Skip to main content

Autosomal Dominant Spinocerebellar Ataxias and Episodic Ataxias

  • Reference work entry
  • First Online:
Handbook of the Cerebellum and Cerebellar Disorders

Abstract

Hereditary autosomal dominant spinocerebellar ataxias (ADCAs) are a clinically and genetically heterogeneous group of disorders consisting of 31 spinocerebellar ataxia syndromes (SCAs), dentatorubral-pallidoluysian atrophy (DRPLA), and 7 episodic ataxia syndromes (EAs). SCAs are characterized by disequilibrium, slowly progressive incoordination (ataxia) of gait and limbs, dysarthria, and/or oculomotor disorder due to cerebellar degeneration in the absence of coexisting diseases. The degenerative process can be limited to the cerebellum (ADCA type III) or may additionally involve the retina (ADCA type II), optic nerve, pontomedullary systems, basal ganglia, cerebral cortex, spinal tracts, or peripheral nerves (ADCA type I and DRPLA). In EAs, the disease presents with recurrent, discrete episodes of ataxia, giddiness, and vertigo with or without interictal abnormalities. Prevalence of ADCAs has been estimated between 0.8 and 3.5:100,000. Onset is usually between ages 30 and 50 years, although early onset in childhood and later onset after the age of 60 years can be observed. Genetic classification includes 31 SCA loci (SCA1-SCA36, numbered in the order of locus or gene description) with 20 genes identified, DRPLA, and 7 EA loci (EA1-7) with 4 genes identified. Twelve ADCAs are caused by dynamic expansions of polyglutamine-encoding CAG repeats (SCA1-3, 6, 7, 17, and DRPLA) or repeats falling outside the coding region (SCA8, 10, 12, 31, and 36). In these conditions, repeat size influences disease progression and severity, while its variability is responsible for variability in age of onset, with larger repeats in early onset cases. Additionally, instability of expanded alleles leads to the phenomenon of anticipation (earlier onset and more severe disease in successive generations). All other ADCAs are caused by conventional mutations in genes with distinct functions. The clinical phenotypes of the most common forms have been firmly established. Genetic testing enables identification of the causative gene in 50–60% of ADCA cases. Despite the large number of pathogenic studies, effective therapies are still lacking. Current treatment is only symptomatic and management of ataxia relies on physiotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abele M, Burk K, Andres F, Topka H, Laccone F, Bosch S et al (1997) Autosomal dominant cerebellar ataxia type I. Nerve conduction and evoked potential studies in families with SCA1, SCA2 and SCA3. Brain 120:2141–2148

    PubMed  Google Scholar 

  • Adachi N, Kobayashi T, Takahashi H, Kawasaki T, Shirai Y, Ueyama T et al (2008) Enzymological analysis of mutant protein kinase Cgamma causing spinocerebellar ataxia type 14 and dysfunction in Ca2+ homeostasis. J Biol Chem 283:19854–19863

    CAS  PubMed  Google Scholar 

  • Amino T, Ishikawa K, Toru S, Ishiguro T, Sato N, Tsunemi T et al (2007) Redefining the disease locus of 16q22.1-linked autosomal dominant cerebellar ataxia. J Hum Genet 52:643–649

    CAS  PubMed  Google Scholar 

  • Armstrong J, Bonaventura I, Rojo A, Gonzalez G, Corral J, Nadal N et al (2005) Spinocerebellar ataxia type 2 (SCA2) with white matter involvement. Neurosci Lett 381:247–251

    CAS  PubMed  Google Scholar 

  • Arrasate M, Mitra S, Schweitzer ES, Segal MR, Finkbeiner S (2004) Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431:805–810

    CAS  PubMed  Google Scholar 

  • Asai H, Hirano M, Shimada K, Kiriyama T, Furiya Y, Ikeda M et al (2009) Protein kinase C gamma, a protein causative for dominant ataxia, negatively regulates nuclear import of recessive-ataxia-related aprataxin. Hum Mol Genet 18:3533–3543

    CAS  PubMed  Google Scholar 

  • Babovic-Vuksanovic D, Snow K, Patterson MC, Michels VV (1998) Spinocerebellar ataxia type 2 (SCA 2) in an infant with extreme CAG repeat expansion. Am J Med Genet 79:383–387

    CAS  PubMed  Google Scholar 

  • Bahl S, Virdi K, Mittal U, Sachdeva MP, Kalla AK, Holmes SE et al (2005) Evidence of a common founder for SCA12 in the Indian population. Ann Hum Genet 69:528–534

    CAS  PubMed  Google Scholar 

  • Bakalkin G, Watanabe H, Jezierska J, Depoorter C, Verschuuren-Bemelmans C, Bazov I et al (2010) Prodynorphin mutations cause the neurodegenerative disorder spinocerebellar ataxia type 23. Am J Hum Genet 87:593–603

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer PO, Nukina N (2009) The pathogenic mechanisms of polyglutamine diseases and current therapeutic strategies. J Neurochem 110:1737–1765

    CAS  PubMed  Google Scholar 

  • Bauer P, Kraus J, Matoska V, Brouckova M, Zumrova A, Goetz P (2004) Large de novo expansion of CAG repeats in patient with sporadic spinocerebellar ataxia type 7. J Neurol 251:1023–1024

    CAS  PubMed  Google Scholar 

  • Bauer P, Stevanin G, Beetz C, Synofzik M, Schmitz-Hubsch T, Wullner U et al (2010) Spinocerebellar ataxia type 11 (SCA11) is an uncommon cause of dominant ataxia among French and German kindreds. J Neurol Neurosurg Psychiatry 81:1229–1232

    PubMed  Google Scholar 

  • Bennett EJ, Bence NF, Jayakumar R, Kopito RR (2005) Global impairment of the ubiquitin-proteasome system by nuclear or cytoplasmic protein aggregates precedes inclusion body formation. Mol Cell 17:351–365

    CAS  PubMed  Google Scholar 

  • Benton CS, de Silva R, Rutledge SL, Bohlega S, Ashizawa T, Zoghbi HY (1998) Molecular and clinical studies in SCA-7 define a broad clinical spectrum and the infantile phenotype. Neurology 51:1081–1086

    CAS  PubMed  Google Scholar 

  • Bird TD (2011) Hereditary ataxia overview. In: GeneReviews at GeneTests: medical genetics information resource (database online). Copyright, University of Washington, Seattle. 1997–2011. Available at http://www.genetests.org. Updated 15 Sep 2011

  • Bird TD, Pagon RA, La Spada AR (2007) Spinocerebellar ataxia type 7. In: GeneReviews at GeneTests: medical genetics information resource (database online). Copyright, University of Washington, Seattle. 1997–2011. Available at http://www.genetests.org. Updated 6 Sep 2007

  • Boscolo S, Lorenzon A, Sblattero D, Florian F, Stebel M, Marzari R et al (2010) Anti transglutaminase antibodies cause ataxia in mice. PLoS One 5:e9698

    PubMed  PubMed Central  Google Scholar 

  • Brkanac Z, Fernandez M, Matsushita M, Lipe H, Wolff J, Bird TD et al (2002) Autosomal dominant sensory/motor neuropathy with ataxia (SMNA): linkage to chromosome 7q22-q32. Am J Med Genet 114:450–457

    PubMed  Google Scholar 

  • Brkanac Z, Spencer D, Shendure J, Robertson PD, Matsushita M, Vu T et al (2009) IFRD1 is a candidate gene for SMNA on chromosome 7q22-q23. Am J Hum Genet 84:692–697

    CAS  PubMed  PubMed Central  Google Scholar 

  • Browne DL, Gancher ST, Nutt JG, Brunt ER, Smith EA, Kramer P et al (1994) Episodic ataxia/myokymia syndrome is associated with point mutations in the human potassium channel gene, KCNA1. Nat Genet 8:136–140

    CAS  PubMed  Google Scholar 

  • Brunt ER, van Weerden TW (1990) Familial paroxysmal kinesigenic ataxia and continuous myokymia. Brain 113:1361–1382

    PubMed  Google Scholar 

  • Brusco A, Gellera C, Cagnoli C, Saluto A, Castucci A, Michielotto C et al (2004) Molecular genetics of hereditary spinocerebellar ataxia: mutation analysis of spinocerebellar ataxia genes and CAG/CTG repeat expansion detection in 225 Italian families. Arch Neurol 61:727–733

    PubMed  Google Scholar 

  • Brusse E, de Koning I, Maat-Kievit A, Oostra BA, Heutink P, van Swieten JC (2006) Spinocerebellar ataxia associated with a mutation in the fibroblast growth factor 14 gene (SCA27): a new phenotype. Mov Disord 21:396–401

    PubMed  Google Scholar 

  • Brusse E, Maat-Kievit JA, van Swieten JC (2007) Diagnosis and management of early- and late-onset cerebellar ataxia. Clin Genet 71:12–24

    CAS  PubMed  Google Scholar 

  • Brussino A, Graziano C, Giobbe D, Ferrone M, Dragone E, Arduino C et al (2010) Spinocerebellar ataxia type 12 identified in two Italian families may mimic sporadic ataxia. Mov Disord 25:1269–1273

    PubMed  Google Scholar 

  • Bryer A, Krause A, Bill P, Davids V, Bryant D, Butler J et al (2003) The hereditary adult-onset ataxias in South Africa. J Neurol Sci 216:47–54

    PubMed  Google Scholar 

  • Bulone D, Masino L, Thomas DJ, San Biagio PL, Pastore A (2006) The interplay between PolyQ and protein context delays aggregation by forming a reservoir of protofibrils. PLoS One 1:e111

    PubMed  PubMed Central  Google Scholar 

  • Burk K, Globas C, Bosch S, Klockgether T, Zuhlke C, Daum I et al (2003) Cognitive deficits in spinocerebellar ataxia type 1, 2, and 3. J Neurol 250:207–211

    CAS  PubMed  Google Scholar 

  • Burk K, Zuhlke C, Konig IR, Ziegler A, Schwinger E, Globas C et al (2004) Spinocerebellar ataxia type 5: clinical and molecular genetic features of a German kindred. Neurology 62:327–329

    CAS  PubMed  Google Scholar 

  • Cader MZ, Steckley JL, Dyment DA, McLachlan RS, Ebers GC (2005) A genome-wide screen and linkage mapping for a large pedigree with episodic ataxia. Neurology 65:156–158

    CAS  PubMed  Google Scholar 

  • Cagnoli C, Mariotti C, Taroni F, Seri M, Brussino A, Michielotto C et al (2006) SCA28, a novel form of autosomal dominant cerebellar ataxia on chromosome 18p11.22-q11.2. Brain 129:235–242

    PubMed  Google Scholar 

  • Cagnoli C, Stevanin G, Brussino A, Barberis M, Mancini C, Margolis RL et al (2010) Missense mutations in the AFG3L2 proteolytic domain account for approximately 1.5% of European autosomal dominant cerebellar ataxias. Hum Mutat 31:1117–1124

    CAS  PubMed  Google Scholar 

  • Carvalho DR, La Rocque-Ferreira A, Rizzo IM, Imamura EU, Speck-Martins CE (2008) Homozygosity enhances severity in spinocerebellar ataxia type 3. Pediatr Neurol 38:296–299

