Skip to main content

Chondropenia: current concept review

Abstract

The term “chondropenia” indicates the early stage of degenerative cartilage disease, and it has been identified by carefully monitoring early-stage osteoarthritis (OA). Not only is it the loss of articular cartilage volume, but it is also a rearrangement of biomechanical, ultrastructural, biochemical and molecular properties typical of healthy cartilage tissue. Diagnosing OA at an early stage or an advanced stage is valuable in terms of clinical and therapeutic outcome. In fact degenerative phenomena are supported by a complex biochemical cascade which unbalances the extracellular matrix homeostasis, closely regulated by chondrocytes. In the first stage an intense inflammatory reaction is triggered: pro-catabolic cytokines such as IL-1β and TNF-α triggering matrix metalloproteases and aggrecanase (ADAMT-4 and 5), responsible for the early loss of ultrastructural components, such as type II collagen and aggrecan. In addition nitric oxide and reactive oxygen species modulate the physiopathology of the condral matrix inducing apoptosis of chondrocytes through a mitochondria-dependent pathway. In addition, “Lonely Death”: chondrocytes, are confined within a dense, avascular extracellular matrix capsule, and can trigger a genetically induced apoptosis and necrosis. The degenerative process starts from a central point and then spreads in a centrifugal manner in depth and in adjacent areas, eventually covering the whole joint; chondropenia represents a journey from the first clinically detectable time-point until it can be characterized as frank osteoarthritis. Currently, there are no instruments sensitive enough which allow a timely diagnosis of chondropenia. Innovative magnetic resonance imaging techniques, such as T2 mapping, can be effective and a sensitive diagnostic instrument for quantifying cartilage volume and proteoglycan content. However, avant-garde biophysical techniques, such as mechanical indenters, ultrasound and biochemical markers (uCTX-II), are rational and scientific tools applicable to the clinical and therapeutic management of early degenerative cartilage disease. The objective of this review on chondropenia is to present a state of the art and innovative concepts.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Mandelbaum BR, Romanelli DA, Knapp TP (2000) Articular cartilage repair: assessment and classification. Oper Tech Sports Med 8(2):90–97

    Article  Google Scholar 

  2. 2.

    Lorenz H, Richter W (2006) Osteoarthritis: cellular and molecular changes in degenerating cartilage. Prog Histochem Cytochem 40:135–163

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Aydin AT, Özenci M, Gür S (2007) Chondropenia: early stage degenerative disease. Acta Orthop Traumatol Turc 41(Suppl 2):19–24

    PubMed  Google Scholar 

  4. 4.

    Papalia R, Zampagna B, Torre G, Lanotte A, Vasta S, Albo E, Tecame A, Denaro V (2014) Sarcopenia and its relationship with osteoarthritis: risk factor or direct consequence? Musculoskelet Surg 98(1):9–14

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Lorenz H et al (2005) Early and stable upregulation of collagen II, collagen I and YLK expression levels in cartilage during early experimental osteoarthritis occurs independent of joint location and histological grading. Arthritis Res Ther 7(1):156–165

    Article  Google Scholar 

  6. 6.

    McDevitt C, Gilbertson E, Muir H (1977) An experimental model of osteoarthritis; early morphological and biochemical changes. J Bone Joint Surg Br 59(1):24–35

    CAS  PubMed  Google Scholar 

  7. 7.

    Miosge N, Hartmann M, Maelicke C, Herken R (2004) Expression of collagen type I and type II in consecutive stages of human osteoarthritis. Histochem Cell Biol 122(3):229–236

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Sakakibara Y, Miura T, Iwata H, Kikuchi T, Yamaguchi T, Yoshimi T et al (1994) Effect of high-molecular weight sodium hyaluronate on immobilized rabbit knee. Clin Orthop 299:282–292

    PubMed  Google Scholar 

  9. 9.

    Wenz W, Breusch SJ, Graf J, Stratmann U (2000) Ultrastructural findings after intraarticular application of hyaluronan in a canine model of arthropathy. J Orthop Res 18(4):604–612

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Bluteau G, Conrozier T, Mathieu P, Vignon E, Herbage D, Mallein-Gerin F (2001) Matrix metalloproteinase-1, -3, -13 and aggrecanase-1 and -2 are differentially expressed in experimental osteoarthritis. Biochim Biophys Acta 1526(2):147–158

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Pelletier JP, Martel-Pelletier J, Ghandur-Mnaymneh L, Howell DS, Woessner JF Jr (1985) Role of synovial membrane inflammation in cartilage matrix breakdown in the Pond-Nuki dog model of osteoarthritis. Arthritis Rheum 28(5):554–561

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Brandt KD, Myers SL, Burr D, Albrecht M (1991) Osteoarthritic changes in canine articular cartilage, subchondral bone, and synovium fifty-four months after transection of the anterior cruciate ligament. Arthritis Rheum 34(12):1560–1570

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Le Graverand MP, Eggerer J, Vignon E, Otterness IG, Barclay L, Hart DA (2002) Assessment of specific mRNA levels in cartilage regions in a lapine model of osteoarthritis. J Orthop Res 20(3):535–544

    PubMed  Article  Google Scholar 

  14. 14.

    Rizkalla G, Reiner A, Bogoch E, Poole AR (1992) Studies of the articular cartilage proteoglycan aggrecan in health and osteoarthritis. Evidence for molecular heterogeneity and extensive molecular changes in disease. J Clin Invest 90(6):2268–2277

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  15. 15.

