Skip to main content
Log in

Assimiliating an Associative Trait: from Eco-Physiology to Epigenetics

  • Original Paper
  • Published:
Biosemiotics Aims and scope Submit manuscript

Abstract

The possible evolutionary significance of epigenetic memory and codes is a key problem for extended evolutionary synthesis and biosemiotics. In this paper, some less known original works are reviewed which highlight theoretical parallels between current evolutionary epigenetics, on the one hand, and its predecessors in the eco-physiology of higher nervous activity, on the other. Recently, these areas have begun to converge, with first evidence now indicating the possibility of transgenerational epigenetic inheritance of conditional associations in the mammalian nervous system, and related findings in other taxa. This can serve as an interesting example of evolutionary code-making, where the molecular mechanisms underlying arbitrary associations between stimuli involve lasting changes in gene expression that may be transmitted epigenetically across generations, and which in some cases could be further assimilated into the genome over subsequent evolution. Although preliminary, such epigenetic scenarios would also offer an interesting, if so far overlooked parallel to earlier research carried out by one of I.P. Pavlov’s leading students, acad. P.K. Anokhin, and his colleagues, but also by eminent eco-physiologists of the time, several of whom offered arguments for the possibility of unconditional reflexes representing evolutionarily later, specialized, and reduced forms of associative reflexes, from which they may be derived. Although discarded under the growing dominance of modern synthesis, these early epigenetic investigations may deserve renewed attention in the modern context, and if further confirmed, could open essentially new perspectives on the morphofunctional evolution of the nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Cf. also Graham (2016), for historical and social contexts involved.

  2. In the latter case, the term “Baldwin effect” is often used, and more specific in emphasizing the initial behavioral component as the leading one in subsequent selection and retention (Baldwin 1896; Diogo 2017). However, there seems to be some controversy in the literature over whether the Baldwin effect would imply the phenotypic fixation and stabilization of a trait, i.e. its genetic assimilation, or should instead be restricted to those cases of genetic accommodation where more plastic phenotypes and responses are instead favored (Crispo 2007) – to be possibly followed by a separate process of trait fixation (through epigenetic mechanisms, or possibly, stochastic mutations in the same or competing traits). Here, the main interest lies with transgenerational epigenetics and genetic assimilation, thus not discussing the Baldwin effect as understood by Crispo (2007); however, the concepts remain variously employed and understood in their specifics.

  3. As the authors show in detail (Ginsburg and Jablonka 2010), the function of epigenetic control and silencing mechanisms, such as DNA methylation and ncRNA-mediated silencing in suppressing transposition, the growing evidence for the involvement of TEs in generating new genes, regulators, and new types of ncRNAs, and the sensitivity of the epigenetic mechanisms to stress, together support the conclusion that evolutionary diversification may be rapidly accelerated by stressful conditions (Ginsburg and Jablonka 2010).

  4. Interestingly, spectrometric analysis of this complex natural stimulus showed that it consists of sounds ranging from 0,1–8 kHz. However, the effective frequencies evoking the elimentary reaction (0,12–1,2 kHz) lay in the foremost part of the maternal “kr-r-r-r“sound spectrum, showing it produces an anticipatory and heterochronic receptor response in the nestlings (i.e., a temporally segmented signaling response) (Milyagin 1954).

  5. It’s important to note that this was not an artificial selection experiment, but an evolutionary behavioral one, where the learning constraints biased in favor of particular association types emerged spontaneously across generations, in response to the correspondingly structured environmetal correlations in the lineages. Although the study used only behavioral, not (epi)genomic or neurobiological measures, it nonetheless demonstrates how basic and longstanding problems can be tractable via relatively simple and accessible experimental designs. Indeed, such evolution of learning ability could probably seen as a fundamental, if much overlooked aspect of the evolution of development more generally (or developmental evolution), as approached in the frameworks of evo-devo and EES. Related problems are briefly mentioned below and in the discussion, also with respect to the limitations of learning theory.

References

  • Ader, R. (2003). Conditioned immunomodulation: Research needs and directions. Brain, Behavior, and Immunity 17(1): 51–57.

  • Alaux, C., Sinha, S., Hasadsri, L., Hunt, et al. (2009). Honey bee aggression supports a link between gene regulation and behavioral evolution. Proceedings of the National Academy of Sciences, 106(36), 15400–15405.

    Article  Google Scholar 

  • Anokhin, P. K. (1964). Systemogenesis as a general regulator of brain development. In: Progress in Brain Research, Vol. 9, pp. 54–86. Elsevier.

  • Anokhin, P. K. (1974). Biology and neurophysiology of the conditioned reflex and its role in adaptive behavior. Oxford: Pergamon Press.

  • Anokhin, P. K. (1975) [1949]. Essential problems in the study of higher nervous activity. In: Essays in the physiology of functional systems. (pp. 108–226). Moscow: Medizina. [In Russian].

