Skip to main content
Log in

Altered Expression of Carbonic Anhydrase-Related Protein XI in Neuronal Cells Expressing Mutant Ataxin-3

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Spinocerebellar ataxia type 3/Machado–Joseph disease (SCA3/MJD) is a late-onset neurodegenerative disorder caused by the expansion of a polyglutamine tract within the gene product, ataxin-3. Microarray analysis revealed a dramatic differential expression of carbonic anhydrase-related protein XI (CA-RPXI/CA11) in the presence or absence of mutant ataxin-3. Therefore, we examined the expression and distribution of all three CA-RPs (CA8, 10, and 11) in human neuronal cells that stably express mutant ataxin-3. Compared with the cells containing normal ataxin-3, protein expression of CA8 and CA11 is significantly increased in human neuroblastoma cells harboring mutant ataxin-3. Semi-quantitative RT-PCR demonstrated that all three CA-RPs exhibited significantly higher transcript levels in neuronal cells expressing mutant ataxin-3. Interestingly, CA11 is distributed not only in the cytoplasm but also within the nuclei of the stably transfected mutant cells when compared with the sole cytoplasmic distribution in cells containing normal ataxin-3. In addition, results from transient transfection assays in SK-N-SH and Neuro2a (N2a) cells also confirmed the nuclear localization of CA11 in the presence of truncated ataxin-3. Most importantly, immunohistochemical staining of the MJD transgenic mouse and post-mortem MJD human brain also revealed that CA11 is highly expressed in both cytoplasm and nuclei of the brain cells. Recruitment of CA11 into nuclear inclusions containing mutant ataxin-3 revealed a possible correlation between CA11 and disease progression. Although the exact function of CA-RPs is still undefined in the central nervous system, our findings suggest that CA-RPs, especially CA11, may play specific roles in the pathogenesis of Machado–Joseph disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kawaguchi Y, Okamoto T, Taniwaki M, Aizawa M, Inoue M, Katayama S, et al. CAG expansions in a novel gene for Machado–Joseph disease at chromosome 14q32.1. Nat Genet. 1994;8(3):221–8. PubMed PMID: 7874163. eng.

    Article  PubMed  CAS  Google Scholar 

  2. Costa MD, Paulson HL. Toward understanding Machado–Joseph disease. Prog Neurobiol. 2011; 97:239–57. PubMed PMID: 22133674. Pubmed Central PMCID: PMC3306771. Eng.

    Google Scholar 

  3. Yuasa T, Ohama E, Harayama H, Yamada M, Kawase Y, Wakabayashi M, et al. Joseph’s disease: clinical and pathological studies in a Japanese family. Ann Neurol. 1986;19(2):152–7. PubMed PMID: 3963757. eng.

    Article  PubMed  CAS  Google Scholar 

  4. Burnett B, Li F, Pittman RN. The polyglutamine neurodegenerative protein ataxin-3 binds polyubiquitylated proteins and has ubiquitin protease activity. Hum Mol Genet. 2003;12(23):3195–205. PubMed PMID: 14559776. eng.

    Article  PubMed  CAS  Google Scholar 

  5. Chai Y, Berke SS, Cohen RE, Paulson HL. Poly-ubiquitin binding by the polyglutamine disease protein ataxin-3 links its normal function to protein surveillance pathways. J Biol Chem. 2004;279(5):3605–11. PubMed PMID: 14602712. eng.

    Article  PubMed  CAS  Google Scholar 

  6. Donaldson KM, Li W, Ching KA, Batalov S, Tsai CC, Joazeiro CA. Ubiquitin-mediated sequestration of normal cellular proteins into polyglutamine aggregates. Proc Natl Acad Sci USA. 2003;100(15):8892–7. PubMed PMID: 12857950. Pubmed Central PMCID: PMC166409. eng.

    Article  PubMed  CAS  Google Scholar 

  7. Doss-Pepe EW, Stenroos ES, Johnson WG, Madura K. Ataxin-3 interactions with rad23 and valosin-containing protein and its associations with ubiquitin chains and the proteasome are consistent with a role in ubiquitin-mediated proteolysis. Mol Cell Biol. 2003;23(18):6469–83. PubMed PMID: 12944474. Pubmed Central PMCID: PMC193705. eng.