    Pfander D, Rahmanzadeh R, Scheller EE (1999) Presence and distribution of collagen II, collagen I, fibronectin, and tenascin in rabbit normal and osteoarthritic cartilage. J Rheumatol 26(2):386–394

    CAS  PubMed  Google Scholar 

  16. 16.

    Veje K, Hyllested-Winge JL, Ostergaard K (2003) Topographic and zonal distribution of tenascin in human articular cartilage from femoral heads: normal versus mild and severe osteoarthritis. Osteoarthritis Cartilage 11(3):217–227

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Hayami T, Funaki H, Yaoeda K, Mitui K, Yamagiwa H, Tokunaga K et al (2003) Expression of the cartilage derived anti-angiogenic factor chondromodulin-I decreases in the early stage of experimental osteoarthritis. J Rheumatol 30(10):2207–2217

    CAS  PubMed  Google Scholar 

  18. 18.

    Teshima R, Ono M, Yamashita Y, Hirakawa H, Nawata K, Morio Y (2004) Immunohistochemical collagen analysis of the most superficial layer in adult articular cartilage. J Orthop Sci 9(3):270–273

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Young AA, Smith MM, Smith SM, Cake MA, Ghosh P, Read RA et al (2005) Regional assessment of articular cartilage gene expression and small proteoglycan metabolism in an animal model of osteoarthritis. Arthritis Res Ther 7(4):R852–R861

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  20. 20.

    Hambach L, Neureiter D, Zeiler G, Kirchner T, Aigner T (1998) Severe disturbance of the distribution and expression of type VI collagen chains in osteoarthritic articular cartilage. Arthritis Rheum 41(6):986–996

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Appleyard RC, Burkhardt D, Ghosh P, Read R, Cake M, Swain MV et al (2003) Topographical analysis of the structural, biochemical and dynamic biomechanical properties of cartilage in an ovine model of osteoarthritis. Osteoarthritis Cartilage 11(1):65–77

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Nerlich AG, Wiest I, von der Mark K (1993) Immunohistochemical analysis of interstitial collagens in cartilage of different stages of osteoarthritis. Virchows Arch B Cell Pathol Incl Mol Pathol 63(4):249–255

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Tchetina EV, Squires G (2005) Increased type II collagen degradation and very early focal cartilage degeneration is associated with upregulation of chondrocyte differentiation related genes in early human articular cartilage lesions. J Rheumatol 32(5):876–886

    CAS  PubMed  Google Scholar 

  24. 24.

    Aigner T, Zien A, Gehrsitz A, Gebhard PM, McKenna L (2001) Anabolic and catabolic gene expression pattern analysis in normal versus osteoarthritic cartilage using complementary DNA-array technology. Arthritis Rheum 44(12):2777–2789

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Martin I, Jakob M, Schafer D, Dick W, Spagnoli G, Heberer M (2001) Quantitative analysis of gene expression in human articular cartilage from normal and osteoarthritic joints. Osteoarthritis Cartilage 9(2):112–118

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Little CB, Ghosh P, Bellenger CR (1996) Topographic variation in biglycan and decorin synthesis by articular cartilage in the early stages of osteoarthritis: an experimental study in sheep. J Orthop Res 14(3):433–444

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Carney SL, Billingham ME, Caterson B, Ratcliffe A, Bayliss MT, Hardingham TE et al (1992) Changes in proteoglycan turnover in experimental canine osteoarthritic cartilage. Matrix 12(2):137–147

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Sandy JD, Adams ME, Billingham ME, Plaas A, Muir H (1984) In vivo and in vitro stimulation of chondrocyte biosynthetic activity in early experimental osteoarthritis. Arthritis Rheum 27(4):388–397

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Squires GR, Okouneff S, Ionescu M, Poole AR (2003) The pathobiology of focal lesion development in aging human articular cartilage and molecular matrix changes characteristic of osteoarthritis. Arthritis Rheum 48(5):1261–1270

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Yagi R, McBurney D, Laverty D, Weiner S, Horton WE Jr (2005) Intrajoint comparisons of gene expression patterns in human osteoarthritis suggest a change in chondrocyte phenotype. J Orthop Res 23(5):1128–1138

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Cs-Szabo G, Melching LI, Roughley PJ, Glant TT (1997) Changes in messenger RNA and protein levels of proteoglycans and link protein in human osteoarthritic cartilage samples. Arthritis Rheum 40(6):1037–1045

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Bock HC, Michaeli P, Bode C, Schultz W, Kresse H, Herken R et al (2001) The small proteoglycans decorin and biglycan in human articular cartilage of late-stage osteoarthritis. Osteoarthritis Cartilage 9(7):654–663

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Salminen HJ, Saamanen AM, Vankemmelbeke MN, Auho PK, Perala MP, Vuorio EI (2002) Differential expression patterns of matrix metalloproteinases and their inhibitors during development of osteoarthritis in a transgenic mouse model. Ann Rheum Dis 61(7):591–597

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  34. 34.

    Fernandes JC, Martel-Pelletier J, Lascau-Coman V, Moldovan F, Jovanovic D, Raynauld JP et al (1998) Collagenase-1 and collagenase-3 synthesis in normal and early experimental osteoarthritic canine cartilage: an immunohistochemical study. J Rheumatol 25(8):1585–1594

    CAS  PubMed  Google Scholar 

  35. 35.