  • Anokhin, P. K. (1978 [1962]). Anticipatory reflection of reality. In Konstantinov, F. B., Lomov, B. F., Schvyrkov, V. B. (Eds.), Philosophical aspects of the functional systems theory (pp. 7–26). Moscow: Nauka.

  • Anokhin, K. V. (1997). Molecular-genetic preconditions for the systemogenesis of behavioral acts. In K. Sudakov (Ed.), Theory of Systemogenesis (pp. 215–276). Russian Academy of Medical Sciences: Moscow.

    Google Scholar 

  • Anokhin, K. V. (2010). The brain and memory: The biology of traces of time past. Herald of the Russian Academy of Sciences, 80(3), 237–242.

    Article  Google Scholar 

  • Anokhin, K. V., & Sudakov, K. V. (2003). Genome of brain neurons in organization of systemic mechanisms of behavior. Bulletin of Experimental Biology and Medicine, 135(2), 107–113.

    Article  PubMed  CAS  Google Scholar 

  • Ardiel, E. L., & Rankin, C. H. (2010). An elegant mind: Learning and memory in Caenorhabditis elegans. Learning & Memory, 17(4), 191–201.

    Article  CAS  Google Scholar 

  • Arnellos, A., Bruni, L. E., El-Hani, C. N., & Collier, J. (2012). Anticipatory functions, digital-analog forms and biosemiotics: Integrating the tools to model information and normativity in autonomous biological agents. Biosemiotics, 5(3), 331–367.

    Article  Google Scholar 

  • Badyaev, A. V. (2005). Stress-induced variation in evolution: From behavioural plasticity to genetic assimilation. Proceedings of the Royal Society of London B: Biological Sciences, 272(1566), 877–886.

    Article  Google Scholar 

  • Bagnères, A. G., Hossaert-McKey, M. (Eds.). (2016). Chemical ecology. John Wiley & Sons.

  • Baldwin, J. M. (1896). A new factor in evolution. The American Naturalist, 30(354), 441–451.

    Article  Google Scholar 

  • Balykin, M. V., Ibraimova, G. I., Kozyreva, T. V., Krivoshchekov, S. G., Trufakin, V. A., & Shoshenko, K. A. (2003). On the centennial of the birth of Abram Donovich Slonim. Human Physiology, 29(6), 763–764.

    Article  Google Scholar 

  • Barbieri, M. (2015). Code biology. A new science of life. Springer International Publishing.

  • Barry, R. J. (2012). Habituation and sensitization. In Encyclopedia of the Sciences of Learning (pp. 1413–1414). Springer US.

  • Baskin, L. M. (1976). Behavior of ungulates. Moscow: Nauka [In Russian].

    Google Scholar 

  • Bateson, P. (2006). The adaptability driver: Links between behavior and evolution. Biological Theory, 1(4), 342–345.

    Article  Google Scholar 

  • Bateson, P. (2009). The value of truly comparative and holistic approaches in the neurosciences. In: Oxford Handbook of Developmental Behavioral Neuroscience, (Eds., Blumberg, Mark S., Freeman, John H., Robinson, Scott R., pp. 7–11.

  • Bell, A. M., & Robinson, G. E. (2011). Behavior and the dynamic genome. Science, 332(6034), 1161–1162.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Belyaev, D. K. (1979). Destabilizing selection as a factor in domestication. Journal of Heredity, 70(5), 301–308.

    Article  PubMed  CAS  Google Scholar 

  • Berthon, K. (2015). How do native species respond to invaders? Mechanistic and trait-based perspectives. Biological Invasions, 17(8), 2199–2211.

    Article  Google Scholar 

  • Bertossa, R. C. (2011). Introduction. Morphology and behaviour: functional links in development and evolution. Philosophical Transactions of the Royal Society B, 366, 2056–2068.

    Article  Google Scholar 

  • Biryukov, D. A. (1948). Conditional reflexes. Materials for Comparative Physiology, Vol. 14. Voronezh: Transactions of Voronezh State Medical Institute. [In Russian].

  • Biryukov, D. A. (Ed.). (1955). Questions on the comparative physiology and pathology of higher nervous activity. Leningrad: Medgiz [In Russian].

    Google Scholar 

  • Biryukov, D. A. (1960). Ecological Physiology of Higher Nervous Activity. (Some Questions on the Biological Foundations of Medical Theory). Leningrad: Medgiz [In Russian].

    Google Scholar 

  • Biryukov, D. A. (1974). In Vasilevsky, N. N. (Ed.), Selected Works. Leningrad: Medizina [In Russian].

  • Bohacek, J., & Mansuy, I. M. (2015). Molecular insights into transgenerational non-genetic inheritance of acquired behaviours. Nature Reviews. Genetics, 16(11), 641–652.

    Article  PubMed  CAS  Google Scholar 

  • Briggs, J. A., Wolvetang, E. J., Mattick, J. S., Rinn, J. L., & Barry, G. (2015). Mechanisms of long non-coding RNAs in mammalian nervous system development, plasticity, disease, and evolution. Neuron, 88(5), 861–877.