    Article  PubMed  CAS  Google Scholar 

  8. Scheel H, Tomiuk S, Hofmann K. Elucidation of ataxin-3 and ataxin-7 function by integrative bioinformatics. Hum Mol Genet. 2003;12(21):2845–52. PubMed PMID: 12944423. eng.

    Article  PubMed  CAS  Google Scholar 

  9. Warrick JM, Morabito LM, Bilen J, Gordesky-Gold B, Faust LZ, Paulson HL, et al. Ataxin-3 suppresses polyglutamine neurodegeneration in Drosophila by a ubiquitin-associated mechanism. Mol Cell. 2005;18(1):37–48. PubMed PMID: 15808507. eng.

    Article  PubMed  CAS  Google Scholar 

  10. Sherman MY, Goldberg AL. Cellular defenses against unfolded proteins: a cell biologist thinks about neurodegenerative diseases. Neuron. 2001;29(1):15–32. PubMed PMID: 11182078. eng.

    Article  PubMed  CAS  Google Scholar 

  11. Haacke A, Broadley SA, Boteva R, Tzvetkov N, Hartl FU, Breuer P. Proteolytic cleavage of polyglutamine-expanded ataxin-3 is critical for aggregation and sequestration of non-expanded ataxin-3. Hum Mol Genet. 2006;15(4):555–68. PubMed PMID: 16407371. eng.

    Article  PubMed  CAS  Google Scholar 

  12. Breuer P, Haacke A, Evert BO, Wüllner U. Nuclear aggregation of polyglutamine-expanded ataxin-3: fragments escape the cytoplasmic quality control. J Biol Chem. 2010;285(9):6532–7. PubMed PMID: 20064935. Pubmed Central PMCID: PMC2825449. eng.

    Article  PubMed  CAS  Google Scholar 

  13. Paulson HL, Bonini NM, Roth KA. Polyglutamine disease and neuronal cell death. Proc Natl Acad Sci USA. 2000;97(24):12957–8. PubMed PMID: 11058149. Pubmed Central PMCID: PMC34075. eng.

    Article  PubMed  CAS  Google Scholar 

  14. McCampbell A, Fischbeck KH. Polyglutamine and CBP: fatal attraction? Nat Med. 2001;7(5):528–30. PubMed PMID: 11329046. eng.

    Article  PubMed  CAS  Google Scholar 

  15. Nucifora FC, Sasaki M, Peters MF, Huang H, Cooper JK, Yamada M, et al. Interference by huntingtin and atrophin-1 with CBP-mediated transcription leading to cellular toxicity. Science. 2001;291(5512):2423–8. PubMed PMID: 11264541. eng.

    Article  PubMed  CAS  Google Scholar 

  16. Dunah AW, Jeong H, Griffin A, Kim YM, Standaert DG, Hersch SM, et al. Sp1 and TAFII130 transcriptional activity disrupted in early Huntington’s disease. Science. 2002;296(5576):2238–43. PubMed PMID: 11988536. eng.

    Article  PubMed  CAS  Google Scholar 

  17. Li F, Macfarlan T, Pittman RN, Chakravarti D. Ataxin-3 is a histone-binding protein with two independent transcriptional corepressor activities. J Biol Chem. 2002;277(47):45004–12. PubMed PMID: 12297501. eng.

    Article  PubMed  CAS  Google Scholar 

  18. Wen FC, Li YH, Tsai HF, Lin CH, Li C, Liu CS, et al. Down-regulation of heat shock protein 27 in neuronal cells and non-neuronal cells expressing mutant ataxin-3. FEBS Lett. 2003;546(2–3):307–14. PubMed PMID: 12832059. eng.

    Article  PubMed  CAS  Google Scholar 

  19. Evert BO, Vogt IR, Vieira-Saecker AM, Ozimek L, de Vos RA, Brunt ER, et al. Gene expression profiling in ataxin-3 expressing cell lines reveals distinct effects of normal and mutant ataxin-3. J Neuropathol Exp Neurol. 2003;62(10):1006–18. PubMed PMID: 14575237. eng.

    PubMed  CAS  Google Scholar 

  20. Chang WH, Cemal CK, Hsu YH, Kuo CL, Nukina N, Chang MH, et al. Dynamic expression of Hsp27 in the presence of mutant ataxin-3. Biochem Biophys Res Commun. 2005;336(1):258–67. PubMed PMID: 16126176. eng.