    Yoshihara Y, Nakamura H, Obata K, Yamada H, Hayakawa T, Fujikawa K et al (2000) Matrix metalloproteinases and tissue inhibitors of metalloproteinases in synovial fluids from patients with rheumatoid arthritis or osteoarthritis. Ann Rheum Dis 59(6):455–461

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  36. 36.

    Kashiwagi M, Tortorella M, Nagase H, Brew K (2001) TIMP-3 is a potent inhibitor of aggrecanase 1 (ADAMTS4) and aggrecanase 2 (ADAM-TS5). J Biol Chem 276(16):12501–12504

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Pelletier JP, Mineau F, Faure MP, Martel-Pelletier J (1990) Imbalance between the mechanisms of activation and inhibition of metalloproteases in the early lesions of experimental osteoarthritis. Arthritis Rheum 33(10):1466–1476

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Adams ME, Matyas JR, Huang D, Dourado GS (1995) Expression of proteoglycans and collagen in the hypertrophic phase of experimental osteoarthritis. J Rheumatol Suppl 43:94–97

    CAS  PubMed  Google Scholar 

  39. 39.

    Matyas JR, Adams ME, Huang D, Sandell LJ (1995) Discoordinate gene expression of aggrecan and type II collagen in experimental osteoarthritis. Arthritis Rheum 38(3):420–425

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Wagner S, Hofstetter W, Chiquet M, Mainil-Varlet P, Stauffer E, Ganz R et al (2003) Early osteoarthritic changes of human femoral head cartilage subsequent to femoro-acetabular impingement. Osteoarthritis Cartilage 11(7):508–518

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Von Der Mark K, Kirsch T, Nerlich A, Kuss A, Weseloh G, Gluckert K et al (1992) Type X collagen synthesis in human osteoarthritic cartilage. Indication of chondrocyte hypertrophy. Arthritis Rheum 35(7):806–811

    PubMed  Article  Google Scholar 

  42. 42.

    Volck B, Ostergaard K, Johansen JS, Garbarsch C, Price PA (1999) The distribution of YKL-40 in osteroarthritic and normal human articular cartilage. Scand J Rheumatol 28:171–179

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Mankin HJ et al (1971) Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. Correlation of morphology with biochemical and metabolic data. J Bone Joint Surg Am 53(3):523–537

    CAS  PubMed  Google Scholar 

  44. 44.

    Fehr JE et al (2000) Comparison of Northern blot hybridization and a reverse transcriptase–polymerase chain reaction technique for measurement of mRNA expression of MMPs and matrix components in cartilage and synovia from horses with OA. Am J Vet Res 61(8):900–905

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Lippiello L, Hall D, Mankin HJ (1977) Collagen synthesis in normal and osteoarthritic human cartilage. J Clin Invest 59(4):593–600

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  46. 46.

    Floman Y, Eyre DR, Glimcher MJ (1980) Induction of osteoarthrosis in the rabbit knee joint: biochemical studies on the articular cartilage. Clin Orthop 147:278–286

    CAS  PubMed  Google Scholar 

  47. 47.

    Krasnokutsky S, Samuels J, Abramson SB (2007) Osteoarthritis in 2007. Bull Hosp Jt Dis 65(3):222–228

    Google Scholar 

  48. 48.

    Pelletier JP, Pelletier JM, Abramson SB (2001) Osteoarthritis, an inflammatory disease: potential implication for the selection of new therapeutic targets. Arthritis Rheum 44:1237–1247

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Fermor B, Weinberg JB, Pisetsky DS, Misukonis MA, Banes AJ, Guilak F (2001) The effects of static and intermittent compression on nitric oxide production in articular cartilage explants. J Orthop Res 19:729–737

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Afonso V, Champy R, Mitrovic D, Collin P, Lomri A (2007) Reactive oxygen species and superoxide dismutases: role in joint diseases. Joint Bone Spine 74:324–329

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Roos EM et al (2005) Joint injury causes knee osteoarthritis in young adults. Curr Opin Rheumatol 17:195–200

    PubMed  Article  Google Scholar 

  52. 52.

    Pulai JI, Chen H, Im HJ, Kumar S, Hanning C, Hegde PS, Loeser RF (2005) NF-kappa B mediates the stimulation of cytokine and chemokine expression by human articular chondrocytes in response to fibronectin fragments. J Immunol 174:5781–5788

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  53. 53.

    Xu L, Peng H, Glasson S, Lee PL, Hu K, Ijiri K, Olsen BR, Goldring MB, Li Y (2007) Increased expression of the collagen receptor discoidin domain receptor 2 in articular cartilage as a key event in the pathogenesis of osteoarthritis. Arthritis Rheum 56:26

    Article  CAS  Google Scholar 

  54. 54.

    Arendt E, Dick R (1995) Knee injury patterns among men and women in collegiate basketball and soccer. NCAA data and review of literature. Am J Sports Med 23(6):694–701

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Cameron M, Buchgraber A, Passler H, Vogt M, Thonar E, Fu F, Evans CH (1997) The natural history of the anterior cruciate ligament-deficient knee. Changes in synovial fluid cytokine and keratan sulfate concentrations. Am J Sports Med 25(6):751–754

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Lohmander LS, Roos H, Dahlberg L, Hoerrner LA, Lark MW (1994) Temporal patterns of stromelysin-1, tissue inhibitor, and proteoglycan fragments in human knee joint fluid after injury to the cruciate ligament or meniscus. J Orthop Res 12(1):21–28

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Valdes AM, Van Oene M, Hart DJ, Surdulescu GL, Loughlin J, Doherty M, Spector TD (2006) Reproducible genetic associations between candidate genes and clinical knee osteoarthritis in men and women. Arthritis Rheum 54:533–539