  • Bronfman, Z. Z., Ginsburg, S., & Jablonka, E. (2016). The transition to minimal consciousness through the evolution of associative learning. Frontiers in Psychology, 7/1954.

  • Bruni, L. E. (2008). Hierarchical categorical perception in sensing and cognitive processes. Biosemiotics, 1(1), 113.

    Article  Google Scholar 

  • Brunke, S., & Hube, B. (2014). Adaptive prediction as a strategy in microbial infections. PLoS Pathogens, 10(10), e1004356.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Burggren, W. (2016). Epigenetic inheritance and its role in evolutionary biology: Re-evaluation and new perspectives. Biology, 5(2), 24.

    Article  PubMed Central  Google Scholar 

  • Bykov, K. M. (1959). The cerebral cortex and the internal organs. Moscow: Foreign Languages Pub. House.

    Google Scholar 

  • Bykov, K. M., & Slonim, A. D. (1960). Investigations on the complex-Reflectory activity of animals and man in natural living conditions. Moscow, Leningrad: Academy of Science Press USSR.

    Google Scholar 

  • Cabej, N. R. (2011). Epigenetic principles of evolution. London: Elsevier.

    Google Scholar 

  • Caddick, R. A., & Isles, A. R. (2015). Can Environmentally Induced Epigenetic Changes be Trans-Generationally Inherited by Offspring, Resulting in the Expression of Psychological, Behavioural, or Psychiatric Phenotypes? A Systematic Review. Journal of Clinical Epigenetics, 1(1), 1–21.

  • Caller, G., & Brown, C. (2013). Evolutionary responses to invasion: Cane toad sympatric fish show enhanced avoidance learning. PLoS One, 8(1), e54909.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Candolin, U., & Wong, B. B. (2012). Behavioural responses to a changing world: Mechanisms and consequences. In OUP oxford.

    Google Scholar 

  • Cherkashin, A. N., Sheiman, I. M., & Bogorovskaya, G. I. (1967). Conditioned reflexes in planarians and regeneration experiments. Neuroscience Translations, 1(1), 12–14.

  • Corning, W. C. (1966). Retention of a position discrimination after regeneration in planarians. Psychonomic Science, 5(1), 17–18.

  • Costa, F. F. (2008). Non-coding RNAs, epigenetics and complexity. Gene, 410(1), 9–17.

    Article  PubMed  CAS  Google Scholar 

  • Crispo, E. (2007). The Baldwin effect and genetic assimilation: Revisiting two mechanisms of evolutionary change mediated by phenotypic plasticity. Evolution, 61(11), 2469–2479.

    Article  PubMed  Google Scholar 

  • Danchin, É. (2013). Avatars of information: Towards an inclusive evolutionary synthesis. Trends in Ecology & Evolution, 28(6), 351–358.

    Article  Google Scholar 

  • Devanapally, S., Ravikumar, S., & Jose, A. M. (2015). Double-stranded RNA made in C. Elegans neurons can enter the germline and cause transgenerational gene silencing. Proceedings of the National Academy of Sciences, 112(7), 2133–2138.

    Article  CAS  Google Scholar 

  • Dias, B. G., & Ressler, K. J. (2014). Parental olfactory experience influences behavior and neural structure in subsequent generations. Nature Neuroscience, 17(1), 89–96.

    Article  PubMed  CAS  Google Scholar 

  • Dias, B. G., Maddox, S. A., Klengel, T., & Ressler, K. J. (2015). Epigenetic mechanisms underlying learning and the inheritance of learned behaviors. Trends in Neurosciences, 38(2), 96–107.

    Article  PubMed  CAS  Google Scholar 

  • Diogo, R. (2017). Evolution driven by organismal behavior. Cham: Springer International Publishing.

    Book  Google Scholar 

  • Domjan, M. (2000). General process learning theory: Challenges from response and stimulus factors. International Journal of Comparative Psychology, 13(3), 101–118.

    Google Scholar 

  • Domjan, M. (2005). Pavlovian Conditioning: A Functional Perspective. Annual Review of Psychology 56(1): 179–206.

  • Domjan, M., & Galef, B. G. (1983). Biological constraints on instrumental and classical conditioning: Retrospect and prospect. Animal Learning & Behavior, 11(2), 151–161.

    Article  Google Scholar 

  • Dunlap, A. S., & Stephens, D. W. (2014). Experimental evolution of prepared learning. Proceedings of the National Academy of Sciences, 111(32), 11750–11755.

    Article  CAS  Google Scholar 

  • Dworkin, B. R. (1993). Learning and physiological regulation. Chicago: University of Chicago Press.