    PubMed  Google Scholar 

  • Casari G, De Fusco M, Ciarmatori S, Zeviani M, Mora M, Fernandez P et al (1998) Spastic paraplegia and OXPHOS impairment caused by mutations in paraplegin, a nuclear-encoded mitochondrial metalloprotease. Cell 93:973–983

    CAS  PubMed  Google Scholar 

  • Chen DH, Brkanac Z, Verlinde CL, Tan XJ, Bylenok L, Nochlin D et al (2003a) Missense mutations in the regulatory domain of PKC gamma: a new mechanism for dominant nonepisodic cerebellar ataxia. Am J Hum Genet 72:839–849

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen HK, Fernandez-Funez P, Acevedo SF, Lam YC, Kaytor MD, Fernandez MH et al (2003b) Interaction of Akt-phosphorylated ataxin-1 with 14-3-3 mediates neurodegeneration in spinocerebellar ataxia type 1. Cell 113:457–468

    CAS  PubMed  Google Scholar 

  • Chen X, Tang TS, Tu H, Nelson O, Pook M, Hammer R et al (2008) Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 3. J Neurosci 28:12713–12724

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen DH, Raskind WH, Bird TD (2012) Spinocerebellar ataxia type 14. In: Aminoff MJ, Boller F, Swaab DF (eds) Handbook of clinical neurology, 3rd series, vol 103, Subramony SH, Dürr A (eds) Ataxic disorders. Elsevier, Amsterdam, pp 555–559

    Google Scholar 

  • Chong SS, McCall AE, Cota J, Subramony SH, Orr HT, Hughes MR et al (1995) Gametic and somatic tissue-specific heterogeneity of the expanded SCA1 CAG repeat in spinocerebellar ataxia type 1. Nat Genet 10:344–350

    CAS  PubMed  Google Scholar 

  • Choudhry S, Mukerji M, Srivastava AK, Jain S, Brahmachari SK (2001) CAG repeat instability at SCA2 locus: anchoring CAA interruptions and linked single nucleotide polymorphisms. Hum Mol Genet 10:2437–2446

    CAS  PubMed  Google Scholar 

  • Chung MY, Soong BW (2004) Reply to SCA19 and SCA22: evidence for one locus with a worldwide distribution. Brain 127:E7

    Google Scholar 

  • Chung MY, Ranum LPW, Duvick LA, Servadio A, Zoghbi HY, Orr HT (1993) Evidence for a mechanism predisposing to intergenerational CAG repeat instability in spinocerebellar ataxia type 1. Nat Genet 5:254–258

    CAS  PubMed  Google Scholar 

  • Chung MY, Lu YC, Cheng NC, Soong BW (2003) A novel autosomal dominant spinocerebellar ataxia (SCA22) linked to chromosome 1p21-q23. Brain 126:1293–1299

    PubMed  Google Scholar 

  • Costanzi-Porrini S, Tessarolo D, Abbruzzese C, Liguori M, Ashizawa T, Giacanelli M (2000) An interrupted 34-CAG repeat SCA-2 allele in patients with sporadic spinocerebellar ataxia. Neurology 54:491–493

    CAS  PubMed  Google Scholar 

  • D’Incerti L, Farina L, Tortori-Donati P (2005) Neurodegenerative disorders. In: Tortori-Donati P, Rossi A, Biancheri R (eds) Pediatric neuroradiology: brain. Springer, Berlin/Heidelberg, pp 723–740

    Google Scholar 

  • Dagda RK, Merrill RA, Cribbs JT, Chen Y, Hell JW, Usachev YM et al (2008) The spinocerebellar ataxia 12 gene product and protein phosphatase 2A regulatory subunit Bbeta2 antagonizes neuronal survival by promoting mitochondrial fission. J Biol Chem 283:36241–36248

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dalski A, Atici J, Kreuz FR, Hellenbroich Y, Schwinger E, Zuhlke C (2005) Mutation analysis in the fibroblast growth factor 14 gene: frameshift mutation and polymorphisms in patients with inherited ataxias. Eur J Hum Genet 13:118–120

    CAS  PubMed  Google Scholar 

  • Damji KF, Allingham RR, Pollock SC, Small K, Lewis KE, Stajich JM et al (1996) Periodic vestibulocerebellar ataxia, an autosomal dominant ataxia with defective smooth pursuit, is genetically distinct from other autosomal dominant ataxias. Arch Neurol 53:338–344

    CAS  PubMed  Google Scholar 

  • Daughters RS, Tuttle DL, Gao W, Ikeda Y, Moseley ML, Ebner TJ et al (2009) RNA gain-of-function in spinocerebellar ataxia type 8. PLoS Genet 5:e1000600

    PubMed  PubMed Central  Google Scholar 

  • David G, Abbas N, Stevanin G, Durr A, Yvert G, Cancel G et al (1997) Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nat Genet 17:65–70

    CAS  PubMed  Google Scholar 

  • Day JW, Schut LJ, Moseley ML, Durand AC, Ranum LP (2000) Spinocerebellar ataxia type 8: clinical features in a large family. Neurology 55:649–657

    CAS  PubMed  Google Scholar 

  • de Vries B, Mamsa H, Stam AH, Wan J, Bakker SL, Vanmolkot KR et al (2009) Episodic ataxia associated with EAAT1 mutation C186S affecting glutamate reuptake. Arch Neurol 66:97–101

    PubMed  Google Scholar 

  • Déjérine JJ, Thomas A (1900) L’atrophie olivo-ponto-cérébelleuse. Nouv Iconogr Salpêt 13:330–370

    Google Scholar 

  • Delatycki MB, Williamson R, Forrest SM (2000) Friedreich ataxia: an overview. J Med Genet 37:1–8

    CAS  PubMed  PubMed Central  Google Scholar 

  • Delplanque J, Devos D, Vuillaume I, De Becdelievre A, Vangelder E, Maurage CA et al (2008) Slowly progressive spinocerebellar ataxia with extrapyramidal signs and mild cognitive impairment (SCA21). Cerebellum 7:179–183

    CAS  PubMed  Google Scholar 

  • Devos D, Schraen-Maschke S, Vuillaume I, Dujardin K, Naze P, Willoteaux C et al (2001) Clinical features and genetic analysis of a new form of spinocerebellar ataxia. Neurology 56:234–238

    CAS  PubMed  Google Scholar 

  • Di Bella D, Lazzaro F, Brusco A, Plumari M, Battaglia G, Pastore A et al (2010) Mutations in the mitochondrial protease gene AFG3L2 cause dominant hereditary ataxia SCA28. Nat Genet 42:313–321. https://doi.org/10.1038/ng.544. [advance online publication, 7 March 2010]

    Article  CAS  PubMed  Google Scholar 

  • Dickey CA, Patterson C, Dickson D, Brain PL (2007) CHIP removing the culprits in neurodegenerative disease. Trends Mol Med 13:32–38

    CAS  PubMed  Google Scholar 

  • DiDonato S, Mariotti C, Taroni F (2012) Spinocerebellar ataxia type 1 (SCA1). In: Aminoff MJ, Boller F, Swaab DF (eds) Handbook of clinical neurology, 3rd series, vol 103, Subramony SH, Dürr A (eds) Ataxic disorders. Elsevier, Amsterdam, pp 399–421

    Google Scholar 

  • Dohlinger S, Hauser TK, Borkert J, Luft AR, Schulz JB (2008) Magnetic resonance imaging in spinocerebellar ataxias. Cerebellum 7:204–214

    PubMed  Google Scholar 

  • Dudding TE, Friend K, Schofield PW, Lee S, Wilkinson IA, Richards RI (2004) Autosomal dominant congenital non-progressive ataxia overlaps with the SCA15 locus. Neurology 63:2288–2292

    CAS  PubMed  Google Scholar 

  • Dürr A (2010) Autosomal dominant cerebellar ataxias: polyglutamine expansions and beyond. Lancet Neurol 9:885–894

    PubMed  Google Scholar 

  • Durr A, Smadja D, Cancel G, Lezin A, Stevanin G, Mikol J et al (1995) Autosomal dominant cerebellar ataxia type I in Martinique (French West Indies). Clinical and neuropathological analysis of 53 patients from three unrelated SCA2 families. Brain 118:1573–1581

    PubMed  Google Scholar 

  • Durr A, Stevanin G, Cancel G, Duyckaerts C, Abbas N, Didierjean O et al (1996) Spinocerebellar ataxia 3 and Machado-Joseph disease: clinical, molecular, and neuropathological features. Ann Neurol 39:490–499

    CAS  PubMed  Google Scholar 

  • Duyckaerts C, Durr A, Cancel G, Brice A (1999) Nuclear inclusions in spinocerebellar ataxia type 1. Acta Neuropathol (Berl) 97:201–207

    CAS  Google Scholar 

  • Edener U, Wollner J, Hehr U, Kohl Z, Schilling S, Kreuz F et al (2010) Early onset and slow progression of SCA28, a rare dominant ataxia in a large four-generation family with a novel AFG3L2 mutation. Eur J Hum Genet 18:965–968

    CAS  PubMed  PubMed Central  Google Scholar 

  • Edener U, Bernard V, Hellenbroich Y, Gillessen-Kaesbach G, Zuhlke C (2011) Two dominantly inherited ataxias linked to chromosome 16q22.1: SCA4 and SCA31 are not allelic. J Neurol 258:1223–1227

    PubMed  Google Scholar 

  • Emamian ES, Kaytor MD, Duvick LA, Zu T, Tousey SK, Zoghbi HY et al (2003) Serine 776 of ataxin-1 is critical for polyglutamine-induced disease in SCA1 transgenic mice. Neuron 38:375–387

    CAS  PubMed  Google Scholar 

  • Erichsen AK, Koht J, Stray-Pedersen A, Abdelnoor M, Tallaksen CM (2009) Prevalence of hereditary ataxia and spastic paraplegia in Southeast Norway: a population-based study. Brain 132:1577–1588

    PubMed  Google Scholar 

  • Escayg A, De Waard M, Lee DD, Bichet D, Wolf P, Mayer T et al (2000) Coding and noncoding variation of the human calcium-channel beta4-subunit gene CACNB4 in patients with idiopathic generalized epilepsy and episodic ataxia. Am J Hum Genet 66:1531–1539

    CAS  PubMed  PubMed Central  Google Scholar 

  • Figueroa KP, Minassian NA, Stevanin G, Waters M, Garibyan V, Forlani S et al (2010) KCNC3: phenotype, mutations, channel biophysics-a study of 260 familial ataxia patients. Hum Mutat 31:191–196

    CAS  PubMed  PubMed Central  Google Scholar 

  • Flanigan K, Gardner K, Alderson K, Galster B, Otterud B, Leppert MF et al (1996) Autosomal dominant spinocerebellar ataxia with sensory axonal neuropathy (SCA4): clinical description and genetic localization to chromosome 16q22.1. Am J Hum Genet 59:392–399

    CAS  PubMed  PubMed Central  Google Scholar 

  • Franca MCJ, D’Abreu A, Nucci A, Lopes-Cendes I (2008) Muscle excitability abnormalities in Machado-Joseph disease. Arch Neurol 65:525–529

    PubMed  Google Scholar 

  • Friedreich N (1863) Über degenerative atrophie der spinalen hinterstränge. Virchows Arch Pathol Anat 26(391–419):433–459