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Loughlin J (2005) Polymorphism in signal transduction is a major route through which osteoarthritis susceptibility is acting. Curr Opin Rheumatol 17:629–633

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    Valdes AM, Loughlin J, Oene MV, Chapman K, Surdulescu GL, Doherty M, Spector TD (2007) Sex and ethnic differences in the association of ASPN, CALM1, COL2A1, COMP, and FRZB with genetic susceptibility to osteoarthritis of the knee. Arthritis Rheum 56:137–146

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    Carrington JL (2005) Aging bone and cartilage: Cross-cutting issues. Biochem Biophys Res Commun 328:700–708

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Verzijl N, Bank RA, TeKoppele JM, DeGroot J (2003) AGEing and osteoarthritis: A different perspective. Curr Opin Rheumatol 15:616–622

    PubMed  Article  Google Scholar 

  62. 62.

    Martin JA, Brown TD, Heiner AD, Buckwalter JD (2004) Chondrocyte senescence, joint loading and osteoarthritis. Clin Orthop Relat Res 427:S96–S103

    PubMed  Article  Google Scholar 

  63. 63.

    Dudhia J (2005) Aggrecan, aging and assembly in articular cartilage. Cell Mol Life Sci 62:2241–2256

    CAS  PubMed  Article  Google Scholar 

  64. 64.

    Aigner T, Haag J, Martin J, Buckwalter J (2007) Osteoarthritis: aging of matrix and cells—going for a remedy. Curr Drug Targets 8:325–331

    CAS  PubMed  Article  Google Scholar 

  65. 65.

    Cawston TE, Wilson AJ (2006) Understanding the role of tissue degrading enzymes and their inhibitors in development and disease. Best Pract Res Clin Rheumatol 20:983–1002

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Plaas A, Osborn B, Yoshihara Y, Bai Y, Sandy JD (2007) Aggrecanolysis in human osteoarthritis: confocal localization and biochemical characterization of ADAMTS5-hyaluronan complexes in articular cartilages. Osteoarthritis Cartilage 15:719–734

    CAS  PubMed  Article  Google Scholar 

  67. 67.

    Poole AR, Abramson SB (2007) Etiopathogenesis of osteoarthritis. In: Moskowitz RW, Altman RW, Hochberg MC, Goldberg VM (eds) Osteoarthritis: diagnosis and medical/surgical management, 4th edn. Lippincott Williams and Wilkins, Philadelphia, pp 27–49

    Google Scholar 

  68. 68.

    Felson DT (2006) Clinical practice. Osteoarthritis of the knee. N Engl J Med 354:841–848

    CAS  PubMed  Article  Google Scholar 

  69. 69.

    Tetlow LC, Adlam DJ, Woolley DE (2001) Matrix metalloproteinase and proinflammatory cytokine production by chondrocytes of human osteoarthritic cartilage. Arthritis Rheum 44:585–594

    CAS  PubMed  Article  Google Scholar 

  70. 70.

    Wu W et al (2002) Sites of collagenase cleavage and denaturation of type II collagen in aging and osteoarthritic articular cartilage and their relationship to the distribution of MMP-1 and MMPS-13. Arthritis Rheum 46:2087–2094

    CAS  PubMed  Article  Google Scholar 

  71. 71.

    Goldring MB, Berenbaum F (2004) The regulation of chondrocyte function by proinflammatory mediators: prostaglandins and nitric oxide. Clin Orthop 427:S37–S46

    PubMed  Article  Google Scholar 

  72. 72.

    Nuti E, Visse R, Nagase H, Rossello A (2009) N-O-isopropyl sulfonamido-based hydroxamates: design, synthesis and biological evaluation of selective matrix metalloproteinase-13 inhibitors as potential therapeutic agents for OA. J Med Chem 52:4757–4773

    CAS  PubMed  Article  Google Scholar 

  73. 73.

    Sandy JD (2006) A contentious issue finds some clarity: on the independent and complementary roles of aggrecanase activity and MMP activity in human joint aggrecanolysis. Osteoarthritis Cartilage 14:95–100

    CAS  PubMed  Article  Google Scholar 

  74. 74.

    Tortorella MD, Malfait AM, Deccico C et al (2001) The role of ADAM-TS4 (aggrecanase-1) and ADAM-TS5 (Aggrecanase-2) in a model of cartilage degradation. Osteoarthritis Cartilage 9:532–552

    Article  Google Scholar 

  75. 75.

    Caterson B, Flannery CR, Hughes CE et al (2000) Mechanisms involved in cartilage proteoglycan catabolism. Matrix Biol 19:333–344

    CAS  PubMed  Article  Google Scholar 

  76. 76.

    Bondeson J, Wainwrght S, Hughes C et al (2008) The regulation of the ADAMTS4 and ADAMTS5 aggracanases in osteoarthritis: a review. Clin Exp Rheumatol 26:139–145

    CAS  PubMed  Google Scholar 

  77. 77.

    Goldring SR, Goldring MB (2004) The role of cytokines in cartilage matrix degeneration in osteoarthritis. Clin Orthop 423:S27–S36

    Article  Google Scholar 

  78. 78.

    Ilic MZ, East CJ, Rogerson FM et al (2007) Distinguishing aggrecan loss from aggrecan proteolysis in ADAMTS-4 and ADAMTS-5 single and double deficient mice. J Biol Chem 282:37420–37428

    CAS  PubMed  Article  Google Scholar 

  79. 79.