  • Ehrenreich, I. M., & Pfennig, D. W. (2015). Genetic assimilation: A review of its potential proximate causes and evolutionary consequences. Annals of Botany, 117(5), 769–779.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fanselow, M. S., & Poulos, A. M. (2005). The neuroscience of mammalian associative learning. Annual Review of Psychology, 56, 207–234.

    Article  PubMed  Google Scholar 

  • Favareau, D. (2010). Essential readings in biosemiotics: Anthology and commentary (Vol. 3). Springer Science & Business Media.

  • Foster, S. A., & Sih, A. (2013). Special issue: Behavioural plasticity and evolution. Animal Behaviour, 5(85), 1003.

    Article  Google Scholar 

  • Freddolino, P. L., & Tavazoie, S. (2012). Beyond homeostasis: A predictive-dynamic framework for understanding cellular behavior. Annual Review of Cell and Developmental Biology, 28, 363–384.

    Article  PubMed  CAS  Google Scholar 

  • Frégnac, Y. (2017). Big data and the industrialization of neuroscience: A safe roadmap for understanding the brain? Science, 358(6362), 470–477.

    Article  PubMed  CAS  Google Scholar 

  • Gagliano, M., Vyazovskiy, V. V., et al. (2016). Learning by association in plants. Scientific Reports, 6, 38427.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Galván, A. (2010). Neural plasticity of development and learning. Human Brain Mapping, 31(6), 879–890.

    Article  PubMed  Google Scholar 

  • Gapp, K., Jawaid, A., Sarkies, P., Bohacek, J., Pelczar, P., Prados, J., et al. (2014). Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nature Neuroscience, 17(5), 667.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gilbert, S. F. (1994). Dobzhansky, Waddington and Schmalhausen: Embryology and the modern synthesis. In The evolution of Theodosius Dobzhansky: Essays on his life and thought in Russia and America (pp. 143–154).

    Google Scholar 

  • Gilbert, S. F. (2003a). The morphogenesis of evolutionary developmental biology. International Journal of Developmental Biology, 47(7–8), 467–477.

    PubMed  Google Scholar 

  • Gilbert, S. F. (2003b). The role of predator-induced polyphenism in the evolution of cognition: A Baldwinian speculation. In: Evolution and learning: The Baldwin effect reconsidered. (Ed. Weber, B. H.; Depew, D.J.) (pp. 235–252). Mit Press.

  • Ginsburg, S., & Jablonka, E. (2010). The evolution of associative learning: A factor in the Cambrian explosion. Journal of Theoretical Biology, 266(1), 11–20.

    Article  PubMed  Google Scholar 

  • Gissis, S., & Jablonka, E. (Eds.). (2011). Transformations of Lamarckism: From subtle fluids to molecular biology. Cambridge: MIT press.

  • Graham, L. (2016). Lysenko's ghost. Epigenetics and Russia. Cambridge: Harvard University Press.

    Book  Google Scholar 

  • Greenlees, M. J., Phillips, B. L., & Shine, R. (2010). Adjusting to a toxic invader: Native Australian frogs learn not to prey on cane toads. Behavioral Ecology, 21(5), 966–971.

    Article  Google Scholar 

  • Haralson, J. V., Groff, C. I., & Haralson, S. J. (1975). Classical conditioning in the sea anemone, Cribrina xanthogrammica. Physiology & Behavior, 15(4), 455–460.

    Article  CAS  Google Scholar 

  • Heard, E., & Martienssen, R. A. (2014). Transgenerational epigenetic inheritance: Myths and mechanisms. Cell, 157(1), 95–109.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Heyes, C. (2012). Simple minds: a qualified defence of associative learning. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1603), 2695–2703.

  • Hinde, R. A., & Stevenson-Hinde, J. (Eds.) (1973). Constraints on learning. London, New York: Academic Press.

  • Hofmann, H. A. (2003). Functional genomics of neural and behavioral plasticity. Developmental Neurobiology, 54(1), 272–282.

    Article  CAS  Google Scholar 

  • Hofmeyr, J. H. S. (2017). Basic biological anticipation. In R. Poli (Ed.), Handbook of anticipation: Theoretical and applied aspects of the use of future in decision making (pp. 1–15). Cham: Springer International Publishing.

    Google Scholar 

  • Holliday, R. (2006). Epigenetics: A historical overview. Epigenetics, 1(2), 76–80.

    Article  PubMed  Google Scholar 

  • Hollis, K. L. (1982). Pavlovian conditioning of signal-centered action patterns and autonomic behavior: A biological analysis of function. In Advances in the Study of Behavior (Vol. 12, pp. 1–64). Academic Press.

  • Hollis, K., & Guillette, L. (2015). What associative learning in insects tells us about the evolution of learning and fixed behavior. International Journal of Comparative Psychology, 28, 1–18.

  • Janecka, J., Chowdhary, B., & Murphy, W. (2012). Exploring the correlations between sequence evolution rate and phenotypic divergence across the mammalian tree provides insights into adaptive evolution. Journal of Biosciences, 37(5), 897–909.

