Skip to main content

Advertisement

Log in

Active Secretion of Dimerized S100A11 Induced by the Peroxisome in Mesothelioma Cells

  • Original Article
  • Published:
Cancer Microenvironment

Abstract

S100A11, a small Ca2+ binding protein, acts extracellularly as a mediator of cancer progression. That raises the question of how a protein that lacks the classical secretory signal is able to be secreted outside cells without being damaged. Some insights into this question have been obtained, and there has been accumulating evidence indicating a pivotal role of a non-classical vesicle-mediated pathway using lysosomes or peroxisomes for the protein secretion. To obtain a more precise insight into the secretory mechanism of S100A11, we first screened representative cancer cells exhibiting significantly active secretion of S100A11. From the results of profiling, we turned our attention to aggressive cancer mesothelioma cells. In mesothelioma cells, we found that abundant dimeric S100A11 was produced selectively in the peroxisome after transportation of monomeric S100A11 through an interaction with PEX14, a peroxisome membrane protein, resulting in peroxisomal secretion of dimerized S100A11. In an extracellular environment in vitro, dimerized S100A11 promoted mesothelial cell invasion indirectly with the help of fibroblast cells. Overall, the results indicate that the peroxisome functions as an essential vesicle for the production of dimerized S100A11 and the subsequent secretion of the protein from mesothelioma cells and that peroxisome-mediated secretion of dimerized S100A11 might play a critical role in mesothelioma progression in a tumor microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Ca:

Calcium

FBS:

Fetal bovine serum

DTT:

Dithiothreitol

RAGE:

Receptor for advanced glycation endproducts

HMGB1:

High mobility group box 1

HSP70:

Heat shock protein 70

IL-1β:

Interleukin-1β

ER:

Endoplasmic reticulum

HE:

Hematoxylin-eosin

ANXAI:

Annexin I

cPLA2 :

cytosolic phospholipase A2

EGFR:

Epidermal growth factor receptor

References

  1. Gross SR, Sin CG, Barraclough R et al (2014) Joining S100 proteins and migration: for better or for worse, in sickness and in health. Cell Mol Life Sci 71(9):1551–1579

    Article  CAS  PubMed  Google Scholar 

  2. Sakaguchi M, Miyazaki M, Inoue Y et al (2000) Relationship between contact inhibition and intranuclear S100C of normal human fibroblasts. J Cell Biol 149(6):1193–1206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sakaguchi M, Miyazaki M, Kondo T et al (2001) Up-regulation of S100C in normal human fibroblasts in the process of aging in vitro. Exp Gerontol 36(8):1317–1325

    Article  CAS  PubMed  Google Scholar 

  4. Sakaguchi M, Miyazaki M, Takaishi M et al (2003) S100C/A11 is a key mediator of Ca(2+)-induced growth inhibition of human epidermal keratinocytes. J Cell Biol 163(4):825–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Makino E, Sakaguchi M, Iwatsuki K et al (2004) Introduction of an N-terminal peptide of S100C/A11 into human cells induces apoptotic cell death. J Mol Med (Berl) 82(9):612–620

    Article  CAS  Google Scholar 

  6. Sakaguchi M, Miyazaki M, Sonegawa H et al (2004) PKCalpha mediates TGFbeta-induced growth inhibition of human keratinocytes via phosphorylation of S100C/A11. J Cell Biol 164(7):979–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sakaguchi M, Sonegawa H, Nukui T et al (2005) Bifurcated converging pathways for high Ca2 + − and TGFbeta-induced inhibition of growth of normal human keratinocytes. Proc Natl Acad Sci U S A 102(39):13921–13926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Miyazaki M, Sakaguchi M, Akiyama I et al (2004) Involvement of interferon regulatory factor 1 and S100C/A11 in growth inhibition by transforming growth factor beta 1 in human hepatocellular carcinoma cells. Cancer Res 64(12):4155–4161