    Nagase H, Brew K (2003) Designing TIMP (tissue inhibitor of metalloproteinases) variants that are selective metalloproteinase inhibitors. Biochem Soc Symp 70:201–212

    CAS  PubMed  Article  Google Scholar 

  80. 80.

    Tiku ML, Liesch JB, Roberston FM (1990) Production of hydrogen peroxide by rabbit articular chondrocytes. J Immunol 145:690–696

    CAS  PubMed  Google Scholar 

  81. 81.

    Henrotin Y, Deby-Dupont G, Deby C, De Bruyn M, Lamy M, Franchimont P (1993) Production of active oxygen species by isolated human chondrocytes. Br J Rheumatol 32:562–567

    CAS  PubMed  Article  Google Scholar 

  82. 82.

    Hayashi T, Abe E, Yamate T, Taguchi Y, Jasin HE (1997) Nitric oxide production by superficial and deep articular chondrocytes. Arthritis Rheum 40:261–269

    CAS  PubMed  Article  Google Scholar 

  83. 83.

    Situnayake RD, Thurnham DI, Kootathep S, Chirico S, Lunec J, Davis M et al (1992) Chain breaking antioxidant status rheumatoid arthritis: clinical and laboratory correlates. Ann Rheum Dis 50:81–86

    Article  Google Scholar 

  84. 84.

    Spreng D, Sigrist N, Schweighauser A, Busato A, Schawalder P (2001) Endogenous nitric oxide in canine osteoarthritis: detection in urine, serum, and synovial fluid specimens. Vet Surg 30:191–199

    CAS  PubMed  Article  Google Scholar 

  85. 85.

    Kaur H, Halliwell B (1994) Aromatic hydroxylation of phenylalanine as an assay for hydroxyl radical. Measurement of hydroxyl radical formation from ozone and in blood from premature babies using improved HPLC methodology. Anal Biochem 220:11–15

    CAS  PubMed  Article  Google Scholar 

  86. 86.

    Henrotin Y, Deberg M, Christgau S, Henriksen D, Seidel L, Reginster J-Y (2002) Type II collagen derived fragment (Coll2-1) is a new marker predictive of osteoarthritic progression. Osteoporos Int 13:17

    Google Scholar 

  87. 87.

    Uesugi M, Yoshida K, Jasin HE (2000) Inflammatory properties of IgG modified by oxygen radicals and peroxynitrite. J Immunol 165:6532–6537

    CAS  PubMed  Article  Google Scholar 

  88. 88.

    Pelletier JP, Lascau-Coman V, Jovanovic D, Connor JR et al (1999) Selective inhibition of inducible nitric oxide synthase in experimental osteoarthritis is associated with reduction in tissue levels of catabolic factors. J Rheumatol 26:2002–2014

    CAS  PubMed  Google Scholar 

  89. 89.

    Shabani F, McNeil J, Tippett L (1998) The oxidative inactivation of tissue inhibitor of metalloproteinases-1 (TIMP-1) by hypochlorous acid (HOCl) is suppressed by anti-rheumatic drugs. Free Radic Res 28:115–123

    CAS  PubMed  Article  Google Scholar 

  90. 90.

    Sasaki K, Hattori T, Takahashi K, Inoue H, Takigawa M (1998) Nitric oxide mediates interleukin-1- induced gene expression of matrix metalloproteinases and basic fibroblast growth factor in cultured rabbit articular chondrocytes. J Biochem 123:431–439

    CAS  PubMed  Article  Google Scholar 

  91. 91.

    Amin AR, Di Cesare PE, Vyas P, Attur M, Tzeng E, Billiar TR et al (1995) The expression and regulation of nitric oxide synthase in human osteoarthritis-affected chondrocytes: evidence for up-regulated neuronal nitric oxide synthase. J Exp Med 182:2097–2210

    CAS  PubMed  Article  Google Scholar 

  92. 92.

    Taskiran D, Stefanovic-Racic M, Georgescu H, Evans C (1994) Nitric oxide mediates suppression of cartilage proteoglycan synthesis by interleukin-1. Biochem Biophys Res Commun 200:142–148

    CAS  PubMed  Article  Google Scholar 

  93. 93.

    Ridnour LA, Windhausen AN, Isenberg JS, Yeung N, Thomas DD, Vitek MP et al (2007) Nitric oxide regulates matrix metalloproteinase-9 activity by guanylylcyclase- dependent and -independent pathways. Proc Natl Acad Sci USA 104:16898–16903

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  94. 94.

    Wu GJ, Chen TG, Chang HC, Chiu WT, Chang CC, Chen RM (2007) Nitric oxide from both exogenous and endogenous sources activates mitochondria-dependent events and induces insults to human chondrocytes. J Cell Biochem 101:1520–1531

    CAS  PubMed  Article  Google Scholar 

  95. 95.

    Maneiro E, Lopez-Armada MJ, de Andres MC, Carames B, Martin MA, Bonilla A et al (2005) Effect of nitric oxide on mitochondrial respiratory activity of human articular chondrocytes. Ann Rheum Dis 64:388–395

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  96. 96.

    Kurz B, Lemke A, Kehn M et al (2004) Influence of tissue maturation and antioxidants on the apoptotic response of articular cartilage after injurious compression. Arthritis Rheum 50:123–130

    CAS  PubMed  Article  Google Scholar 

  97. 97.