    Article  PubMed  Google Scholar 

  • Johnston, T. D. (1981). Contrasting approaches to a theory of learning. Behavioral and Brain Sciences, 4(1), 125–139.

    Article  Google Scholar 

  • Johnston, T. D., & Pietrewicz, A. T. (Eds.). (1985). Issues in the ecological study of learning. London: Lawrence Erlbaum Associates Publishers.

  • Jozefowiez, J. (2012). Associative learning. In: Encyclopedia of the Sciences of Learning, pp. 330–334. Springer US.

  • Khautin, S. N. (1963). Factors in the development of feeding behavior of the muscicapa-hypoleuca squeakers. Bulletin of Experimental Biology and Medicine, 56(4), 1063–1066.

    Google Scholar 

  • Kogan, A. B., & Ratner, I.M. (1964). Some relations between inborn and acquired forms of behavior in Drosophila. In Kreps, E. M. (Ed.), Evolution of functions: Physiological, biochemical, and structural foundations of the evolution of functions. (pp. 76-80). Leningrad, Moscow: Nauka. [In Russian].

  • Kogan, A. B., & Semenovich, A. P. (1955). On the hereditary fixation of conditional reflexes in lower animals. Priroda, 9, 110–111.

    Google Scholar 

  • Kosik, K. S. (2009). MicroRNAs tell an evo–devo story. Nature Reviews Neuroscience, 10(10), 754–759.

    Article  PubMed  CAS  Google Scholar 

  • Kosik, K. S., & Nowakowski, T. (2018). Evolution of new miRNAs and Cerebro-cortical development. Annual Review of Neuroscience, 41, 119–137.

    Article  PubMed  CAS  Google Scholar 

  • Kovach, J. K. (1971). Ethology in the soviet union. Behaviour, 39, 237–265.

    Article  PubMed  CAS  Google Scholar 

  • Krakauer, J. W., Ghazanfar, A. A., Gomez-Marin, ... & Poeppel, D. (2017). Neuroscience needs behavior: correcting a reductionist Bias. Neuron, 93(3), 480–490.

  • Krause, M. A. (2015). Evolutionary perspectives on learning: Conceptual and methodological issues in the study of adaptive specializations. Animal Cognition, 18(4), 807–820.

    Article  PubMed  Google Scholar 

  • Krause, M. A., & Domjan, M. (2017). Ethological and Evolutionary Perspectives on Pavlovian Conditioning. In: APA Handbook of Comparative Psychology. Vol 2. Perception, Learning, and Cognition (Ed., Call, J.), pp. 247–266.

  • Krushinsky, L. V. (1968). Are conditional reflexes heritable? Priroda, 1, 120–123.

    Google Scholar 

  • Kull, K. (2009). Umwelt and modelling. In P. Cobley (Ed.), The Routledge companion to semiotics (pp. 65–78). Routledge: London and New York.

    Google Scholar 

  • Kull, K. (2015). Evolution, choice, and scaffolding: Semiosis is changing its own building. Biosemiotics, 8(2), 223–234.

    Article  Google Scholar 

  • Kull, K., Emmeche, C., & Hoffmeyer, J. (2011). Why biosemiotics? An introduction to our view on the biology of life itself. In C. Emmeche & K. Kull (Eds.), Towards a Semiotic Biology. Life is the Action of Signs (pp. 1–21). London: Imperial College Press.

    Google Scholar 

  • Laland, K., Uller, T., Feldman, M., Sterelny, K., Müller, G. B., Moczek, A., et al. (2014). Does evolutionary theory need a rethink? Nature, 514(7521), 161–164.

    Article  PubMed  CAS  Google Scholar 

  • Laland, K. N., Uller, T., Feldman, M. W., Sterelny, K., Müller, G. B., Moczek, A., ... & Odling-Smee, J. (2015). The extended evolutionary synthesis: its structure, assumptions and predictions. In Proc. R. Soc. B. Vol. 282, No. 1813. The Royal Society.

  • Laurent III, G. S., & Wahlestedt, C. (2007). Noncoding RNAs: couplers of analog and digital information in nervous system function?. Trends in neurosciences, 30(12), 612–621.

  • Leadbeater, E. (2015). What evolves in the evolution of social learning?. Journal of Zoology, 295(1), 4–11.

  • Ledón-Rettig, C. C., Richards, C. L., & Martin, L. B. (2012). Epigenetics for behavioral ecologists. Behavioral Ecology, 24(2), 311–324.

    Article  Google Scholar 

  • Levit, G. S. (2007). The roots of evo-devo in Russia: Is there a characteristic “Russian tradition”? Theory in Biosciences, 126(4), 131–148.

    Article  PubMed  Google Scholar 

  • Levit, G. S., Hossfeld, U., & Olsson, L. (2006). From the “modern synthesis” to cybernetics: Ivan Ivanovich Schmalhausen (1884–1963) and his research program for a synthesis of evolutionary and developmental biology. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 306((2), 89–106.

