Skip to main content

Advertisement

Log in

The clinical diagnosis of autosomal dominant spinocerebellar ataxias

  • Original Article
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The spinocerebellar ataxias (SCAs) are a heterogeneous group of autosomal dominantly inherited progressive ataxia diseases. Up to now, almost 30 different gene loci have been found. In 14 of them, the underlying mutations have been identified. The more common SCAs, SCA1, 2, 3 and 6 are due to translated CAG repeat expansions that code for an elongated polyglutamine tract within the respective proteins. These diseases belong to a larger group of polyglutamine disorders that also includes Huntington’s disease. Epidemiological studies conducted in different European regions found prevalence rates of SCAs ranging from 0.9 to 3.0:100,000. In all SCAs, ataxia is the prominent symptom. However, the majority have a complex phenotype in which ataxia is accompanied by varying non-ataxia symptoms. In all ataxia patients with proven or suspected autosomal dominant mode of inheritance, the available molecular genetic tests for SCA mutations should be performed. Depending on the geographical origin of the family, these tests will lead to positive diagnostic results in at least half of the families.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schöls L, Bauer P, Schmidt T, Schulte T, Riess O. Autosomal dominant cerebellar ataxias: Clinical features, genetics, and pathogenesis. Lancet Neurol. 2004;3:291–304.

    Article  PubMed  Google Scholar 

  2. Gatchel JR, Zoghbi HY. Diseases of unstable repeat expansion: mechanisms and common principles. Nat Rev Genet. 2005;6:743–55.

    Article  PubMed  CAS  Google Scholar 

  3. Duenas AM, Goold R, Giunti P. Molecular pathogenesis of spinocerebellar ataxias. Brain. 2006;129:1357–70.

    Article  PubMed  Google Scholar 

  4. Koeppen AH. The pathogenesis of spinocerebellar ataxia. Cerebellum. 2005;4:62–73.

    Article  PubMed  CAS  Google Scholar 

  5. Estrada R, Galarraga J, Orozco G, Nodarse A, Auburger G. Spinocerebellar ataxia 2 (SCA2): morphometric analyses in 11 autopsies. Acta Neuropathol (Berl). 1999;97:306–10.

    Article  CAS  Google Scholar 

  6. Paulson HL, Perez MK, Trottier Y, Trojanowski JQ, Subramony SH, Das SS, et al. Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia type 3. Neuron. 1997;19:333–44.

    Article  PubMed  CAS  Google Scholar 

  7. Schmidt T, Lindenberg KS, Krebs A, Schols L, Laccone F, Herms J, et al. Protein surveillance machinery in brains with spinocerebellar ataxia type 3: Redistribution and differential recruitment of 26S proteasome subunits and chaperones to neuronal intranuclear inclusions. Ann Neurol. 2002;51:302–10.

    Article  PubMed  CAS  Google Scholar 

  8. Silva MC, Coutinho P, Pinheiro CD, Neves JM, Serrano P. Hereditary ataxias and spastic paraplegias: Methodological aspects of a prevalence study in Portugal. J Clin Epidemiol. 1997;50:1377–84.

    Article  PubMed  CAS  Google Scholar 

  9. van de Warrenburg BP, Sinke RJ, Verschuuren-Bemelmans CC, Scheffer H, Brunt ER, Ippel PF, et al. Spinocerebellar ataxias in the Netherlands: prevalence and age at onset variance analysis. Neurology. 2002;58:702–08.

    PubMed  Google Scholar 

  10. Schöls L, Krüger R, Amoiridis G, Przuntek H, Epplen JT, Riess O. Spinocerebellar ataxia type 6: Genotype and phenotype in German kindreds. J Neurol Neurosurg Psychiatry. 1998;64:67–73.

    Article  PubMed  Google Scholar 

  11. Moseley ML, Benzow KA, Schut LJ, Bird TD, Gomez CM, Barkhaus PE, et al. Incidence of dominant spinocerebellar and Friedreich triplet repeats among 361 ataxia families. Neurology. 1998;51:1666–71.

    PubMed  CAS  Google Scholar 

  12. Harding AE. The clinical features and classification of the late onset autosomal dominant cerebellar ataxias. A study of 11 families including descendants of ‘the Drew family of Walworth’. Brain. 1982;105:1–28.

    Article  PubMed  CAS  Google Scholar 

  13. Dubourg O, Dürr A, Cancel G, Stevanin G, Chneiweiss H, Penet C, et al. Analysis of the SCA1 CAG repeat in a large number of families with dominant ataxia: Clinical and molecular correlations. Ann Neurol. 1995;37:176–80.

    Article  PubMed  CAS  Google Scholar 

  14. Bürk K, Abele M, Fetter M, Dichgans J, Skalej M, Laccone F, et al. Autosomal dominant cerebellar ataxia type I – Clinical features and MRI in families with SCA1, SCA2 and SCA3. Brain. 1996;119:1497–505.

    Article  PubMed  Google Scholar 

  15. Schöls L, Amoiridis G, Büttner T, Przuntek H, Epplen JT, Riess O. Autosomal dominant cerebellar ataxia: Phenotypic differences in genetically defined subtypes? Ann Neurol. 1997;42:924–32.