    Green DM, Noble PC, Ahuero JS, Birdsall HH (2006) Cellular events leading to chondrocyte death after cartilage impact injury. Arthritis Rheum 54:1509–1517

    CAS  PubMed  Article  Google Scholar 

  98. 98.

    Healy ZR, Lee NH, Gao X et al (2005) Divergent responses of chondrocytes and endothelial cells to shear stress: crosstalk among COX-2, the phase 2 response, and apoptosis. Proc Natl Acad Sci USA 102:14010–14015

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  99. 99.

    Polzer K, Schett G, Zwerina J (2007) The lonely death: chondrocyte apoptosis in TNF-induced arthritis. Autoimmunity 40:333–336

    CAS  PubMed  Article  Google Scholar 

  100. 100.

    Roach HI, Aigner T, Kouri JB (2004) Chondroptosis: a variant of apoptotic cell death in chondrocytes? Apoptosis 9:265–277

    CAS  PubMed  Article  Google Scholar 

  101. 101.

    Bohensky J, Shapiro IM, Leshinsky S et al (2007) HIF-1 regulation of chondrocyte apoptosis: induction of the autophagic pathway. Autophagy 3:207–214

    CAS  PubMed  Article  Google Scholar 

  102. 102.

    Bohensky J, Shapiro IM, Leshinsky S et al (2007) PIM-2 is an independent regulator of chondrocyte survival and autophagy in the epiphyseal growth plate. J Cell Physiol 213:246–251

    CAS  PubMed  Article  Google Scholar 

  103. 103.

    D’Lima D, Hermida J, Hashimoto S et al (2006) Caspase inhibitors reduce severity of cartilage lesions in experimental osteoarthritis. Arthritis Rheum 54:1814–1821

    PubMed  Article  CAS  Google Scholar 

  104. 104.

    Dang AC, Warren AP, Kim HT (2006) Beneficial effects of intra-articular caspase inhibition therapy following osteochondral injury. Osteoarthritis Cartilage 14:526–532

    CAS  PubMed  Article  Google Scholar 

  105. 105.

    Nofal GA, Knudson CB (2002) Latrunculin and cytochalasin decrease chondrocyte matrix retention. J Histochem Cytochem 50:1313–1324

    CAS  PubMed  Article  Google Scholar 

  106. 106.

    Jansen HW, Bornstein P (1974) Effects of antimicrotubular agents on glycosaminoglycan synthesis and secretion by embryonic chick cartilage and chondrocytes. Biochim Biophys Acta 362:150–159

    CAS  PubMed  Article  Google Scholar 

  107. 107.

    Capin-Gutierrez N, Talamas-Rohana P, Lavalle-Montalvo C, Kouri JB (2004) Cytoskeleton disruption in chondrocytes from a rat osteoarthrosic (OA)-induced model: its potential role in OA pathogenesis. Histol Histopathol 19:1125–1132

    CAS  PubMed  Google Scholar 

  108. 108.

    Holloway I, Kayser M, Lee DA, Bader DL, Bentley G, Knight MM (2004) Increased presence of cells with multiple elongated processes in osteoarthritic femoral head cartilage. Osteoarthr Cartil 12:17–24

    CAS  PubMed  Article  Google Scholar 

  109. 109.

    Lambrecht S, Verbruggen G, Verdonk PC, Elewaut D, Deforce D (2008) Differential proteome analysis of normal and osteoarthritic chondrocytes reveals distortion of vimentin network in osteoarthritis. Osteoarthr Cartil 16:163–173

    CAS  PubMed  Article  Google Scholar 

  110. 110.

    Ayral X, Dougados M, Listrat V, Bonvarlet J-P, Simonnet J, Amor B (1996) Arthoscopic evaluation of chondropathy in osteoarthritis of the knee. J Rheumatol 23:698–706

    CAS  PubMed  Google Scholar 

  111. 111.

    Jurvelin J, Kiviranta I, Tammi M, Helminen HJ (1986) Softening of canine articular cartilage after immobilization of the knee joint. Clin Orthop Relat Res 207:246–252

    PubMed  Google Scholar 

  112. 112.

    Mc Adams T, Mithoefer K, Scopp JM, Mandelbaum BR (2010) Articular cartilage injury in athlete. Cartilage 1:165

    Article  Google Scholar 

  113. 113.

    Cicuttini F, Ding C, Wluka A et al (2005) Association of cartilage defects with loss of knee cartilage in healthy, middle-age adults: a prospective study. Arthritis Rheum 52:2033–2039

    PubMed  Article  Google Scholar 

  114. 114.

    Bruyere O, Genant H, Kothari M et al (2007) Longitudinal study of magnetic resonance imaging and standard X-rays to assess disease progression in osteoarthritis. Osteoarthritis Cartilage 15:98–103

    CAS  PubMed  Article  Google Scholar 

  115. 115.

    Adams JG, McAlindon T, Dimasi M et al (1999) Contribution of meniscal extrusion and cartilage loss to joint space narrowing in osteoarthritis. Clin Radiol 54:502–506

    CAS  PubMed  Article  Google Scholar 

  116. 116.

    Yoshioka H et al (2004) MRI of articular cartilage of the knee:comparison between fat-suppressed three-dimensional SPGR imaging, fat-suppressed FSE imaging, and fat-suppressed three-dimensional DEFT imaging, and correlation with arthroscopy. J Magn Reson Imaging 20:857–864

    PubMed  Article  Google Scholar 

  117. 117.