    Google Scholar 

  • Fujigasaki H, Martin JJ, De Deyn PP, Camuzat A, Deffond D, Stevanin G et al (2001) CAG repeat expansion in the TATA box-binding protein gene causes autosomal dominant cerebellar ataxia. Brain 124:1939–1947

    CAS  PubMed  Google Scholar 

  • Furtado S, Farrer M, Tsuboi Y, Klimek ML, de la Fuente-Fernandez R, Hussey J et al (2002) SCA-2 presenting as parkinsonism in an Alberta family: clinical, genetic, and PET findings. Neurology 59:1625–1627

    CAS  PubMed  Google Scholar 

  • Furtado S, Payami H, Lockhart PJ, Hanson M, Nutt JG, Singleton AA et al (2004) Profile of families with parkinsonism-predominant spinocerebellar ataxia type 2 (SCA2). Mov Disord 19:622–629

    PubMed  Google Scholar 

  • Ganesamoorthy D, Bruno DL, Schoumans J, Storey E, Delatycki MB, Zhu D et al (2009) Development of a multiplex ligation-dependent probe amplification assay for diagnosis and estimation of the frequency of spinocerebellar ataxia type 15. Clin Chem 55:1415–1418

    CAS  PubMed  Google Scholar 

  • Gao R, Matsuura T, Coolbaugh M, Zuhlke C, Nakamura K, Rasmussen A et al (2008) Instability of expanded CAG/CAA repeats in spinocerebellar ataxia type 17. Eur J Hum Genet 16:215–222

    CAS  PubMed  Google Scholar 

  • Garden GA, La Spada AR (2008) Molecular pathogenesis and cellular pathology of spinocerebellar ataxia type 7 neurodegeneration. Cerebellum 7:138–149

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gardner RJ (2008) “SCA16” is really SCA15. J Med Genet 45:192

    CAS  PubMed  Google Scholar 

  • Gaspar C, Lopes-Cendes I, Hayes S, Goto J, Arvidsson K, Dias A et al (2001) Ancestral origins of the Machado-Joseph disease mutation: a worldwide haplotype study. Am J Hum Genet 68:523–528

    CAS  PubMed  Google Scholar 

  • Gazulla J, Modrego P (2008) Buspirone and serotonin in spinocerebellar ataxia. J Neurol Sci 268:199–200; author reply 200–1

    CAS  PubMed  Google Scholar 

  • Gidalevitz T, Ben-Zvi A, Ho KH, Brignull HR, Morimoto RI (2006) Progressive disruption of cellular protein folding in models of polyglutamine diseases. Science 311:1471–1474

    CAS  PubMed  Google Scholar 

  • Gierga K, Schelhaas HJ, Brunt ER, Seidel K, Scherzed W, Egensperger R et al (2009) Spinocerebellar ataxia type 6 (SCA6): neurodegeneration goes beyond the known brain predilection sites. Neuropathol Appl Neurobiol 35:515–527

    CAS  PubMed  Google Scholar 

  • Giuffrida S, Saponara R, Restivo DA, Trovato Salinaro A, Tomarchio L, Pugliares P et al (1999) Supratentorial atrophy in spinocerebellar ataxia type 2: MRI study of 20 patients. J Neurol 246:383–388

    CAS  PubMed  Google Scholar 

  • Globas C, du Montcel ST, Baliko L, Boesch S, Depondt C, Didonato S et al (2008) Early symptoms in spinocerebellar ataxia type 1, 2, 3, and 6. Mov Disord 23:2232–2238

    PubMed  Google Scholar 

  • Gomez CM (2008) Spinocerebellar ataxia type 6. In: GeneReviews at GeneTests: medical genetics information resource (database online). Copyright, University of Washington, Seattle. 1997–2011. Available at http://www.genetests.org. Updated 16 Jun 2008

  • Gomez CM, Thompson RM, Gammack JT, Perlman SL, Dobyns WB, Truwit CL et al (1997) Spinocerebellar ataxia type 6: gaze-evoked and vertical nystagmus, Purkinje cell degeneration, and variable age of onset. Ann Neurol 42:933–950

    CAS  PubMed  Google Scholar 

  • Gouw LG, Digre KB, Harris CP, Haines JH, Ptacek LJ (1994) Autosomal dominant cerebellar ataxia with retinal degeneration: clinical, neuropathologic, and genetic analysis of a large kindred. Neurology 44:1441–1447

    CAS  PubMed  Google Scholar 

  • Graves TD, Rajakulendran S, Zuberi SM, Morris HR, Schorge S, Hanna MG et al (2010) Nongenetic factors influence severity of episodic ataxia type 1 in monozygotic twins. Neurology 75:367–372

    CAS  PubMed  PubMed Central  Google Scholar 

  • Greenfield JG (1954) The spino-cerebellar degenerations. Blackwell, Oxford

    Google Scholar 

  • Grewal RP, Achari M, Matsuura T, Durazo A, Tayag E, Zu L et al (2002) Clinical features and ATTCT repeat expansion in spinocerebellar ataxia type 10. Arch Neurol 59:1285–1290

    PubMed  Google Scholar 

  • Griggs RC, Moxley RT 3rd, Lafrance RA, McQuillen J (1978) Hereditary paroxysmal ataxia: response to acetazolamide. Neurology 28:1259–1264

    CAS  PubMed  Google Scholar 

  • Gupta A, Jankovic J (2009) Spinocerebellar ataxia 8: variable phenotype and unique pathogenesis. Parkinsonism Relat Disord 15:621–626

    PubMed  Google Scholar 

  • Hadjivassiliou M, Aeschlimann P, Strigun A, Sanders DS, Woodroofe N, Aeschlimann D (2008) Autoantibodies in gluten ataxia recognize a novel neuronal transglutaminase. Ann Neurol 64:332–343

    CAS  PubMed  Google Scholar 

  • Hagenah JM, Zuhlke C, Hellenbroich Y, Heide W, Klein C (2004) Focal dystonia as a presenting sign of spinocerebellar ataxia 17. Mov Disord 19:217–220

    PubMed  Google Scholar 

  • Hara K, Shiga A, Nozaki H, Mitsui J, Takahashi Y, Ishiguro H et al (2008) Total deletion and a missense mutation of ITPR1 in Japanese SCA15 families. Neurology 71:547–551

    CAS  PubMed  Google Scholar 

  • Harding AE (1982) The clinical features and classification of the late onset autosomal dominant cerebellar ataxias. A study of 11 families, including descendants of the ‘the Drew family of Walworth’. Brain 105:1–28

    CAS  PubMed  Google Scholar 

  • Harding AE (1983) Classification of the hereditary ataxias and paraplegias. Lancet 1:1151–1155

    CAS  PubMed  Google Scholar 

  • Harding AE (1984) The hereditary ataxias and related disorders. Churchill Livingstone, Edinburgh

    Google Scholar 

  • Harding AE (1993) Clinical features and classification of inherited ataxias. Adv Neurol 61:1–14

    CAS  PubMed  Google Scholar 

  • Hellenbroich Y, Bubel S, Pawlack H, Opitz S, Vieregge P, Schwinger E et al (2003) Refinement of the spinocerebellar ataxia type 4 locus in a large German family and exclusion of CAG repeat expansions in this region. J Neurol 250:668–671

    CAS  PubMed  Google Scholar 

  • Hellenbroich Y, Gierga K, Reusche E, Schwinger E, Deller T, de Vos RA et al (2006) Spinocerebellar ataxia type 4 (SCA4): initial pathoanatomical study reveals widespread cerebellar and brainstem degeneration. J Neural Transm 113:829–843

    CAS  PubMed  Google Scholar 

  • Helmlinger D, Tora L, Devys D (2006) Transcriptional alterations and chromatin remodeling in polyglutamine diseases. Trends Genet 22:562–570

    CAS  PubMed  Google Scholar 

  • Herman-Bert A, Stevanin G, Netter JC, Rascol O, Brassat D, Calvas P et al (2000) Mapping of spinocerebellar ataxia 13 to chromosome 19q13.3-q13.4 in a family with autosomal dominant cerebellar ataxia and mental retardation. Am J Hum Genet 67:229–235

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoche F, Seidel K, Brunt ER, Auburger G, Schols L, Burk K et al (2008) Involvement of the auditory brainstem system in spinocerebellar ataxia type 2 (SCA2), type 3 (SCA3) and type 7 (SCA7). Neuropathol Appl Neurobiol 34:479–491

    CAS  PubMed  Google Scholar 

  • Holmes G (1907a) A form of familial degeneration of the cerebellum. Brain 30:466–489

    Google Scholar 

  • Holmes G (1907b) An attempt to classify cerebellar disease, with a note on Marie’s hereditary cerebellar ataxia. Brain 30:545–567

    Google Scholar 

  • Holmes SE, O’Hearn EE, McInnis MG, Gorelick-Feldman DA, Kleiderlein JJ, Callahan C et al (1999) Expansion of a novel CAG trinucleotide repeat in the 5′ region of PPP2R2B is associated with SCA12. Nat Genet 23:391–392

    CAS  PubMed  Google Scholar 

  • Holmes SE, Hearn EO, Ross CA, Margolis RL (2001) SCA12: an unusual mutation leads to an unusual spinocerebellar ataxia. Brain Res Bull 56:397–403

    CAS  PubMed  Google Scholar 

  • Honti V, Vecsei L (2005) Genetic and molecular aspects of spinocerebellar ataxias. Neuropsychiatr Dis Treat 1:125–133

    CAS  PubMed  PubMed Central  Google Scholar 

  • Houlden H, Johnson J, Gardner-Thorpe C, Lashley T, Hernandez D, Worth P et al (2007) Mutations in TTBK2, encoding a kinase implicated in tau phosphorylation, segregate with spinocerebellar ataxia type 11. Nat Genet 39:1434–1436

    CAS  PubMed  Google Scholar 

  • Ikeda Y, Dick KA, Weatherspoon MR, Gincel D, Armbrust KR, Dalton JC et al (2006) Spectrin mutations cause spinocerebellar ataxia type 5. Nat Genet 38:184–190

    CAS  PubMed  Google Scholar 

  • Ikeda Y, Dalton JC, Day JW, Ranum LPW (2007) Spinocerebellar ataxia type 8. In: GeneReviews at GeneTests: medical genetics information resource (database online). Copyright, University of Washington, Seattle. 1997–2011. Available at http://www.genetests.org. Updated 7 Feb 2007

  • Ikeda Y, Daughters RS, Ranum LP (2008) Bidirectional expression of the SCA8 expansion mutation: one mutation, two genes. Cerebellum 7:150–158

    CAS  PubMed  Google Scholar 

  • Ikeda Y, Ranum LPW, Day JW (2012) Clinical and genetic features of spinocerebellar ataxia type 8. In: Aminoff MJ, Boller F, Swaab DF (eds) Handbook of clinical neurology, 3rd series, vol 103, Subramony SH, Dürr A (eds) Ataxic disorders. Elsevier, Amsterdam, pp 493–505

    Google Scholar 

  • Ikeuchi T, Koide R, Tanaka H, Onodera O, Igarashi S, Takahashi H et al (1995) Dentatorubral-pallidoluysian atrophy: clinical features are closely related to unstable expansions of trinucleotide (CAG) repeat. Ann Neurol 37:769–775