    Article  Google Scholar 

  • Lyon, P. (2015). The cognitive cell: Bacterial behavior reconsidered. Frontiers in Microbiology, 6, 264.

    Article  PubMed  PubMed Central  Google Scholar 

  • Manteufel, B. P. (1980). Ecology of animal behavior. Moscow: Nauka [In Russian].

    Google Scholar 

  • Marshall, C. R. (2006). Explaining the Cambrian “explosion” of animals. Annual Review of Earth and Planetary Sciences, 34, 355–384.

    Article  CAS  Google Scholar 

  • Mattick, J. S. (2011). RNA Networks as Digital Control Circuits of Nuclear Functions. In: (Ed. Rippe, K.), Genome Organization and Function in the Cell Nucleus. (pp. 353–363). Wiley-VCH Verlag & Co. KGaA.

  • McFarland, D. J. (1973). Stimulus relevance and homeostasis. In R. A. Hinde & J. Stevenson-Hinde (Eds.), Constraints on Learning (pp. 141–155). London, New York: Academic Press.

    Google Scholar 

  • Mesoudi, A., Blanchet, S., Charmantier, A., Danchin, E., et al. (2013). Is non-genetic inheritance just a proximate mechanism? A corroboration of the extended evolutionary synthesis. Biological Theory, 7(3), 189–195.

    Article  Google Scholar 

  • Milyagin, Y. A. (1954). On the decisive role of environmental conditions in the phylogenetic development of alimentary reactions in rook nestlings. In: Collection of Studies by the Moscow Society of Physiologists, Biochemists, and Pharmacologists. Vol 2. pp. 13–24. [In Russian].

  • Milyagin, Y. A. (1957). On the Defining Role of Ecological Factors in the Embryogenesis of Unconditional Reactions. Self-summary of the Dissertation for the degree Doctor of Biol. Sciences. Academy of Medical Sciences, USSR, Moscow. [In Russian].

  • Moczek, A. P. (2007). Developmental capacitance, genetic accommodation, and adaptive evolution. Evolution & Development, 9(3), 299–305.

    Article  Google Scholar 

  • Moczek, A. P., Sultan, S., Foster, S., Ledón-Rettig, C., Dworkin, I., Nijhout, H. F., et al. (2011). The role of developmental plasticity in evolutionary innovation. Proceedings of the Royal Society of London B: Biological Sciences, 278(1719), 2705–2713.

    Article  Google Scholar 

  • Moore, B. R. (2004). The evolution of learning. Biological Reviews, 79(2), 301–335.

    Article  PubMed  Google Scholar 

  • Moray, N., & Connolly, K. (1963). A possible case of genetic assimilation of behaviour. Nature, 199(4891), 358–360.

    Article  Google Scholar 

  • Murphy, R. A., & Honey, R. C. (Eds.). (2016). The Wiley handbook on the cognitive neuroscience of learning. Chichester: John Wiley & Sons.

  • Nadin, M. (Ed.). (2015). Anticipation: Learning from the past. Cham: Springer International Publishing.

  • Nadin, M. (Ed.). (2016). Anticipation across disciplines. Cham: Springer International Publishing.

  • Nadin, M. (Ed.). (2017). Anticipation and medicine. Cham: Springer International Publishing.

  • Neuhof, M., Levin, M., & Rechavi, O. (2016). Vertically- and horizontally-transmitted memories–the fading boundaries between regeneration and inheritance in planaria. Biology open, 5(9), 1177–1188.

  • Noble, D., Jablonka, E., et al. (2014). Evolution evolves: Physiology returns to Centre stage. The Journal of Physiology, 592(11), 2237–2244.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nowlin, D. (2017). Reconstructing Umwelt: A biosemiotic approach to medicine. Master Thesis. University of Tartu, Department of Semiotics. Supervisor: Kalevi Kull, Ph.D. Tartu.

  • Orbeli, L. A. (1961). Problems of Evolutionary Physiology. Collected Works of Leon Abgarovich Orbeli in 5 volumes (Vol. 1). Leningrad: USSR Academy of Sciences Press.

    Google Scholar 

  • Papini, M. R. (2002). Pattern and process in the evolution of learning. Psychological Review, 109(1), 186–201.

    Article  PubMed  Google Scholar 

  • Rando, O. J., & Verstrepen, K. J. (2007). Timescales of genetic and epigenetic inheritance. Cell, 128(4), 655–668.

    Article  PubMed  CAS  Google Scholar 

  • Reader, S. M. (2016). Animal social learning: associations and adaptations. F1000Research, 5: 2120.

  • Remy, J. J. (2010). Stable inheritance of an acquired behavior in Caenorhabditis elegans. Current Biology, 20(20), R877–R878.

    Article  PubMed  CAS  Google Scholar 

  • Remy, J. J., & Hobert, O. (2005). An interneuronal chemoreceptor required for olfactory imprinting in C. elegans. Science, 309(5735), 787–790.