    Trattnig S, Mlynarik V, Breitenseher M, Huber M, Zembsch A, Rand T, Imhof H (1999) MRI visualization of proteoglycan depletion in articular cartilage via intravenous administration of Gd-DTPA. Magn Reson Imaging 17:577–583

    CAS  PubMed  Article  Google Scholar 

  118. 118.

    Bashir A, Gray ML, Hartke J, Burstein D (1999) Non destructive imaging of human cartilage glycosaminoglycan concentration by MRI. Magn Reson Med 41:857–865

    CAS  PubMed  Article  Google Scholar 

  119. 119.

    Williams A, Sharma L, Prasad PV, Burstein D (2005) Delayed gadolinium-enhanced magnetic resonance imaging of cartilage in knee osteoarthritis: findings at different radiographic stages of disease and relationship to malalignment. Arthritis Rheum 52:3528–3535

    CAS  PubMed  Article  Google Scholar 

  120. 120.

    Woertler K, Buerger H, Moeller J, Rummeny EJ (2004) Patellar articular cartilage lesions: in vitro MR imaging evaluation after placement in gadopentetate dimeglumine solution. Radiology 230:768–773

    PubMed  Article  Google Scholar 

  121. 121.

    Liess C, Lusse S, Karger N, Heller M, Gluer CC (2002) Detection of changes in cartilage water content using MRI T2-mapping in vivo. Osteoarthr Cartil 10:907–913

    CAS  PubMed  Article  Google Scholar 

  122. 122.

    Regatte RR, Akella SV, Wheaton AJ, Lech G, Borthakur A, Kneeland JB, Reddy R (2004) 3D-T1rho-relaxation mapping of articular cartilage: in vivo assessment of early degenerative changes in symptomatic osteoarthritic subjects. Acad Radiol 11:741–749

    PubMed  Google Scholar 

  123. 123.

    Raynauld JP, Pelletier JP (2005) Long term evaluation of disease progression through the quantitative magnetic resonance imaging of symptomatic knee OA patients: correlation with clinical symptoms and radiographic changes. Arthritis Res Ther 8:R21

    PubMed Central  PubMed  Article  Google Scholar 

  124. 124.

    Eckstein F, Heudorfer L, Faber SC, Burgkart R, Englmeier KH, Reiser M (2002) Long-term and resegmentation precision of quantitative cartilage MR imaging (qMRI). Osteoarthr Cartil 10:922–928

    CAS  PubMed  Article  Google Scholar 

  125. 125.

    Burgkart R, Glaser C, Hyhlik-Durr A, Englmeier KH, Reiser M, Eckstein F (2001) Magnetic resonance imaging-based assessment of cartilage loss in severe osteoarthritis: accuracy, precision, and diagnostic value. Arthritis Rheum 44:2072–2077

    CAS  PubMed  Article  Google Scholar 

  126. 126.

    Kempson GE, Muir H, Swanson SAV, Freeman MAR (1970) Correlations between stiffness and chemical constituents of cartilage on the human femoral head. Biochim Biophys Acta 215:70–77

    CAS  PubMed  Article  Google Scholar 

  127. 127.

    Armstrong CG, Mow VC (1982) Variations in the intrinsic mechanical properties of human articular cartilage with age, degeneration and water content. J Bone Joint Surg 64-A:88–94

    Google Scholar 

  128. 128.

    Harkness RD (1968) Mechanical properties of collagenous tissues. In: Gould BS (ed) Biology of collagen. Raven Press, London, pp 247–310

    Google Scholar 

  129. 129.

    Kempson GE, Muir H, Pollard C, Tuke M (1973) The tensile properties of the cartilage of human femoral condyles related to the content of collagen and glycosaminoglycans. Biochim Biophys Acta 297:456–472

    CAS  PubMed  Article  Google Scholar 

  130. 130.

    McDevitt CA, Muir H (1976) Biochemical changes in the cartilage of the knee joint in experimental and natural osteoarthritis in the dog. J Bone Joint Surg 58-B:94–101

    Google Scholar 

  131. 131.

    Lyyra T, Jurvelin J, Pitkänen P, Väätäinen U, Kiviranta I (1995) Indentation instrument for the measurement of cartilage stiffness under arthroscopic control. Med Eng Phys 17(5):395–399

    CAS  PubMed  Article  Google Scholar 

  132. 132.

    Adler RS, Dedrick DK, Laing TJ, Chiang EH, Meyer CR, Bland PH, Rubin JM (1992) Quantitative assessment of cartilage surface roughness in osteoarthritis using high frequency ultrasound. Ultrasound Med Biol 18:51–58

    CAS  PubMed  Article  Google Scholar 

  133. 133.

    Cherin E, Saied A, Laugier P, Netter P, Berger G (1998) Evaluation of acoustical parameter sensitivity to age-related and osteoarthritic changes in articular cartilage using 50-MHz ultrasound. Ultrasound Med Biol 24:341–354

    CAS  PubMed  Article  Google Scholar 

  134. 134.

    Cherin E, Saied A, Pellaumail B, Loeuille D, Laugier P, Gillet P, Netter P, Berger G (2001) Assessment of rat articular cartilage maturation using 50-MHz quantitative ultrasonography. Osteoarthritis Cartilage 9:178–186

    CAS  PubMed  Article  Google Scholar 

  135. 135.

    Chiang EH, Adler RS, Meyer CR, Rubin JM, Dedrick DK, Laing TJ (1994) Quantitative assessment of surface roughness using backscattered ultrasound: the effects of finite surface curvature. Ultrasound Med Biol 20:123–135

    CAS  PubMed  Article  Google Scholar 

  136. 136.

