nuclear and interposate nuclear excitation of pontine nuclear cells. Brain Res. 1970;19:295–8.

    Article  PubMed  CAS  Google Scholar 

  134. Yuen HR, Dom M, Martin GF. Cerebellopontine projections in the American opossum. A study of their origin, distribution and overlap with fibers from the cerebral cortex. J Comp Neurol. 1974;154:257–86.

    Article  PubMed  CAS  Google Scholar 

  135. McCrea RA, Bishop GA, Kitai ST. Morphological and electrophysiological characteristics of projection neurons in the nucleus interpositus of the cat cerebellum. J Comp Neurol. 1978;181:397–420.

    Article  PubMed  CAS  Google Scholar 

  136. Gonzalo-Ruiz A, Leichnetz GR, Smith DJ. Origin of cerebellar projections to the region of the oculomotor complex, medial pontine reticular formation, and superior colliculus in new world monkeys: a retrograde horseradish peroxidase study. J Comp Neurol. 1988;268:508–26.

    Article  PubMed  CAS  Google Scholar 

  137. Schwartz C, Schmitz Y. Projection from the cerebellar lateral nucleus to precerebellar nuclei in the mossy fiber pathway is glutamatergic: a study combining anterograde tracing with immunogold labeling in the rat. J Comp Neurol. 1997;381:320–34.

    Article  Google Scholar 

  138. Schwartz C. The fate of spontaneous synchronous rhythms on the cerebrocerebellar loop. Cerebellum. 2010;9:77–87.

    Article  Google Scholar 

  139. Clark RE, Zhang AA, Lavond DG. The importance of cerebellar cortex and facial nucleus in acquisition and retention of eyeblink/NM conditioning: evidence for critical unilateral regulation of the conditioned response. Neurobiol Learn Mem. 1997;67:96–111.

    Article  PubMed  CAS  Google Scholar 

  140. Bao S, Chen L, Thompson RF. Learning- and cerebellum-dependent neuronal activity in the lateral pontine nucleus. Behav Neurosci. 2000;114(2):254–61.

    Article  PubMed  CAS  Google Scholar 

  141. Gonzalo-Ruiz A, Leichnetz GR. Connections of the caudal cerebellar interpositus complex in a new world monkey (Cebus apella). Brain Res Bull. 1990;25:919–27.

    Article  PubMed  CAS  Google Scholar 

  142. Torigoe Y, Blanks RHI, Precht W. Anatomical studies on the nucleus reticularis tegmenti pontis in the pigmented rat. II. Subcortical afferents demonstrated by the retrograde transport of horseradish peroxidase. J Comp Neurol. 1986;243:88–105.

    Article  PubMed  CAS  Google Scholar 

  143. Curthoys IS, Nakao S, Markham CH. Cat medial pontine reticular neurons related to vestibular nystagmus: firing pattern, location and projections. Brain Res. 1981;222:75–94.

    Article  PubMed  CAS  Google Scholar 

  144. Grantyn A, Kuze B, Brandi AM, Thomas MA, Quenech’du N. Direct projections of omnipause neurons to reticulospinal neurons: a double-labeling light microscopic study in the cat. J Comp Neurol. 2010;518:4792–812.

    Article  PubMed  Google Scholar 

  145. Schmahmann JD. Dysmetria of thought: clinical consequences of cerebellar dysfunction on cognition and affect. Trends Cogn Sci. 1998;2(9):362–71.

    Article  PubMed  CAS  Google Scholar 

  146. Manto M. Mechanisms of human cerebellar dysmetria: experimental evidence and current conceptual bases. J Neuroeng Rehabil. 2009;6:10.

    Article  PubMed  Google Scholar 

  147. Selhorst JB, Stark L, Ochs AL, Hoyt WF. Disorders in cerebellar ocular motor control. Brain. 1976;99:497–508.

    Article  PubMed  CAS  Google Scholar 

  148. Lennartz RC, Weinberger NM. Analysis of response systems in Pavlovian conditioning reveals rapidly versus slowly acquired conditioning responses: support for two factors, implications for behavior and neurobiology. Psychobiology. 1992;20(2):93–119.

    Google Scholar 

  149. Neufeld M, Mintz M. Involvement of the amygdala in classical conditioning of eyeblink response in the rat. Brain Res. 2000;889:112–7.

    Article  Google Scholar 

  150. Mintz M, Wang-Ninio Y. Two-stage theory of conditioning: involvement of the cerebellum and the amygdala. Brain Res. 2001;897:150–6.

    Article  PubMed  CAS  Google Scholar 

  151. Schmahmann JD. An emerging concept: the cerebellar contribution to higher function. Arch Neurol. 1991;48(11):1178–87.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author wishes to thank Prof. M. Mintz and Dr. J. Schmahmann for their constructive remarks and suggestions on preparing the manuscript.

Conflict of Interest Statement

There is no conflict of interest, financial or otherwise, that might bias this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ari Magal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magal, A. A Hypothetical Universal Model of Cerebellar Function: Reconsideration of the Current Dogma. Cerebellum 12, 758–772 (2013). https://doi.org/10.1007/s12311-013-0477-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-013-0477-8

Keywords

Navigation