    CAS  PubMed  Google Scholar 

  • Ilg W, Brotz D, Burkard S, Giese MA, Schols L, Synofzik M (2010) Long-term effects of coordinative training in degenerative cerebellar disease. Mov Disord 25:2239–2246

    PubMed  Google Scholar 

  • Ishikawa K, Toru S, Tsunemi T, Li M, Kobayashi K, Yokota T et al (2005) An autosomal dominant cerebellar ataxia linked to chromosome 16q22.1 is associated with a single-nucleotide substitution in the 5′ untranslated region of the gene encoding a protein with spectrin repeat and Rho guanine-nucleotide exchange-factor domains. Am J Hum Genet 77:280–296

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ittner A, Ke YD, Eersel J, Gladbach A, Gotz J, Ittner LM (2011) Brief update on different roles of tau in neurodegeneration. IUBMB Life 63:495–502

    CAS  PubMed  Google Scholar 

  • Iwaki A, Kawano Y, Miura S, Shibata H, Matsuse D, Li W et al (2008) Heterozygous deletion of ITPR1, but not SUMF1, in spinocerebellar ataxia type 16. J Med Genet 45:32–35

    CAS  PubMed  Google Scholar 

  • Jeitner TM, Pinto JT, Krasnikov BF, Horswill M, Cooper AJ (2009) Transglutaminases and neurodegeneration. J Neurochem 109(Suppl 1):160–166

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jen JC (2008) Hereditary episodic ataxias. Ann N Y Acad Sci 1142:250–253

    CAS  PubMed  Google Scholar 

  • Jen J, Kim GW, Baloh RW (2004) Clinical spectrum of episodic ataxia type 2. Neurology 62:17–22

    CAS  PubMed  Google Scholar 

  • Jen JC, Wan J, Palos TP, Howard BD, Baloh RW (2005) Mutation in the glutamate transporter EAAT1 causes episodic ataxia, hemiplegia, and seizures. Neurology 65:529–534

    CAS  PubMed  Google Scholar 

  • Jen JC, Graves TD, Hess EJ, Hanna MG, Griggs RC, Baloh RW (2007) Primary episodic ataxias: diagnosis, pathogenesis and treatment. Brain 130:2484–2493

    CAS  PubMed  Google Scholar 

  • Jiang H, Tang BS, Xu B, Zhao GH, Shen L, Tang JG et al (2005) Frequency analysis of autosomal dominant spinocerebellar ataxias in mainland Chinese patients and clinical and molecular characterization of spinocerebellar ataxia type 6. Chin Med J 118:837–843

    CAS  PubMed  Google Scholar 

  • Jiang H, Zhu H-P, Gomez CM (2010) SCA32: an autosomal dominant cerebellar ataxia with azoospermia maps to chromosome 7q32-q33 (Abstract). Mov Disord 25:S192

    Google Scholar 

  • Juvonen V, Hietala M, Kairisto V, Savontaus ML (2005) The occurrence of dominant spinocerebellar ataxias among 251 Finnish ataxia patients and the role of predisposing large normal alleles in a genetically isolated population. Acta Neurol Scand 111:154–162

    CAS  PubMed  Google Scholar 

  • Kawaguchi Y, Okamoto T, Taniwaki M, Aizawa M, Inoue M, Katayama S et al (1994) CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nat Genet 8:221–228

    CAS  PubMed  Google Scholar 

  • Kerber KA, Jen JC, Lee H, Nelson SF, Baloh RW (2007) A new episodic ataxia syndrome with linkage to chromosome 19q13. Arch Neurol 64:749–752

    PubMed  Google Scholar 

  • Kieling C, Prestes PR, Saraiva-Pereira ML, Jardim LB (2007) Survival estimates for patients with Machado-Joseph disease (SCA3). Clin Genet 72:543–545

    CAS  PubMed  Google Scholar 

  • Klement IA, Skinner PJ, Kaytor MD, Yi H, Hersch SM, Clark HB et al (1998) Ataxin-1 nuclear localization and aggregation: role in polyglutamine-induced disease in SCA1 transgenic mice. Cell 95:41–53

    CAS  PubMed  Google Scholar 

  • Klockgether T (2008) The clinical diagnosis of autosomal dominant spinocerebellar ataxias. Cerebellum 7:101–105

    CAS  PubMed  Google Scholar 

  • Klockgether T, Ludtke R, Kramer B, Abele M, Burk K, Schols L et al (1998a) The natural history of degenerative ataxia: a retrospective study in 466 patients. Brain 121:589–600

    PubMed  Google Scholar 

  • Klockgether T, Skalej M, Wedekind D, Luft AR, Welte D, Schulz JB et al (1998b) Autosomal dominant cerebellar ataxia type I. MRI-based volumetry of posterior fossa structures and basal ganglia in spinocerebellar ataxia types 1, 2 and 3. Brain 121:1687–1693

    PubMed  Google Scholar 

  • Knight MA, Gardner RJ, Bahlo M, Matsuura T, Dixon JA, Forrest SM et al (2004) Dominantly inherited ataxia and dysphonia with dentate calcification: spinocerebellar ataxia type 20. Brain 127:1172–1181

    PubMed  Google Scholar 

  • Knight MA, Hernandez D, Diede SJ, Dauwerse HG, Rafferty I, van de Leemput J et al (2008) A duplication at chromosome 11q12.2-11q12.3 is associated with spinocerebellar ataxia type 20. Hum Mol Genet 17:3847–3853

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi H, Abe K, Matsuura T, Ikeda Y, Hitomi T, Akechi Y et al (2011) Expansion of intronic GGCCTG hexanucleotide repeat in NOP56 causes SCA36, a type of spinocerebellar ataxia accompanied by motor neuron involvement. Am J Hum Genet 89:121–130

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koeppen AH (2005) The pathogenesis of spinocerebellar ataxia. Cerebellum 4:62–73

    CAS  PubMed  Google Scholar 

  • Koide R, Ikeuchi T, Onodera O, Tanaka H, Igarashi S, Endo K et al (1994) Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Nat Genet 6:9–13

    CAS  PubMed  Google Scholar 

  • Koide R, Kobayashi S, Shimohata T, Ikeuchi T, Maruyama M, Saito M et al (1999) A neurological disease caused by an expanded CAG trinucleotide repeat in the TATA-binding protein gene: a new polyglutamine disease? Hum Mol Genet 8:2047–2053

    CAS  PubMed  Google Scholar 

  • Konigsmark BW, Weiner LP (1970) The olivopontocerebellar atrophies: a review. Medicine (Baltim) 49:227–241

    CAS  Google Scholar 

  • Koob MD, Moseley ML, Schut LJ, Benzow KA, Bird TD, Day JW et al (1999) An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nat Genet 21:379–384

    CAS  PubMed  Google Scholar 

  • Kordasiewicz HB, Thompson RM, Clark HB, Gomez CM (2006) C-termini of P/Q-type Ca2+ channel alpha1A subunits translocate to nuclei and promote polyglutamine-mediated toxicity. Hum Mol Genet 15:1587–1599

    CAS  PubMed  Google Scholar 

  • La Spada AR, Fu YH, Sopher BL, Libby RT, Wang X, Li LY et al (2001) Polyglutamine-expanded ataxin-7 antagonizes CRX function and induces cone-rod dystrophy in a mouse model of SCA7. Neuron 31:913–927

    PubMed  Google Scholar 

  • Labrum RW, Rajakulendran S, Graves TD, Eunson LH, Bevan R, Sweeney MG et al (2009) Large scale calcium channel gene rearrangements in episodic ataxia and hemiplegic migraine: implications for diagnostic testing. J Med Genet 46:786–791

    CAS  PubMed  Google Scholar 

  • Laezza F, Gerber BR, Lou JY, Kozel MA, Hartman H, Craig AM et al (2007) The FGF14(F145S) mutation disrupts the interaction of FGF14 with voltage-gated Na+ channels and impairs neuronal excitability. J Neurosci 27:12033–12044

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lam YC, Bowman AB, Jafar-Nejad P, Lim J, Richman R, Fryer JD et al (2006) ATAXIN-1 interacts with the repressor Capicua in its native complex to cause SCA1 neuropathology. Cell 127:1335–1347

    CAS  PubMed  Google Scholar 

  • Lasek K, Lencer R, Gaser C, Hagenah J, Walter U, Wolters A et al (2006) Morphological basis for the spectrum of clinical deficits in spinocerebellar ataxia 17 (SCA17). Brain 129:2341–2352

    CAS  PubMed  Google Scholar 

  • Lastres-Becker I, Rub U, Auburger G (2008) Spinocerebellar ataxia 2 (SCA2). Cerebellum 7:115–124

    CAS  PubMed  Google Scholar 

  • Leone M, Bottacchi E, D’Alessandro G, Kustermann S (1995) Hereditary ataxias and paraplegias in Valle d’Aosta, Italy: a study of prevalence and disability. Acta Neurol Scand 91:183–187

    CAS  PubMed  Google Scholar 

  • Lim J, Hao T, Shaw C, Patel AJ, Szabo G, Rual JF et al (2006) A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration. Cell 125:801–814

    CAS  PubMed  Google Scholar 

  • Lin X, Ashizawa T (2005) Recent progress in spinocerebellar ataxia type-10 (SCA10). Cerebellum 4:37–42

    CAS  PubMed  Google Scholar 

  • Lin X, Antalffy B, Kang D, Orr HT, Zoghbi HY (2000) Polyglutamine expansion down-regulates specific neuronal genes before pathologic changes in SCA1. Nat Neurosci 3:157–163

    CAS  PubMed  Google Scholar 

  • Lin JX, Ishikawa K, Sakamoto M, Tsunemi T, Ishiguro T, Amino T et al (2008) Direct and accurate measurement of CAG repeat configuration in the ataxin-1 (ATXN-1) gene by “dual-fluorescence labeled PCR-restriction fragment length analysis”. J Hum Genet 53:287–295

    CAS  PubMed  Google Scholar 

  • Lin CH, Chen CM, Hou YT, Wu YR, Hsieh-Li HM, Su MT et al (2010) The CAG repeat in SCA12 functions as a cis element to up-regulate PPP2R2B expression. Hum Genet 128:205–212

    CAS  PubMed  Google Scholar 

  • Linhares Sda C, Horta WG, Cunha FM, Castro JD, Santos AC, Marques WJ (2008) Spastic paraparesis as the onset manifestation of spinocerebellar ataxia type 7. Arq Neuropsiquiatr 66:246–248

    PubMed  Google Scholar 

  • Maciel P, Costa MC, Ferro A, Rousseau M, Santos CS, Gaspar C et al (2001) Improvement in the molecular diagnosis of Machado-Joseph disease. Arch Neurol 58:1821–1827

    CAS  PubMed  Google Scholar 

  • Manto MU (2005) The wide spectrum of spinocerebellar ataxias (SCAs). Cerebellum 4:2–6

    CAS  PubMed  Google Scholar 

  • Marelli C, Cazeneuve C, Brice A, Stevanin G, Durr A (2011a) Autosomal dominant cerebellar ataxias. Rev Neurol (Paris) 167:385–400