    Article  CAS  PubMed  Google Scholar 

  9. Sakaguchi M, Murata H, Sonegawa H et al (2007) Truncation of annexin A1 is a regulatory lever for linking epidermal growth factor signaling with cytosolic phospholipase A2 in normal and malignant squamous epithelial cells. J Biol Chem 282(49):35679–35686

    Article  CAS  PubMed  Google Scholar 

  10. Sakaguchi M, Sonegawa H, Murata H et al (2008) S100A11, an dual mediator for growth regulation of human keratinocytes. Mol Biol Cell 19(1):78–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sakaguchi M, Huh NH (2011) S100A11, a dual growth regulator of epidermal keratinocytes. Amino Acids 41(4):797–807

    Article  CAS  PubMed  Google Scholar 

  12. Jaiswal JK, Lauritzen SP, Scheffer L et al (2014) S100A11 is required for efficient plasma membrane repair and survival of invasive cancer cells. Nat Commun 5:3795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cecil DL, Johnson K, Rediske J et al (2005) Inflammation-induced chondrocyte hypertrophy is driven by receptor for advanced glycation end products. J Immunol 175(12):8296–8302

    Article  CAS  PubMed  Google Scholar 

  14. Cecil DL, Terkeltaub R et al (2008) Transamidation by transglutaminase 2 transforms S100A11 calgranulin into a procatabolic cytokine for chondrocytes. J Immunol 180(12):8378–8385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hao J, Wang K, Yue Y et al (2012) Selective expression of S100A11 in lung cancer and its role in regulating proliferation of adenocarcinomas cells. Mol Cell Biochem 359(1–2):323–332

    Article  CAS  PubMed  Google Scholar 

  16. Anania MC, Miranda C, Vizioli MG et al (2013) S100A11 overexpression contributes to the malignant phenotype of papillary thyroid carcinoma. J Clin Endocrinol Metab 98(10):E1591–E1600

    Article  CAS  PubMed  Google Scholar 

  17. Woo T, Okudela K, Mitsui H et al (2015) Up-regulation of S100A11 in lung adenocarcinoma – its potential relationship with cancer progression. PLoS One 10(11):e0142642

    Article  PubMed  PubMed Central  Google Scholar 

  18. Todoroki H, Kobayashi R, Watanabe M et al (1991) Purification, characterization, and partial sequence analysis of a newly identified EF-hand type 13-kDa Ca2+-binding protein from smooth muscle and non-muscle tissues. J Biol Chem 266(28):18668–18673

    CAS  PubMed  Google Scholar 

  19. Tanaka N, Toyooka S, Soh J et al (2013) Downregulation of microRNA-34 induces cell proliferation and invasion of human mesothelial cells. Oncol Rep 29(6):2169–2174

    PubMed  Google Scholar 

  20. Sakaguchi M, Watanabe M, Kinoshita R et al (2014) Dramatic increase in expression of a transgene by insertion of promoters downstream of the cargo gene. Mol Biotechnol 56(7):621–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cuervo AM, Gomes AV, Barnes JA et al (2000) Selective degradation of annexins by chaperone-mediated autophagy. J Biol Chem 275(43):33329–33335

    Article  CAS  PubMed  Google Scholar 

  22. Gould SJ, Keller GA, Subramani S et al (1988) Identification of peroxisomal targeting signals located at the carboxy terminus of four peroxisomal proteins. J Cell Biol 107(3):897–905

    Article  CAS  PubMed  Google Scholar 

  23. Purdue PE, Lazarow PB et al (1996) Targeting of human catalase to peroxisomes is dependent upon a novel COOH-terminal peroxisomal targeting sequence. J Cell Biol 134(4):849–862

    Article  CAS  PubMed  Google Scholar 

  24. Ohuchida K, Mizumoto K, Ohhashi S et al (2006) S100A11, a putative tumor suppressor gene, is overexpressed in pancreatic carcinogenesis. Clin Cancer Res 12(18):5417–5422