    Article  PubMed  CAS  Google Scholar 

  21. Reina CP, Zhong X, Pittman RN. Proteotoxic stress increases nuclear localization of ataxin-3. Hum Mol Genet. 2010;19(2):235–49. PubMed PMID: 19843543. Pubmed Central PMCID: PMC2796889. eng.

    Article  PubMed  CAS  Google Scholar 

  22. Koch P, Breuer P, Peitz M, Jungverdorben J, Kesavan J, Poppe D, et al. Excitation-induced ataxin-3 aggregation in neurons from patients with Machado–Joseph disease. Nature. 2011;480(7378):543–6. PubMed PMID: 22113611. eng.

    PubMed  CAS  Google Scholar 

  23. Paulson HL, Perez MK, Trottier Y, Trojanowski JQ, Subramony SH, Das SS, et al. Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia type 3. Neuron. 1997;19(2):333–44. PubMed PMID: 9292723. eng.

    Article  PubMed  CAS  Google Scholar 

  24. Schmidt T, Landwehrmeyer GB, Schmitt I, Trottier Y, Auburger G, Laccone F, et al. An isoform of ataxin-3 accumulates in the nucleus of neuronal cells in affected brain regions of SCA3 patients. Brain Pathol. 1998;8(4):669–79. PubMed PMID: 9804376. eng.

    Article  PubMed  CAS  Google Scholar 

  25. Ross CA, Poirier MA. Opinion: what is the role of protein aggregation in neurodegeneration? Nat Rev Mol Cell Biol. 2005;6(11):891–8. PubMed PMID: 16167052. eng.

    Article  PubMed  CAS  Google Scholar 

  26. Arrasate M, Mitra S, Schweitzer ES, Segal MR, Finkbeiner S. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature. 2004;431(7010):805–10. PubMed PMID: 15483602. eng.

    Article  PubMed  CAS  Google Scholar 

  27. Rochet JC. Novel therapeutic strategies for the treatment of protein-misfolding diseases. Expert Rev Mol Med. 2007;9(17):1–34. PubMed PMID: 17597554. eng.

    Article  PubMed  Google Scholar 

  28. Kvam E, Nannenga BL, Wang MS, Jia Z, Sierks MR, Messer A. Conformational targeting of fibrillar polyglutamine proteins in live cells escalates aggregation and cytotoxicity. PLoS One. 2009;4(5):e5727. PubMed PMID: 19492089. Pubmed Central PMCID: PMC2683928. eng.

    Article  PubMed  Google Scholar 

  29. Sly WS, Hu PY. Human carbonic anhydrases and carbonic anhydrase deficiencies. Annu Rev Biochem. 1995;64:375–401. PubMed PMID: 7574487. eng.

    Article  PubMed  CAS  Google Scholar 

  30. Hewett-Emmett D. Evolution and distribution of the carbonic anhydrase gene families. EXS. 2000;90:29–76. PubMed PMID: 11268522. eng.

    PubMed  CAS  Google Scholar 

  31. Lehtonen J, Shen B, Vihinen M, Casini A, Scozzafava A, Supuran CT, et al. Characterization of CA XIII, a novel member of the carbonic anhydrase isozyme family. J Biol Chem. 2004;279(4):2719–27. PubMed PMID: 14600151. eng.

    Article  PubMed  CAS  Google Scholar 

  32. Tashian RE, Hewett-Emmett D, Carter N, Bergenhem NC. Carbonic anhydrase (CA)-related proteins (CA-RPs), and transmembrane proteins with CA or CA-RP domains. EXS. 2000;90:105–20. PubMed PMID: 11268511. eng.

    PubMed  CAS  Google Scholar 

  33. Hewett-Emmett D, Tashian RE. Functional diversity, conservation, and convergence in the evolution of the alpha-, beta-, and gamma-carbonic anhydrase gene families. Mol Phylogenet Evol. 1996;5(1):50–77. PubMed PMID: 8673298. eng.

    Article  PubMed  CAS  Google Scholar 

  34. Taniuchi K, Nishimori I, Takeuchi T, Ohtsuki Y, Onishi S. cDNA cloning and developmental expression of murine carbonic anhydrase-related proteins VIII, X, and XI. Brain Res Mol Brain Res. 2002;109(1–2):207–15. PubMed PMID: 12531530. eng.