    CAS  Google Scholar 

  • Marelli C, van de Leemput J, Johnson JO, Tison F, Thauvin-Robinet C, Picard F et al (2011b) SCA15 due to large ITPR1 deletions in a cohort of 333 white families with dominant ataxia. Arch Neurol 68:637–643

    PubMed  PubMed Central  Google Scholar 

  • Margolis RL, O’Hearn E, Holmes SE, Srivastava AK, Mukherji M, Sinha KK (2011) Spinocerebellar ataxia type 12. In: GeneReviews at GeneTests: Medical Genetics Information Resource (database online). Copyright, University of Washington, Seattle. 1997–2011. Available at http://www.genetests.org. Updated 17 Nov 2011

  • Marie P (1893) Sur l’hérédoataxie cérébelleuse. Sem Med Paris 13:444–447

    Google Scholar 

  • Marie P, Foix C, Alajouanine T (1922) De l’atrophie cérébelleuse tardive a predominance corticale. Rev Neurol 38(849–85):1082–1111

    Google Scholar 

  • Mariotti C, Gellera C, Grisoli M, Mineri R, Castucci A, Di Donato S (2001) Pathogenic effect of an intermediate-size SCA-6 allele (CAG)(19) in a homozygous patient. Neurology 57:1502–1504

    CAS  PubMed  Google Scholar 

  • Mariotti C, Alpini D, Fancellu R, Soliveri P, Grisoli M, Ravaglia S et al (2007) Spinocerebellar ataxia type 17 (SCA17): oculomotor phenotype and clinical characterization of 15 Italian patients. J Neurol 254:1538–1546

    PubMed  Google Scholar 

  • Mariotti C, Brusco A, Di Bella D, Cagnoli C, Seri M, Gellera C et al (2008) Spinocerebellar ataxia type 28: a novel autosomal dominant cerebellar ataxia characterized by slow progression and ophthalmoparesis. Cerebellum 7:184–188

    CAS  PubMed  Google Scholar 

  • Mascalchi M (2008) Spinocerebellar ataxias. Neurol Sci 29(Suppl 3):311–313

    PubMed  Google Scholar 

  • Mascalchi M, Vella A (2012) Magnetic resonance and nuclear medicine imaging in ataxias. Handb Clin Neurol 103:85–110

    PubMed  Google Scholar 

  • Maschke M, Oehlert G, Xie TD, Perlman S, Subramony SH, Kumar N et al (2005) Clinical feature profile of spinocerebellar ataxia type 1–8 predicts genetically defined subtypes. Mov Disord 20:1405–1412

    PubMed  Google Scholar 

  • Matsumura R, Futamura N, Fujimoto Y, Yanagimoto S, Horikawa H, Suzumura A et al (1997) Spinocerebellar ataxia type 6. Molecular and clinical features of 35 Japanese patients including one homozygous for the CAG repeat expansion. Neurology 49:1238–1243

    CAS  PubMed  Google Scholar 

  • Matsuura T, Ashizawa T (2002) Spinocerebellar ataxia type 10: a disease caused by a large ATTCT repeat expansion. Adv Exp Med Biol 516:79–97

    CAS  PubMed  Google Scholar 

  • Matsuura T, Ashizawa T (2010) Spinocerebellar ataxia type 10. In: GeneReviews at GeneTests: medical genetics information resource (database online). Copyright, University of Washington, Seattle. 1997–2011. Available at http://www.genetests.org. Updated 9 Mar 2010

  • Matsuura T, Achari M, Khajavi M, Bachinski LL, Zoghbi HY, Ashizawa T (1999) Mapping of the gene for a novel spinocerebellar ataxia with pure cerebellar signs and epilepsy. Ann Neurol 45:407–411

    CAS  PubMed  Google Scholar 

  • Matsuura T, Yamagata T, Burgess DL, Rasmussen A, Grewal RP, Watase K et al (2000) Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10. Nat Genet 26:191–194

    CAS  PubMed  Google Scholar 

  • Matsuura T, Fang P, Lin X, Khajavi M, Tsuji K, Rasmussen A et al (2004) Somatic and germline instability of the ATTCT repeat in spinocerebellar ataxia type 10. Am J Hum Genet 74:1216–1224

    CAS  PubMed  PubMed Central  Google Scholar 

  • Menzel P (1891) Beitrag zur kenntniss der hereditären ataxie und kleinhirnatrophie. Arch Psychiatr Nervenkr 22:160–190

    Google Scholar 

  • Menzies FM, Huebener J, Renna M, Bonin M, Riess O, Rubinsztein DC (2010) Autophagy induction reduces mutant ataxin-3 levels and toxicity in a mouse model of spinocerebellar ataxia type 3. Brain 133:93–104

    PubMed  Google Scholar 

  • Misceo D, Fannemel M, Baroy T, Roberto R, Tvedt B, Jaeger T et al (2009) SCA27 caused by a chromosome translocation: further delineation of the phenotype. Neurogenetics 10:371–374

    CAS  PubMed  Google Scholar 

  • Miura S, Shibata H, Furuya H, Ohyagi Y, Osoegawa M, Miyoshi Y et al (2006) The contactin 4 gene locus at 3p26 is a candidate gene of SCA16. Neurology 67:1236–1241

    CAS  PubMed  Google Scholar 

  • Miyoshi Y, Yamada T, Tanimura M, Taniwaki T, Arakawa K, Ohyagi Y et al (2001) A novel autosomal dominant spinocerebellar ataxia (SCA16) linked to chromosome 8q22.1-24.1. Neurology 57:96–100

    CAS  PubMed  Google Scholar 

  • Moseley ML, Benzow KA, Schut LJ, Bird TD, Gomez CM, Barkhaus PE et al (1998) Incidence of dominant spinocerebellar and Friedreich triplet repeats among 361 ataxia families. Neurology 51:1666–1671

    CAS  PubMed  Google Scholar 

  • Moseley ML, Zu T, Ikeda Y, Gao W, Mosemiller AK, Daughters RS et al (2006) Bidirectional expression of CUG and CAG expansion transcripts and intranuclear polyglutamine inclusions in spinocerebellar ataxia type 8. Nat Genet 38:758–769

    CAS  PubMed  Google Scholar 

  • Mutsuddi M, Marshall CM, Benzow KA, Koob MD, Rebay I (2004) The spinocerebellar ataxia 8 noncoding RNA causes neurodegeneration and associates with Staufen in Drosophila. Curr Biol 14:302–308

    CAS  PubMed  Google Scholar 

  • Nagaoka U, Takashima M, Ishikawa K, Yoshizawa K, Yoshizawa T, Ishikawa M et al (2000) A gene on SCA4 locus causes dominantly inherited pure cerebellar ataxia. Neurology 54:1971–1975

    CAS  PubMed  Google Scholar 

  • Naito H, Oyanagi S (1982) Familial myoclonus epilepsy and choreoathetosis: hereditary dentatorubral-pallidoluysian atrophy. Neurology 32:798–807

    CAS  PubMed  Google Scholar 

  • Nakano KK, Dawson DM, Spence A (1972) Machado disease. A hereditary ataxia in Portuguese emigrants to Massachusetts. Neurology 22:49–55

    CAS  PubMed  Google Scholar 

  • Nardacchione A, Orsi L, Brusco A, Franco A, Grosso E, Dragone E et al (1999) Definition of the smallest pathological CAG expansion in SCA7. Clin Genet 56:232–234

    CAS  PubMed  Google Scholar 

  • Nascimento-Ferreira I, Santos-Ferreira T, Sousa-Ferreira L, Auregan G, Onofre I, Alves S et al (2011) Overexpression of the autophagic beclin-1 protein clears mutant ataxin-3 and alleviates Machado-Joseph disease. Brain 134:1400–1415

    PubMed  Google Scholar 

  • Netravathi M, Pal PK, Purushottam M, Thennarasu K, Mukherjee M, Jain S (2009) Spinocerebellar ataxias types 1, 2 and 3: age adjusted clinical severity of disease at presentation correlates with size of CAG repeat lengths. J Neurol Sci 277:83–86

    CAS  PubMed  Google Scholar 

  • Novak MJ, Sweeney MG, Li A, Treacy C, Chandrashekar HS, Giunti P et al (2010) An ITPR1 gene deletion causes spinocerebellar ataxia 15/16: a genetic, clinical and radiological description. Mov Disord 25:2176–2182

    PubMed  Google Scholar 

  • Nozaki H, Ikeuchi T, Kawakami A, Kimura A, Koide R, Tsuchiya M et al (2007) Clinical and genetic characterizations of 16q-linked autosomal dominant spinocerebellar ataxia (AD-SCA) and frequency analysis of AD-SCA in the Japanese population. Mov Disord 22:857–862

    PubMed  Google Scholar 

  • O’Hearn E, Holmes SE, Calvert PC, Ross CA, Margolis RL (2001) SCA-12: tremor with cerebellar and cortical atrophy is associated with a CAG repeat expansion. Neurology 56:299–303

    PubMed  Google Scholar 

  • Ogawa M (2004) Pharmacological treatments of cerebellar ataxia. Cerebellum 3:107–111

    CAS  PubMed  Google Scholar 

  • Oh AK, Jacobson KM, Jen JC, Baloh RW (2001) Slowing of voluntary and involuntary saccades: an early sign in spinocerebellar ataxia type 7. Ann Neurol 49:801–804

    CAS  PubMed  Google Scholar 

  • Okazawa H (2003) Polyglutamine diseases: a transcription disorder? Cell Mol Life Sci 60:1427–1439

    CAS  PubMed  Google Scholar 

  • Onodera Y, Aoki M, Mizuno H, Warita H, Shiga Y, Itoyama Y (2006) Clinical features of chromosome 16q22.1 linked autosomal dominant cerebellar ataxia in Japanese. Neurology 67:1300–1302

    CAS  PubMed  Google Scholar 

  • Ophoff RA, Terwindt GM, Vergouwe MN, van Eijk R, Oefner PJ, Hoffman SM et al (1996) Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 87:543–552

    CAS  PubMed  Google Scholar 

  • Orozco Diaz G, Nodarse Fleites A, Cordoves Sagaz R, Auburger G (1990) Autosomal dominant cerebellar ataxia: clinical analysis of 263 patients from a homogeneous population in Holguin, Cuba. Neurology 40:1369–1375

    CAS  PubMed  Google Scholar 

  • Orr HT, Zoghbi HY (2007) Trinucleotide repeat disorders. Annu Rev Neurosci 30:575–621

    CAS  PubMed  Google Scholar 

  • Orr HT, Chung M, Banfi S, Kwiatkowski TJ Jr, Servadio A, Beaudet AL et al (1993) Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet 4:221–226

    CAS  PubMed  Google Scholar 

  • Ouyang Y, Sakoe K, Shimazaki H, Namekawa M, Ogawa T, Ando Y et al (2006) 16q-linked autosomal dominant cerebellar ataxia: a clinical and genetic study. J Neurol Sci 247:180–186

    CAS  PubMed  Google Scholar 

  • Owada K, Ishikawa K, Toru S, Ishida G, Gomyoda M, Tao O et al (2005) A clinical, genetic, and neuropathologic study in a family with 16q-linked ADCA type III. Neurology 65:629–632

    CAS  PubMed  Google Scholar 

  • Oyanagi S (2000) Hereditary dentatorubral-pallidoluysian atrophy. Neuropathology 20(Suppl):S42–S46