    Article  CAS  PubMed  Google Scholar 

  25. Xiao MB, Jiang F, Ni WK et al (2012) High expression of S100A11 in pancreatic adenocarcinoma is an unfavorable prognostic marker. Med Oncol 29(3):1886–1891

    Article  CAS  PubMed  Google Scholar 

  26. Gardella S, Andrei C, Ferrera D et al (2002) The nuclear protein HMGB1 is secreted by monocytes via a non-classical, vesicle-mediated secretory pathway. EMBO Rep 3(10):995–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mambula SS, Stevenson MA, Ogawa K et al (2007) Mechanisms for Hsp70 secretion: crossing membranes without a leader. Methods 43(3):168–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Isuzugawa K, Inoue M, Ogihara Y et al (2001) Catalase contents in cells determine sensitivity to the apoptosis inducer gallic acid. Biol Pharm Bull 24(9):1022–1026

    Article  CAS  PubMed  Google Scholar 

  29. Shi XL, Feng MQ, Shi J (2007) High-level expression and purification of recombinant human catalase in Pichia pastoris. Protein Expr Purif 54(1):24–29

    Article  CAS  PubMed  Google Scholar 

  30. Réty S, Osterloh D, Arié JP et al (2000) Structural basis of the Ca(2+)-dependent association between S100C (S100A11) and its target, the N-terminal part of annexin I. Structure 8(2):175–184

    Article  PubMed  Google Scholar 

  31. Hung KW, Chang YM, Yu C et al (2012) Resonance assignments of Ca2+-bound human S100A11. Biomol NMR Assign 7(2):211–214

    Article  PubMed  Google Scholar 

  32. Smith JJ, Aitchison JD et al (2013) Peroxisomes take shape. Nat Rev Mol Cell Biol 14(12):803–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kim PK, Hettema EH et al (2015) Multiple pathways for protein transport to peroxisomes. J Mol Biol 427(6 Pt A):1176–1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Eder C (2009) Mechanisms of interleukin-1beta release. Immunobiology 214(7):543–553

    Article  CAS  PubMed  Google Scholar 

  35. Nylandsted J, Becker AC, Bunkenborg J et al (2011) ErbB2-associated changes in the lysosomal proteome. Proteomics 11(14):2830–2838

    Article  CAS  PubMed  Google Scholar 

  36. Nukui T, Ehama R, Sakaguchi M et al (2008) S100A8/A9, a key mediator for positive feedback growth stimulation of normal human keratinocytes. J Cell Biochem 104(2):453–464

    Article  CAS  PubMed  Google Scholar 

  37. Hibino T, Sakaguchi M, Miyamoto S et al (2013) S100A9 is a novel ligand of EMMPRIN that promotes melanoma metastasis. Cancer Res 73(1):172–183

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr Midori Kitazoe from the Department of Life Science, Faculty of Science, Okayama University of Science for her kind support in providing highly purified recombinant S100A11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masakiyo Sakaguchi.

Ethics declarations

Immunohistochemical studies using human tissue specimens were approved by the Research Ethics Committee in Niigata University Medical and Dental Hospital, and only samples in Niigata University Graduate School of Medicine and Dental Sciences were used. Informed consent was obtained from each patient for use of these materials.

Conflict of Interests

The authors declare that they have no conflicts of interest.

Funding

This work was supported in part by grants from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (Grant–in-Aid for Scientific Research (B), No. 26290039; Grant–in-Aid for Challenging Exploratory Research, No. 15 K14382) (M. Sakaguchi), from the Takeda Science Foundation (M. Sakaguchi), from the Princess Takamatsu Cancer Research Fund (14–24613; M. Sakaguchi), and from the Kobayashi Foundation for Cancer Research (M. Sakaguchi).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saho, S., Satoh, H., Kondo, E. et al. Active Secretion of Dimerized S100A11 Induced by the Peroxisome in Mesothelioma Cells. Cancer Microenvironment 9, 93–105 (2016). https://doi.org/10.1007/s12307-016-0185-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12307-016-0185-2

Keywords

Navigation