    Article  PubMed  CAS  Google Scholar 

  • Rendall, D., & Di Fiore, A. (2007). Homoplasy, homology, and the perceived special status of behavior in evolution. Journal of Human Evolution, 52(5), 504–521.

    Article  PubMed  Google Scholar 

  • Renn, S. C., & Schumer, M. E. (2013). Genetic accommodation and behavioural evolution: Insights from genomic studies. Animal Behaviour, 85(5), 1012–1022.

    Article  Google Scholar 

  • Rey, O., Danchin, E., Mirouze, M., Loot, C., & Blanchet, S. (2016). Adaptation to global change: A transposable element–epigenetics perspective. Trends in Ecology & Evolution, 31(7), 514–526.

    Article  Google Scholar 

  • Rittschof, C. C., & Robinson, G. E. (2014). Genomics: Moving behavioural ecology beyond the phenotypic gambit. Animal Behaviour, 92, 263–270.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rittschof, C. C., Bukhari, S. A., Sloofman, L. G., Troy, J. M., Caetano-Anollés, D., Cash-Ahmed, A., et al. (2014). Neuromolecular responses to social challenge: Common mechanisms across mouse, stickleback fish, and honey bee. Proceedings of the National Academy of Sciences, 111(50), 17929–17934.

    Article  CAS  Google Scholar 

  • Robinson, G. E., & Barron, A. B. (2017). Epigenetics and the evolution of instincts. Science, 356(6333), 26–27.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, G. E., Fernald, R. D., & Clayton, D. F. (2008). Genes and social behavior. Science, 322(5903), 896–900.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rosen, R. (1991). Life itself: A comprehensive inquiry into the nature, origin, and fabrication of life. Columbia University Press.

  • Rosen, R. (2012). Anticipatory systems: Philosophical, mathematical, and methodological foundations. Second Edition. New York: Springer.

    Book  Google Scholar 

  • Saraiva, R. d. S.-N. (2006). Classic ethology reappraised. Behavior and Philosophy, 34, 89–107.

    Google Scholar 

  • Schedlowski, M., & Pacheco-López, G. (2010). The learned immune response: Pavlov and beyond. Brain, behavior, and immunity, 24(2), 176–185

  • Schingarov, G. H. (1978). Conditioned reflex and the problem of sign and meaning. Moscow: Nauka [In Russian].

    Google Scholar 

  • Schingarov, G. H. (2008). Pavlovian conditional reflex – a naturalistic scientific model for the study of sign systems. Epistemology & Philosophy of Science, 18(4), 145–163 [In Russian].

    Article  Google Scholar 

  • Schmalhausen, I. I. (1949). Factors of evolution: The theory of stabilizing selection. Oxford: Blakiston.

    Google Scholar 

  • Sharma, A. (2017). Transgenerational epigenetics: Integrating soma to germline communication with gametic inheritance. Mechanisms of Ageing and Development, 163, 15–22.

    Article  PubMed  Google Scholar 

  • Shomrat, T., & Levin, M. (2013). An automated training paradigm reveals long-term memory in planarians and its persistence through head regeneration. Journal of Experimental Biology, 216(20), 3799–3810.

  • Shumny, V.K.; Kolchanov, N.A.; Zakharov, I.K. (Eds.) (2012). Genetics evolving in Siberia. The Institute of Cytology and Genetics of the USSR Academy of Sciences During its First Two Decades – the Origin and Formation. Novosibirsk ICG SB RAS.

  • Skinner, M. K. (2011). Environmental epigenetic transgenerational inheritance and somatic epigenetic mitotic stability. Epigenetics, 6(7), 838–842.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Skinner, M. K. (2014). Environmental stress and epigenetic transgenerational inheritance. BMC Medicine, 12(1), 153.

    Article  PubMed  PubMed Central  Google Scholar 

  • Slonim, A. D. (1961). Principles of general ecological physiology of mammals. Leningrad: Academy of Sciences USSR [In Russian].

    Google Scholar 

  • Slonim, A. D. (1967). Instinct: Enigmas of innate animal behavior. Leningrad: Nauka. [In Russian].

  • Slonim, A. D. (1968). Unconditioned reflex as specific character and problem of studying instinct. In: Progress in Brain Research, Vol. 22, pp. 506–517. Elsevier.

  • Slonim, A. D. (1976). Environment and behavior: Development of adaptive behavior. Leningrad: Nauka [In Russian].

    Google Scholar 

  • Stotz, K., & Allen, C. (2012). From cell-surface receptors to higher learning: A whole world of experience. In Philosophy of behavioral biology (pp. 85–123). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Sudakov, K. V. (2015). Theory of functional systems: A keystone of integrative biology. In Anticipation: Learning from the past (pp. 153–173). Cham: Springer International Publishing.