    PubMed  Google Scholar 

  • Pareyson D, Gellera C, Castellotti B, Antonelli A, Riggio MC, Mazzucchelli F et al (1999) Clinical and molecular studies of 73 Italian families with autosomal dominant cerebellar ataxia type I: SCA1 and SCA2 are the most common genotypes. J Neurol 246:389–393

    CAS  PubMed  Google Scholar 

  • Paulson H (2011) Spinocerebellar ataxia type 3. In: GeneReviews at GeneTests: medical genetics information resource (database online). Copyright, University of Washington, Seattle. 1997–2011. Available at http://www.genetests.org. Updated 17 Mar 2011

  • Payami H, Nutt J, Gancher S, Bird T, McNeal MG, Seltzer WK et al (2003) SCA2 may present as levodopa-responsive parkinsonism. Mov Disord 18:425–429

    PubMed  Google Scholar 

  • Pearson CE, Nichol Edamura K, Cleary JD (2005) Repeat instability: mechanisms of dynamic mutations. Nat Rev Genet 6:729–742

    CAS  PubMed  Google Scholar 

  • Pessia M, Hanna MG (2010) Episodic ataxia type 1. In: GeneReviews at GeneTests: medical genetics information resource (database online). Copyright, University of Washington, Seattle. 1997–2011. Available at http://www.genetests.org. Updated 9 Feb 2010

  • Pierson TM, Adams D, Bonn F, Martinelli P, Cherukuri PF, Teer JK et al (2011) Whole-exome sequencing identifies homozygous AFG3L2 mutations in a spastic ataxia-neuropathy syndrome linked to mitochondrial m-AAA proteases. PLoS Genet 7:e1002325

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prakash N, Hageman N, Hua X, Toga AW, Perlman SL, Salamon N (2009) Patterns of fractional anisotropy changes in white matter of cerebellar peduncles distinguish spinocerebellar ataxia-1 from multiple system atrophy and other ataxia syndromes. NeuroImage 47(Suppl 2):T72–T81

    PubMed  Google Scholar 

  • Pulst SM (2010) Spinocerebellar ataxia type 2. In: GeneReviews at GeneTests: medical genetics information resource (database online). Copyright, University of Washington, Seattle. 1997–2011. Available at http://www.genetests.org. Updated 5 Oct 2010

  • Pulst SM, Nechiporuk A, Nechiporuk T, Gispert S, Chen XN, Lopes-Cendes I et al (1996) Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet 14:269–276

    CAS  PubMed  Google Scholar 

  • Rajakulendran S, Kaski D, Hanna MG (2012) Neuronal P/Q-type calcium channel dysfunction in inherited disorders of the CNS. Nat Rev Neurol 8:86–96

    CAS  PubMed  Google Scholar 

  • Ranum LPW, Schut LJ, Lundgren JK, Orr HT, Livingston DM (1994) Spinocerebellar ataxia type 5 in a family descended from the grandparents of President Lincoln maps to chromosome 11. Nat Genet 8:280–284

    CAS  PubMed  Google Scholar 

  • Raskin S, Ashizawa T, Teive HA, Arruda WO, Fang P, Gao R et al (2007) Reduced penetrance in a Brazilian family with spinocerebellar ataxia type 10. Arch Neurol 64:591–594

    PubMed  Google Scholar 

  • Rasmussen A, Yescas P, Matsuura T et al (2000) Molecular diagnosis of spinocerebellar ataxias in a Mexican population (Abstract). Am J Hum Genet 67:342

    Google Scholar 

  • Rasmussen A, Matsuura T, Ruano L, Yescas P, Ochoa A, Ashizawa T et al (2001) Clinical and genetic analysis of four Mexican families with spinocerebellar ataxia type 10. Ann Neurol 50:234–239

    CAS  PubMed  Google Scholar 

  • Restituito S, Thompson RM, Eliet J, Raike RS, Riedl M, Charnet P et al (2000) The polyglutamine expansion in spinocerebellar ataxia type 6 causes a beta subunit-specific enhanced activation of P/Q-type calcium channels in Xenopus oocytes. J Neurosci 20:6394–6403

    CAS  PubMed  PubMed Central  Google Scholar 

  • Riess O, Rub U, Pastore A, Bauer P, Schols L (2008) SCA3: neurological features, pathogenesis and animal models. Cerebellum 7:125–137

    CAS  PubMed  Google Scholar 

  • Robitaille Y, Schut L, Kish SJ (1995) Structural and immunocytochemical features of olivopontocerebellar atrophy caused by the spinocerebellar ataxia type 1 (SCA-1) mutation define a unique phenotype. Acta Neuropathol (Berl) 90:572–581

    CAS  Google Scholar 

  • Rolfs A, Koeppen AH, Bauer I, Bauer P, Buhlmann S, Topka H et al (2003) Clinical features and neuropathology of autosomal dominant spinocerebellar ataxia (SCA17). Ann Neurol 54:367–375

    PubMed  Google Scholar 

  • Rosenberg RN (1992) Machado-Joseph disease: an autosomal dominant motor system degeneration. Mov Disord 7:193–203

    CAS  PubMed  Google Scholar 

  • Ross CA (2002) Polyglutamine pathogenesis: emergence of unifying mechanisms for Huntington’s disease and related disorders. Neuron 35:819–822

    CAS  PubMed  Google Scholar 

  • Rub U, Seidel K, Ozerden I, Gierga K, Brunt ER, Schols L et al (2007) Consistent affection of the central somatosensory system in spinocerebellar ataxia type 2 and type 3 and its significance for clinical symptoms and rehabilitative therapy. Brain Res Rev 53:235–249

    PubMed  Google Scholar 

  • Rub U, Brunt ER, Seidel K, Gierga K, Mooy CM, Kettner M et al (2008) Spinocerebellar ataxia type 7 (SCA7): widespread brain damage in an adult-onset patient with progressive visual impairments in comparison with an adult-onset patient without visual impairments. Neuropathol Appl Neurobiol 34:155–168

    CAS  PubMed  Google Scholar 

  • Saito N, Kikkawa U, Nishizuka Y, Tanaka C (1988) Distribution of protein kinase C-like immunoreactive neurons in rat brain. J Neurosci 8:369–382

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sakai H, Yoshida K, Shimizu Y, Morita H, Ikeda S, Matsumoto N (2010) Analysis of an insertion mutation in a cohort of 94 patients with spinocerebellar ataxia type 31 from Nagano, Japan. Neurogenetics 11:409–415

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saleem Q, Choudhry S, Mukerji M, Bashyam L, Padma MV, Chakravarthy A et al (2000) Molecular analysis of autosomal dominant hereditary ataxias in the Indian population: high frequency of SCA2 and evidence for a common founder mutation. Hum Genet 106:179–187

    CAS  PubMed  Google Scholar 

  • Sanger Brown MD (1892) On hereditary ataxy, with a series of twenty-one cases. Brain 15:21–34

    Google Scholar 

  • Sasaki H, Fukazawa T, Yanagihara T, Hamada T, Shima K, Matsumoto A et al (1996) Clinical features and natural history of spinocerebellar ataxia type 1. Acta Neurol Scand 93:64–71

    CAS  PubMed  Google Scholar 

  • Sasaki H, Kojima H, Yabe I, Tashiro K, Hamada T, Sawa H et al (1998) Neuropathological and molecular studies of spinocerebellar ataxia type 6 (SCA6). Acta Neuropathol 95:199–204

    CAS  PubMed  Google Scholar 

  • Sasaki H, Yabe I, Tashiro K (2003) The hereditary spinocerebellar ataxias in Japan. Cytogenet Genome Res 100:198–205

    CAS  PubMed  Google Scholar 

  • Sato N, Amino T, Kobayashi K, Asakawa S, Ishiguro T, Tsunemi T et al (2009) Spinocerebellar ataxia type 31 is associated with “inserted” penta-nucleotide repeats containing (TGGAA)n. Am J Hum Genet 85:544–557

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schelhaas HJ, van de Warrenburg BP (2005) Clinical, psychological, and genetic characteristics of spinocerebellar ataxia type 19 (SCA19). Cerebellum 4:51–54

    CAS  PubMed  Google Scholar 

  • Schelhaas HJ, Verbeek DS, Van de Warrenburg BP, Sinke RJ (2004) SCA19 and SCA22: evidence for one locus with a worldwide distribution. Brain 127(E6).; author reply E7

    Google Scholar 

  • Schmahmann JD, Gardner R, MacMore J, Vangel MG (2009) Development of a brief ataxia rating scale (BARS) based on a modified form of the ICARS. Mov Disord 24:1820–1828

    PubMed  PubMed Central  Google Scholar 

  • Schmitz-Hubsch T, du Montcel ST, Baliko L, Berciano J, Boesch S, Depondt C et al (2006a) Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology 66:1717–1720

    CAS  PubMed  Google Scholar 

  • Schmitz-Hubsch T, Tezenas du Montcel S, Baliko L, Boesch S, Bonato S, Fancellu R et al (2006b) Reliability and validity of the international cooperative ataxia rating scale: a study in 156 spinocerebellar ataxia patients. Mov Disord 21:699–704

    PubMed  Google Scholar 

  • Schmitz-Hubsch T, Coudert M, Bauer P, Giunti P, Globas C, Baliko L et al (2008) Spinocerebellar ataxia type 1, 2, 3, and 6 disease severity and nonataxia symptoms. Neurology 71:982–989

    CAS  PubMed  Google Scholar 

  • Schmitz-Hubsch T, Fimmers R, Rakowicz M, Rola R, Zdzienicka E, Fancellu R et al (2010) Responsiveness of different rating instruments in spinocerebellar ataxia patients. Neurology 74:678–684

    CAS  PubMed  Google Scholar 

  • Schols L, Amoiridis G, Epplen JT, Langkafel M, Przuntek H, Riess O (1996) Relations between genotype and phenotype in German patients with the Machado-Joseph disease mutation. J Neurol Neurosurg Psychiatry 61(5):466–470

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schols L, Amoiridis G, Buttner T, Przuntek H, Epplen JT, Riess O (1997a) Autosomal dominant cerebellar ataxia: phenotypic differences in genetically defined subtypes? Ann Neurol 42:924–932

    CAS  PubMed  Google Scholar 

  • Schols L, Gispert S, Vorgerd M, Menezes Vieira-Saecker AM, Blanke P, Auburger G et al (1997b) Spinocerebellar ataxia type 2. Genotype and phenotype in German kindreds. Arch Neurol 54:1073–1080

    CAS  PubMed  Google Scholar 

  • Schols L, Szymanski S, Peters S, Przuntek H, Epplen JT, Hardt C et al (2000) Genetic background of apparently idiopathic sporadic cerebellar ataxia. Hum Genet 107:132–137

    CAS  PubMed  Google Scholar 

  • Schols L, Bauer I, Zuhlke C, Schulte T, Kolmel C, Burk K et al (2003) Do CTG expansions at the SCA8 locus cause ataxia? Ann Neurol 54:110–115

    PubMed  Google Scholar 

  • Schols L, Bauer P, Schmidt T, Schulte T, Riess O (2004) Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet Neurol 3:291–304