    Article  PubMed  Google Scholar 

  16. Schöls L, Gispert S, Vorgerd M, Vieira-Saecker MM, Blanke P, Auburger G, et al. Spinocerebellar ataxia type 2 – Genotype and phenotype in German kindreds. Arch Neurol. 1997;54:1073–80.

    PubMed  Google Scholar 

  17. Maciel P, Gaspar C, DeStefano AL, Silveira I, Coutinho P, Radvany J, et al. Correlation between CAG repeat length and clinical features in Machado-Joseph disease. Am J Hum Genet. 1995;57:54–61.

    PubMed  CAS  Google Scholar 

  18. Geschwind DH, Perlman S, Figueroa KP, Karrim J, Baloh RW, Pulst SM. Spinocerebellar ataxia type 6 – Frequency of the mutation and genotype-phenotype correlations. Neurology. 1997;49:1247–51.

    PubMed  CAS  Google Scholar 

  19. Enevoldson TP, Sanders MD, Harding AE. Autosomal dominant cerebellar ataxia with pigmentary macular dystrophy. A clinical and genetic study of eight families. Brain. 1994;117:445–60.

    Article  PubMed  Google Scholar 

  20. Klockgether T, Lüdtke R, Kramer B, Abele M, Bürk K, Schöls L, et al. The natural history of degenerative ataxia: a retrospective study in 466 patients. Brain. 1998;121(Pt 4):589–600.

    Article  PubMed  Google Scholar 

  21. Pulst SM, Nechiporuk A, Nechiporuk T, Gispert S, Chen XN, Lopes-Cendes I, et al. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nature Genet. 1996;14:269–76.

    Article  PubMed  CAS  Google Scholar 

  22. Kawaguchi Y, Okamoto T, Taniwaki M, Aizawa M, Inoue M, Katayama S, et al. CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nature Genet. 1994;8:221–8.

    Article  PubMed  CAS  Google Scholar 

  23. Zhuchenko O, Bailey J, Bonnen P, Ashizawa T, Stockton DW, Amos C, et al. Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the a1A-voltage-dependent calcium channel. Nature Genet. 1997;15:62–9.

    Article  PubMed  CAS  Google Scholar 

  24. Filla A, De Michele G, Campanella G, Perretti A, Santoro L, Serlenga L, et al. Autosomal dominant cerebellar ataxia type I. Clinical and molecular study in 36 Italian families including a comparison between SCA1 and SCA2 phenotypes. J Neurolog Sci. 1996;142:140–7.

    Article  CAS  Google Scholar 

  25. Giunti P, Stevanin G, Worth PF, David G, Brice A, Wood NW. Molecular and clinical study of 18 families with ADCA type II: evidence for genetic heterogeneity and de novo mutation. Am J Hum Genet. 1999;64:1594–603.

    Article  PubMed  CAS  Google Scholar 

  26. Riess O, Schöls L, Bottger H, Nolte D, Vieira Saecker AM, Schimming C, et al. SCA6 is caused by moderate CAG expansion in the alpha1A-voltage-dependent calcium channel gene. Hum Mol Genet. 1997;6:1289–93.

    Article  PubMed  CAS  Google Scholar 

  27. Koide R, Ikeuchi T, Onodera O, Tanaka H, Igarashi S, Endo K, et al. Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Nat Genet. 1994;6:9–13.

    Article  PubMed  CAS  Google Scholar 

  28. Hsiao K, Baker HF, Crow TJ, Poulter M, Owen F, Terwilliger JD, et al. Linkage of a prion protein missense variant to Gerstmann-Straussler syndrome. Nature. 1989;338:342–5.

    Article  PubMed  CAS  Google Scholar 

  29. Matsumura R, Futamura N, Fujimoto Y, Yanagimoto S, Horikawa H, Suzumura A, et al. Spinocerebellar ataxia type 6 – Molecular and clinical features of 35 Japanese patients including one homozygous for the CAG repeat expansion. Neurology. 1997;49:1238–43.

    PubMed  CAS  Google Scholar 

  30. Abele M, Burk K, Schols L, Schwartz S, Besenthal I, Dichgans J, et al. The aetiology of sporadic adult-onset ataxia. Brain. 2002;125:961–8.

    Article  PubMed  CAS  Google Scholar 

  31. Schöls L, Szymanski S, Peters S, Przuntek H, Epplen JT, Hardt C, et al. Genetic background of apparently idiopathic sporadic cerebellar ataxia. Hum Genet. 2000;107:132–7.

    Article  PubMed  Google Scholar 

  32. Pujana MA, Corral J, Gratacos M, Combarros O, Berciano J, Genis D, et al. Spinocerebellar ataxias in Spanish patients’ Genetic analysis of familial and sporadic cases. The Ataxia Study Group. Hum Genet. 1999;104:516–22.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Klockgether.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klockgether, T. The clinical diagnosis of autosomal dominant spinocerebellar ataxias. Cerebellum 7, 101–105 (2008). https://doi.org/10.1007/s12311-008-0023-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-008-0023-2

Key words

Navigation