    Article  PubMed  CAS  Google Scholar 

  35. Taniuchi K, Nishimori I, Takeuchi T, Fujikawa-Adachi K, Ohtsuki Y, Onishi S. Developmental expression of carbonic anhydrase-related proteins VIII, X, and XI in the human brain. Neuroscience. 2002;112(1):93–9. PubMed PMID: 12044474. eng.

    Article  PubMed  CAS  Google Scholar 

  36. Jiao Y, Yan J, Zhao Y, Donahue LR, Beamer WG, Li X, et al. Carbonic anhydrase-related protein VIII deficiency is associated with a distinctive lifelong gait disorder in waddles mice. Genetics. 2005;171(3):1239–46. PubMed PMID: 16118194. Pubmed Central PMCID: PMC1456827. eng.

    Article  PubMed  CAS  Google Scholar 

  37. Türkmen S, Guo G, Garshasbi M, Hoffmann K, Alshalah AJ, Mischung C, et al. CA8 mutations cause a novel syndrome characterized by ataxia and mild mental retardation with predisposition to quadrupedal gait. PLoS Genet. 2009;5(5):e1000487. PubMed PMID: 19461874. Pubmed Central PMCID: PMC2677160. eng.

    Article  PubMed  Google Scholar 

  38. Kaya N, Aldhalaan H, Al-Younes B, Colak D, Shuaib T, Al-Mohaileb F, et al. Phenotypical spectrum of cerebellar ataxia associated with a novel mutation in the CA8 gene, encoding carbonic anhydrase (CA) VIII. Am J Med Genet B Neuropsychiatr Genet. 2011;156B(7):826–34. PubMed PMID: 21812104. eng.

    PubMed  Google Scholar 

  39. Chang WH, Tien CL, Chen TJ, Nukina N, Hsieh M. Decreased protein synthesis of Hsp27 associated with cellular toxicity in a cell model of Machado–Joseph disease. Neurosci Lett. 2009;454(2):152–6. PubMed PMID: 19429074. eng.

    Article  PubMed  CAS  Google Scholar 

  40. Cemal CK, Carroll CJ, Lawrence L, Lowrie MB, Ruddle P, Al-Mahdawi S, et al. YAC transgenic mice carrying pathological alleles of the MJD1 locus exhibit a mild and slowly progressive cerebellar deficit. Hum Mol Genet. 2002;11(9):1075–94. PubMed PMID: 11978767. eng.

    Article  PubMed  CAS  Google Scholar 

  41. Cairns J, Qin S, Philp R, Tan YH, Guy GR. Dephosphorylation of the small heat shock protein Hsp27 in vivo by protein phosphatase 2A. J Biol Chem. 1994;269(12):9176–83. PubMed PMID: 7510704. eng.

    PubMed  CAS  Google Scholar 

  42. Hirota J, Ando H, Hamada K, Mikoshiba K. Carbonic anhydrase-related protein is a novel binding protein for inositol 1,4,5-trisphosphate receptor type 1. Biochem J. 2003;372(Pt 2):435–41. PubMed PMID: 12611586. Pubmed Central PMCID: PMC1223404. eng.

    Article  PubMed  CAS  Google Scholar 

  43. Chen X, Tang TS, Tu H, Nelson O, Pook M, Hammer R, et al. Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 3. J Neurosci. 2008;28(48):12713–24. PubMed PMID: 19036964. Pubmed Central PMCID: PMC2663415. eng.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs. Akira Kakizuka and Henry Paulson for MJD plasmids, Drs. Cemal Cemal and Yung-Hsiang Hsu for brain tissues, Dr. Shin-Lan Hsu for SK-N-SH cells, Dr. Chi-Min Shih for his assessment and interpretation of immunostaining data, Benjamin Hsieh for editing the manuscript, and Tang-Hao Chi and Tzu-Kai Wang for assistance of figure preparation. This work was supported by grants from the National Science Council of the Republic of China (NSC-91-2320-B-040-038; NSC-93-2311-B-029-009; NSC-97-2311-B-029-001-MY3).

Conflict of Interest

The authors declare that there is no conflict of interest with respect to financial or personal relationships with organizations that may have influence on this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingli Hsieh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsieh, M., Chang, WH., Hsu, CF. et al. Altered Expression of Carbonic Anhydrase-Related Protein XI in Neuronal Cells Expressing Mutant Ataxin-3. Cerebellum 12, 338–349 (2013). https://doi.org/10.1007/s12311-012-0430-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-012-0430-2

Keyword

Navigation