    PubMed  Google Scholar 

  • Schorge S, van de Leemput J, Singleton A, Houlden H, Hardy J (2010) Human ataxias: a genetic dissection of inositol triphosphate receptor (ITPR1)-dependent signaling. Trends Neurosci 33:211–219

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schrenk K, Kapfhammer JP, Metzger F (2002) Altered dendritic development of cerebellar Purkinje cells in slice cultures from protein kinase Cgamma-deficient mice. Neuroscience 110:675–689

    CAS  PubMed  Google Scholar 

  • Seki T, Shimahara T, Yamamoto K, Abe N, Amano T, Adachi N et al (2009) Mutant gammaPKC found in spinocerebellar ataxia type 14 induces aggregate-independent maldevelopment of dendrites in primary cultured Purkinje cells. Neurobiol Dis 33:260–273

    CAS  PubMed  Google Scholar 

  • Sequeiros J, Coutinho P (1993) Epidemiology and clinical aspects of Machado-Joseph disease. Adv Neurol 61:139–153

    CAS  PubMed  Google Scholar 

  • Sequeiros J, Martindale J, Seneca S, Giunti P, Kamarainen O, Volpini V et al (2010a) EMQN best practice guidelines for molecular genetic testing of SCAs. Eur J Hum Genet 18:1173–1176

    PubMed  PubMed Central  Google Scholar 

  • Sequeiros J, Seneca S, Martindale J (2010b) Consensus and controversies in best practices for molecular genetic testing of spinocerebellar ataxias. Eur J Hum Genet 18:1188–1195

    PubMed  PubMed Central  Google Scholar 

  • Shakkottai VG, Xiao M, Xu L, Wong M, Nerbonne JM, Ornitz DM et al (2009) FGF14 regulates the intrinsic excitability of cerebellar Purkinje neurons. Neurobiol Dis 33:81–88

    CAS  PubMed  Google Scholar 

  • Shao J, Diamond MI (2007) Polyglutamine diseases: emerging concepts in pathogenesis and therapy. Hum Mol Genet 16(Spec. No. 2):R115–R123

    Google Scholar 

  • Shimazaki H, Takiyama Y, Sakoe K, Amaike M, Nagaki H, Namekawa M et al (2001) Meiotic instability of the CAG repeats in the SCA6/CACNA1A gene in two Japanese SCA6 families. J Neurol Sci 185:101–107

    CAS  PubMed  Google Scholar 

  • Shimohata M, Shimohata T, Igarashi S, Naruse S, Tsuji S (2005) Interference of CREB-dependent transcriptional activation by expanded polyglutamine stretches–augmentation of transcriptional activation as a potential therapeutic strategy for polyglutamine diseases. J Neurochem 93:654–663

    CAS  PubMed  Google Scholar 

  • Shizuka M, Watanabe M, Ikeda Y, Mizushima K, Okamoto K, Shoji M (1998) Molecular analysis of a de novo mutation for spinocerebellar ataxia type 6 and (CAG)n repeat units in normal elder controls. J Neurol Sci 161:85–87

    CAS  PubMed  Google Scholar 

  • Silva MC, Coutinho P, Pinheiro CD, Neves JM, Serrano P (1997) Hereditary ataxias and spastic paraplegias: methodological aspects of a prevalence study in Portugal. J Clin Epidemiol 50:1377–1384

    CAS  PubMed  Google Scholar 

  • Silveira I, Miranda C, Guimaraes L, Moreira MC, Alonso I, Mendonca P et al (2002) Trinucleotide repeats in 202 families with ataxia: a small expanded (CAG)n allele at the SCA17 locus. Arch Neurol 59:623–629

    CAS  PubMed  Google Scholar 

  • Singleton AB (2011) Exome sequencing: a transformative technology. Lancet Neurol 10:942–946

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sinke RJ, Ippel EF, Diepstraten CM, Beemer FA, Wokke JH, van Hilten BJ et al (2001) Clinical and molecular correlations in spinocerebellar ataxia type 6: a study of 24 Dutch families. Arch Neurol 58:1839–1844

    CAS  PubMed  Google Scholar 

  • Sisodia SS (1998) Nuclear inclusions in glutamine repeat disorders: are they pernicious, coincidental, or beneficial? Cell 95:1–4

    CAS  PubMed  Google Scholar 

  • Skinner PJ, Vierra-Green CA, Clark HB, Zoghbi HY, Orr HT (2001) Altered trafficking of membrane proteins in purkinje cells of SCA1 transgenic mice. Am J Pathol 159:905–913

    CAS  PubMed  PubMed Central  Google Scholar 

  • Skre H (1974) Spino-cerebellar ataxia in western Norway. Clin Genet 6:265–288

    CAS  PubMed  Google Scholar 

  • Soong BW, Liu RS (1998) Positron emission tomography in asymptomatic gene carriers of Machado-Joseph disease. J Neurol Neurosurg Psychiatry 64:499–504

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soong BW, Paulson HL (2007) Spinocerebellar ataxias: an update. Curr Opin Neurol 20:438–446

    CAS  PubMed  Google Scholar 

  • Soong B, Liu R, Wu L, Lu Y, Lee H (2001) Metabolic characterization of spinocerebellar ataxia type 6. Arch Neurol 58:300–304

    CAS  PubMed  Google Scholar 

  • Srivastava AK, Choudhry S, Gopinath MS, Roy S, Tripathi M, Brahmachari SK et al (2001) Molecular and clinical correlation in five Indian families with spinocerebellar ataxia 12. Ann Neurol 50:796–800

    CAS  PubMed  Google Scholar 

  • Steckley JL, Ebers GC, Cader MZ, McLachlan RS (2001) An autosomal dominant disorder with episodic ataxia, vertigo, and tinnitus. Neurology 57:1499–1502

    CAS  PubMed  Google Scholar 

  • Steffan JS, Bodai L, Pallos J, Poelman M, McCampbell A, Apostol BL et al (2001) Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 413:739–743

    CAS  PubMed  Google Scholar 

  • Steinmayr M, Andre E, Conquet F, Rondi-Reig L, Delhaye-Bouchaud N, Auclair N et al (1998) Staggerer phenotype in retinoid-related orphan receptor alpha-deficient mice. Proc Natl Acad Sci U S A 95:3960–3965

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stevanin G, Brice A (2008) Spinocerebellar ataxia 17 (SCA17) and Huntington’s disease-like 4 (HDL4). Cerebellum 7:170–178

    CAS  PubMed  Google Scholar 

  • Stevanin G, Fujigasaki H, Lebre AS, Camuzat A, Jeannequin C, Dode C et al (2003) Huntington’s disease-like phenotype due to trinucleotide repeat expansions in the TBP and JPH3 genes. Brain 126:1599–1603

    PubMed  Google Scholar 

  • Stevanin G, Bouslam N, Thobois S, Azzedine H, Ravaux L, Boland A et al (2004) Spinocerebellar ataxia with sensory neuropathy (SCA25) maps to chromosome 2p. Ann Neurol 55:97–104

    CAS  PubMed  Google Scholar 

  • Stevanin G, Durr A, Benammar N, Brice A (2005) Spinocerebellar ataxia with mental retardation (SCA13). Cerebellum 4:43–46

    CAS  PubMed  Google Scholar 

  • Storey E, Gardner RJ, Knight MA, Kennerson ML, Tuck RR, Forrest SM et al (2001) A new autosomal dominant pure cerebellar ataxia. Neurology 57:1913–1915

    CAS  PubMed  Google Scholar 

  • Storey E, Bahlo M, Fahey M, Sisson O, Lueck CJ, Gardner RJ (2009) A new dominantly inherited pure cerebellar ataxia, SCA 30. J Neurol Neurosurg Psychiatry 80:408–411

    CAS  PubMed  Google Scholar 

  • Subramony SH, Ashizawa T (2011) Spinocerebellar ataxia type 1. In: GeneReviews at GeneTests: medical genetics information resource (database online). Copyright, University of Washington, Seattle. 1997–2011. Available at http://www.genetests.org. Updated 20 Oct 2011

  • Synofzik M, Beetz C, Bauer C, Bonin M, Sanchez-Ferrero E, Schmitz-Hubsch T et al (2011) Spinocerebellar ataxia type 15: diagnostic assessment, frequency, and phenotypic features. J Med Genet 48:407–412

    PubMed  Google Scholar 

  • Takahashi H, Ohama E, Naito H, Takeda S, Nakashima S, Makifuchi T et al (1988) Hereditary dentatorubral-pallidoluysian atrophy: clinical and pathologic variants in a family. Neurology 38:1065–1070

    CAS  PubMed  Google Scholar 

  • Takahashi H, Ishikawa K, Tsutsumi T, Fujigasaki H, Kawata A, Okiyama R et al (2004) A clinical and genetic study in a large cohort of patients with spinocerebellar ataxia type 6. J Hum Genet 49:256–264

    PubMed  Google Scholar 

  • Takano H, Cancel G, Ikeuchi T, Lorenzetti D, Mawad R, Stevanin G et al (1998) Close associations between prevalences of dominantly inherited spinocerebellar ataxias with CAG-repeat expansions and frequencies of large normal CAG alleles in Japanese and Caucasian populations. Am J Hum Genet 63:1060–1066

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang B, Liu C, Shen L, Dai H, Pan Q, Jing L et al (2000) Frequency of SCA1, SCA2, SCA3/MJD, SCA6, SCA7, and DRPLA CAG trinucleotide repeat expansion in patients with hereditary spinocerebellar ataxia from Chinese kindreds. Arch Neurol 57:540–544

    CAS  PubMed  Google Scholar 

  • Taroni F, DiDonato S (2004) Pathways to motor incoordination: the inherited ataxias. Nat Rev Neurosci 5:641–655

    CAS  PubMed  Google Scholar 

  • Tatsuta T, Langer T (2008) Quality control of mitochondria: protection against neurodegeneration and ageing. EMBO J 27:306–314

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teive HA, Roa BB, Raskin S, Fang P, Arruda WO, Neto YC et al (2004) Clinical phenotype of Brazilian families with spinocerebellar ataxia 10. Neurology 63:1509–1512

    CAS  PubMed  Google Scholar 

  • Teive HA, Munhoz RP, Arruda WO, Raskin S, Werneck LC, Ashizawa T (2011) Spinocerebellar ataxia type 10 – a review. Parkinsonism Relat Disord 17:655–661

    PubMed  Google Scholar 

  • Todd PK, Paulson HL (2010) RNA-mediated neurodegeneration in repeat expansion disorders. Ann Neurol 67:291–300

    CAS  PubMed  PubMed Central  Google Scholar 

  • Toyoshima Y, Onodera O, Yamada M, Tsuji S, Takahashi H (2007) Spinocerebellar ataxia type 17. In: GeneReviews at GeneTests: medical genetics information resource (database online). Copyright, University of Washington, Seattle. 1997–2011. Available at http://www.genetests.org. Updated 1 Aug 2007

  • Tsuji S (2010) DRPLA. In: GeneReviews at GeneTests: medical genetics information resource (database online). Copyright, University of Washington, Seattle. 1997–2011. Available at http://www.genetests.org. Updated 1 Jun 2010

  • Tsuji S (2012) Dentatorubral-pallidoluysian atrophy. In: Aminoff MJ, Boller F, Swaab DF (eds) Handbook of clinical neurology, 3rd series, vol 103, Subramony SH, Dürr A (eds) Ataxic disorders. Elsevier, Amsterdam, pp 587–594