    Disler DG, Raymond E, May DA, Wayne JS, McCauley TR (2000) Articular cartilage defects: in vitro evaluation of accuracy and interobserver reliability for detection and grading with US. Radiology 215:846–851

    CAS  PubMed  Article  Google Scholar 

  137. 137.

    Nieminen HJ, Töyräs J, Rieppo J, Nieminen MT, Hirvonen J, Korhonen R, Jurvelin JS (2002) Real-time ultrasound analysis of articular cartilage degradation in vitro. Ultrasound Med Biol 28(4):519–525

    PubMed  Article  Google Scholar 

  138. 138.

    Laasanen MS, Töyras J, Hirvonen J, Saarakkala S, Korhonen RK, Nieminen MT, Kiviranta I, Jurvelin JS (2002) Novel mechano-acoustic technique and instrument for diagnosis of cartilage degeneration. Physiol Meas 23:491–503

    CAS  PubMed  Article  Google Scholar 

  139. 139.

    Tajana MS, Murena L, Valli F, Passi A, Grassi FA (2009) Correlations between biochemical markers in the synovial fluid and severity of rotator cuff disease. Musculoskelet Surg 93(1):41–48

    Article  Google Scholar 

  140. 140.

    Downs JT, Lane CL, Nestor NB et al (2001) Analysis of collagenase-cleavage of type II collagen using a neoepitope ELISA. J Immunol Methods 247:25–34

    CAS  PubMed  Article  Google Scholar 

  141. 141.

    Christgau S, Garnero P, Fledelius C et al (2001) Collagen type II ctelopeptide fragments as an index of cartilage degradation. Bone 29:209–215

    CAS  PubMed  Article  Google Scholar 

  142. 142.

    Atley L, Sharma L, Clemens JD et al (2000) The collagen II CTx degradation marker is generated by collagenase 3 and in urine reflects disease burden in knee OA patients. Trans Orthop Res Soc 25:168

    Google Scholar 

  143. 143.

    Poole AR, Ionescu M, Fitzcharles MA, Billinghurst RC (2004) The assessment of cartilage degradation in vivo: development of an immunoassay for the measurement in body fluids of type II collagen cleaved by collagenases. J Immunol Methods 294:145–153

    CAS  PubMed  Article  Google Scholar 

  144. 144.

    Billinghurst RC, Dahlberg L, Ionescu M et al (1997) Enhanced cleavage of type II collagen by collagenases in osteoarthritic articular cartilage. J Clin Invest 99:1534–1545

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  145. 145.

    Deberg M, Labasse A, Christgau S et al (2005) New serum biochemical markers (Coll 2-1 and Coll 2-1 NO2) for studying oxidative-related type II collagen network degradation in patients with osteoarthritis and rheumatoid arthritis. Osteoarthr Cartil 13:258–265

    PubMed  Article  Google Scholar 

  146. 146.

    Charni N, Juillet F, Garnero P (2005) Urinary type II collagen helical peptide (HELIX-II) as a new biochemical marker of cartilage degradation in patients with osteoarthritis and rheumatoid arthritis. Arthritis Rheum 52:1081–1090

    CAS  PubMed  Article  Google Scholar 

  147. 147.

    Garnero P, Ayral X, Rousseau JC et al (2002) Uncoupling of type II collagen sythesis and degradation predicts progression of joint damage in patients with knee osteoarthritis. Arthritis Rheum 46:2613–2624

    CAS  PubMed  Article  Google Scholar 

  148. 148.

    Ding C, Garnero P, Cicuttini F, Scott F, Cooley H, Jones G (2005) Knee cartilage defects: association with early radiographic osteoarthritis decreased cartilage volume, increased joint surface area and type II collagen breakdown. Osteoarthr Cartil 13:198–205

    PubMed  Article  Google Scholar 

  149. 149.

    Garnero P, Conrozier T, Juillet F et al (2005) Urinary type II collagen helical peptide (HELIX-II) levels are increased in patients with a rapidly destructive hip osteoarthritis. Ann Rheum Dis 64(Suppl 3):117

    Google Scholar 

  150. 150.

    Glasson SS, Askew R, Sheppard B et al (2005) Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature 434:644–648

    CAS  PubMed  Article  Google Scholar 

  151. 151.

    Xiang Y, Sekine T, Nakamura H et al (2004) Proteomic surveillance of autoimmunity in osteoarthritis: identification of triosephosphate isomerase as an autoantigen in patients with osteoarthritis. Arthritis Rheum 50:1511–1521

    CAS  PubMed  Article  Google Scholar 

  152. 152.

    Senolt L, Braun M, Olejarova M et al (2005) Increased pentosidine, an advanced glycation end product, in serum and synovial fluid from patients with knee osteoarthritis and its relation with cartilage oligomeric matrix protein. Ann Rheum Dis 64:886–890

    PubMed Central  CAS  PubMed  Article  Google Scholar 

Download references

Conflict of interest

No funding had been received by the authors. No potential sources of conflict of interest.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to A. Speziali or G. Cerulli.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Speziali, A., Delcogliano, M., Tei, M. et al. Chondropenia: current concept review. Musculoskelet Surg 99, 189–200 (2015). https://doi.org/10.1007/s12306-015-0377-9

Download citation

Keywords

  • Chondropenia
  • Early osteoarthritis
  • Cartilage degeneration
  • Matrix metalloproteases