    Google Scholar 

  • Tsuji S, Onodera O, Goto J, Nishizawa M (2008) Sporadic ataxias in Japan – a population-based epidemiological study. Cerebellum 7:189–197

    CAS  PubMed  Google Scholar 

  • Underwood BR, Rubinsztein DC (2008) Spinocerebellar ataxias caused by polyglutamine expansions: a review of therapeutic strategies. Cerebellum 7:215–221

    CAS  PubMed  Google Scholar 

  • van de Leemput J, Chandran J, Knight MA, Holtzclaw LA, Scholz S, Cookson MR et al (2007) Deletion at ITPR1 underlies ataxia in mice and spinocerebellar ataxia 15 in humans. PLoS Genet 3:e108

    PubMed  PubMed Central  Google Scholar 

  • van de Leemput J, Wavrant-De Vrieze F, Rafferty I, Bras JM, Giunti P, Fisher EM et al (2010) Sequencing analysis of the ITPR1 gene in a pure autosomal dominant spinocerebellar ataxia series. Mov Disord 25:771–773

    PubMed  Google Scholar 

  • van de Warrenburg BP, Frenken CW, Ausems MG, Kleefstra T, Sinke RJ, Knoers NV et al (2001) Striking anticipation in spinocerebellar ataxia type 7: the infantile phenotype. J Neurol 248:911–914

    PubMed  Google Scholar 

  • van de Warrenburg BP, Sinke RJ, Verschuuren-Bemelmans CC, Scheffer H, Brunt ER, Ippel PF et al (2002) Spinocerebellar ataxias in the Netherlands: prevalence and age at onset variance analysis. Neurology 58:702–708

    PubMed  Google Scholar 

  • van Swieten JC, Brusse E, de Graaf BM, Krieger E, van de Graaf R, de Koning I et al (2003) A mutation in the fibroblast growth factor 14 gene is associated with autosomal dominant cerebellar ataxia [corrected]. Am J Hum Genet 72:191–199

    PubMed  Google Scholar 

  • Velazquez-Perez L, Rodriguez-Labrada R, Garcia-Rodriguez JC, Almaguer-Mederos LE, Cruz-Marino T, Laffita-Mesa JM (2011) A comprehensive review of spinocerebellar ataxia type 2 in Cuba. Cerebellum 10:184–198

    PubMed  Google Scholar 

  • Verbeek DS, Schelhaas JH, Ippel EF, Beemer FA, Pearson PL, Sinke RJ (2002) Identification of a novel SCA locus (SCA19) in a Dutch autosomal dominant cerebellar ataxia family on chromosome region 1p21-q21. Hum Genet 111:388–393

    CAS  PubMed  Google Scholar 

  • Verbeek DS, van de Warrenburg BP, Wesseling P, Pearson PL, Kremer HP, Sinke RJ (2004) Mapping of the SCA23 locus involved in autosomal dominant cerebellar ataxia to chromosome region 20p13-12.3. Brain 127:2551–2557

    CAS  PubMed  Google Scholar 

  • Verbeek DS, Goedhart J, Bruinsma L, Sinke RJ, Reits EA (2008) PKC gamma mutations in spinocerebellar ataxia type 14 affect C1 domain accessibility and kinase activity leading to aberrant MAPK signaling. J Cell Sci 121:2339–2349

    CAS  PubMed  Google Scholar 

  • Vighetto A, Froment JC, Trillet M, Aimard G (1988) Magnetic resonance imaging in familial paroxysmal ataxia. Arch Neurol 45:547–549

    CAS  PubMed  Google Scholar 

  • Vuillaume I, Devos D, Schraen-Maschke S, Dina C, Lemainque A, Vasseur F et al (2002) A new locus for spinocerebellar ataxia (SCA21) maps to chromosome 7p21.3-p15.1. Ann Neurol 52:666–670

    CAS  PubMed  Google Scholar 

  • Wadia N, Pang J, Desai J, Mankodi A, Desai M, Chamberlain S (1998) A clinicogenetic analysis of six Indian spinocerebellar ataxia (SCA2) pedigrees. The significance of slow saccades in diagnosis. Brain 121:2341–2355

    PubMed  Google Scholar 

  • Wang JL, Yang X, Xia K, Hu ZM, Weng L, Jin X et al (2010) TGM6 identified as a novel causative gene of spinocerebellar ataxias using exome sequencing. Brain 133:3510–3518

    PubMed  Google Scholar 

  • Watase K, Gatchel JR, Sun Y, Emamian E, Atkinson R, Richman R et al (2007) Lithium therapy improves neurological function and hippocampal dendritic arborization in a spinocerebellar ataxia type 1 mouse model. PLoS Med 4:e182

    PubMed  PubMed Central  Google Scholar 

  • Waters MF, Fee D, Figueroa KP, Nolte D, Muller U, Advincula J et al (2005) An autosomal dominant ataxia maps to 19q13: allelic heterogeneity of SCA13 or novel locus? Neurology 65:1111–1113

    CAS  PubMed  Google Scholar 

  • Waters MF, Minassian NA, Stevanin G, Figueroa KP, Bannister JP, Nolte D et al (2006) Mutations in voltage-gated potassium channel KCNC3 cause degenerative and developmental central nervous system phenotypes. Nat Genet 38:447–451

    CAS  PubMed  Google Scholar 

  • Whaley NR, Fujioka S, Wszolek ZK (2011) Autosomal dominant cerebellar ataxia type I: a review of the phenotypic and genotypic characteristics. Orphanet J Rare Dis 6:33

    PubMed  PubMed Central  Google Scholar 

  • White MC, Gao R, Xu W, Mandal SM, Lim JG, Hazra TK et al (2010) Inactivation of hnRNP K by expanded intronic AUUCU repeat induces apoptosis via translocation of PKCdelta to mitochondria in spinocerebellar ataxia 10. PLoS Genet 6:e1000984

    PubMed  PubMed Central  Google Scholar 

  • Williams A, Jahreiss L, Sarkar S, Saiki S, Menzies FM, Ravikumar B et al (2006) Aggregate-prone proteins are cleared from the cytosol by autophagy: therapeutic implications. Curr Top Dev Biol 76:89–101

    CAS  PubMed  Google Scholar 

  • Wojciechowska M, Krzyzosiak WJ (2011) Cellular toxicity of expanded RNA repeats: focus on RNA foci. Hum Mol Genet 20:3811–3821

    CAS  PubMed  PubMed Central  Google Scholar 

  • Worth PF, Giunti P, Gardner-Thorpe C, Dixon PH, Davis MB, Wood NW (1999) Autosomal dominant cerebellar ataxia type III: linkage in a large British family to a 7.6-cM region on chromosome 15q14-21.3. Am J Hum Genet 65:420–426

    CAS  PubMed  PubMed Central  Google Scholar 

  • Worth PF, Houlden H, Giunti P, Davis MB, Wood NW (2000) Large, expanded repeats in SCA8 are not confined to patients with cerebellar ataxia. Nat Genet 24:214–215

    CAS  PubMed  Google Scholar 

  • Xia H, Mao Q, Eliason SL, Harper SQ, Martins IH, Orr HT et al (2004) RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nat Med 10:816–820

    CAS  PubMed  Google Scholar 

  • Yabe I, Sasaki H, Kikuchi S, Nonaka M, Moriwaka F, Tashiro K (2002) Late onset ataxia phenotype in dentatorubro-pallidoluysian atrophy (DRPLA). J Neurol 249:432–436

    PubMed  Google Scholar 

  • Yabe I, Sasaki H, Takeichi N, Takei A, Hamada T, Fukushima K et al (2003) Positional vertigo and macroscopic downbeat positioning nystagmus in spinocerebellar ataxia type 6 (SCA6). J Neurol 250:440–443

    PubMed  Google Scholar 

  • Yamada M, Wood JD, Shimohata T, Hayashi S, Tsuji S, Ross CA et al (2001) Widespread occurrence of intranuclear atrophin-1 accumulation in the central nervous system neurons of patients with dentatorubral-pallidoluysian atrophy. Ann Neurol 49:14–23

    CAS  PubMed  Google Scholar 

  • Yamada M, Sato T, Tsuji S, Takahashi H (2008) CAG repeat disorder models and human neuropathology: similarities and differences. Acta Neuropathol 115:71–86

    CAS  PubMed  Google Scholar 

  • Yamashita I, Sasaki H, Yabe I, Fukazawa T, Nogoshi S, Komeichi K et al (2000) A novel locus for dominant cerebellar ataxia (SCA14) maps to a 10.2-cM interval flanked by D19S206 and D19S605 on chromosome 19q13.4-qter. Ann Neurol 48:156–163

    CAS  PubMed  Google Scholar 

  • Ying M, Xu R, Wu X, Zhu H, Zhuang Y, Han M et al (2006) Sodium butyrate ameliorates histone hypoacetylation and neurodegenerative phenotypes in a mouse model for DRPLA. J Biol Chem 281:12580–12586

    CAS  PubMed  Google Scholar 

  • Yu GY, Howell MJ, Roller MJ, Xie TD, Gomez CM (2005) Spinocerebellar ataxia type 26 maps to chromosome 19p13.3 adjacent to SCA6. Ann Neurol 57:349–354

    CAS  PubMed  Google Scholar 

  • Zhang Y, Snider A, Willard L, Takemoto DJ, Lin D (2009) Loss of Purkinje cells in the PKCgamma H101Y transgenic mouse. Biochem Biophys Res Commun 378:524–528

    CAS  PubMed  Google Scholar 

  • Zhuchenko O, Bailey J, Bonnen P, Ashizawa T, Stockton DW, Amos C et al (1997) Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1A-voltage-dependent calcium channel. Nat Genet 15:62–69

    CAS  PubMed  Google Scholar 

  • Zoghbi HY, Orr HT (2000) Glutamine repeats and neurodegeneration. Annu Rev Neurosci 23:217–247

    CAS  PubMed  Google Scholar 

  • Zoghbi HY, Orr HT (2009) Pathogenic mechanisms of a polyglutamine-mediated neurodegenerative disease, spinocerebellar ataxia type 1. J Biol Chem 284:7425–7429

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zortea M, Armani M, Pastorello E, Nunez GF, Lombardi S, Tonello S et al (2004) Prevalence of inherited ataxias in the province of Padua, Italy. Neuroepidemiology 23:275–280

    CAS  PubMed  Google Scholar 

  • Zuhlke C, Dalski A, Schwinger E, Finckh U (2005) Spinocerebellar ataxia type 17: report of a family with reduced penetrance of an unstable Gln49 TBP allele, haplotype analysis supporting a founder effect for unstable alleles and comparative analysis of SCA17 genotypes. BMC Med Genet 6:27

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Taroni .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Taroni, F., Chiapparini, L., Mariotti, C. (2022). Autosomal Dominant Spinocerebellar Ataxias and Episodic Ataxias. In: Manto, M.U., Gruol, D.L., Schmahmann, J.D., Koibuchi, N., Sillitoe, R.V. (eds) Handbook of the Cerebellum and Cerebellar Disorders. Springer, Cham. https://doi.org/10.1007/978-3-030-23810-0_101

Download citation

Publish with us

Policies and ethics