    Chapter  Google Scholar 

  • Suvorov, N. F., & Andreeva, V. N. (1991). Problems of the inheritance of conditioned reflexes in Pavlov's school. Neuroscience and Behavioral Physiology, 21(1), 8–16.

    Article  PubMed  CAS  Google Scholar 

  • Szyf, M. (2014). Lamarck revisited: Epigenetic inheritance of ancestral odor fear conditioning. Nature Neuroscience, 17(1), 2–4.

    Article  PubMed  CAS  Google Scholar 

  • Taft, R. J., Pheasant, M., & Mattick, J. S. (2007). The relationship between non-protein-coding DNA and eukaryotic complexity. BioEssays, 29(3), 288–299.

    Article  PubMed  CAS  Google Scholar 

  • Tebbich, S., Taborsky, M., Fessl, B., & Blomqvist, D. (2001). Do woodpecker finches acquire tool-use by social learning? Proceedings of the Royal Society of London B: Biological Sciences, 268(1482), 2189–2193.

    Article  CAS  Google Scholar 

  • Trut, L., Oskina, I., & Kharlamova, A. (2009). Animal evolution during domestication: The domesticated fox as a model. BioEssays, 31, 349–360.

    Article  PubMed  PubMed Central  Google Scholar 

  • Turner, B. M. (2007). Defining an epigenetic code. Nature Cell Biology, 9(1), 2.

    Article  PubMed  CAS  Google Scholar 

  • Turner, B. M. (2009). Epigenetic responses to environmental change and their evolutionary implications. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1534), 3403–3418.

    Article  CAS  Google Scholar 

  • Ukhtomsky, A. A. (1966). The dominant. Leningrad: Leningrad State University [In Russian].

    Google Scholar 

  • Ukhtomsky, A. A. (1978 [1942]). The problem of reflexes in the ascending order. In Kreps, E. M. & Golikov, N. V. (Eds.), Selected Works. (pp. 259-263). Leningrad: Nauka. [In Russian].

  • van Duijn, M. (2017). Phylogenetic origins of biological cognition: Convergent patterns in the early evolution of learning. Interface Focus, 7(3), 20160158.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vancassel, M. (1990). Behavioural development and adaptation: An assimilation of some of Waddington's ideas? Behavioural Processes, 22(1–2), 23–31.

    Article  PubMed  CAS  Google Scholar 

  • Vanderwolf, C. H. (2007). The evolving brain: The mind and the neural control of behavior. New York: Springer Science & Business Media.

  • Vane-Wright, R. I. (2014). What is life? And what might be said of the role of behaviour in its evolution? Biological Journal of the Linnean Society, 112(2), 219–241.

    Article  Google Scholar 

  • Waddington, C. H. (1942). Canalization of development and the inheritance of acquired characters. Nature, 150(3811), 563–565.

    Article  Google Scholar 

  • Waddington, C. H. (1961). Genetic assimilation. Advances in Genetics, 10, 257–293.

    PubMed  CAS  Google Scholar 

  • Walker, S. J., Goldschmidt, D., & Ribeiro, C. (2017). Craving for the future: The brain as a nutritional prediction system. Current Opinion in Insect Science, 23, 96–103.

    Article  PubMed  Google Scholar 

  • Wang, Y., Liu, H., & Sun, Z. (2017). Lamarck rises from his grave: parental environment]induced epigenetic inheritance in model organisms and humans. Biological Reviews, 92(4), 2084–2111.

  • West-Eberhard, M. J. (2003). Developmental plasticity and evolution. Oxford University Press.

  • West-Eberhard, M. J. (2005). Phenotypic accommodation: Adaptive innovation due to developmental plasticity. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 304((6), 610–618.

    Article  Google Scholar 

  • Wisenden, B. D., Chivers, D. P., & Smith, R. J. F. (1997). Learned recognition of predation risk by Enallagma damselfly larvae (Odonata, Zygoptera) on the basis of chemical cues. Journal of Chemical Ecology, 23(1), 137–151.

    Article  CAS  Google Scholar 

  • Yan, W. (2014). Potential roles of noncoding RNAs in environmental epigenetic transgenerational inheritance. Molecular and Cellular Endocrinology, 398(1–2), 24–30.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zimmer, R. K., & Derby, C. D. (2011). Neuroecology and the need for broader synthesis. Integrative and Comparative Biology, 51(5), 751–755.

    Article  PubMed  Google Scholar 

  • Zuk, M., Bastiaans, E., Langkilde, T., & Swanger, E. (2014). The role of behaviour in the establishment of novel traits. Animal Behaviour, 92, 333–344.

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by Charles University Grant Agency grant no 926916. The author would like to thank an anonymous reviewer for extensive comments on an early version of this paper.

Conflict of Interest: The author declares no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andres Kurismaa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurismaa, A. Assimiliating an Associative Trait: from Eco-Physiology to Epigenetics. Biosemiotics 11, 199–229 (2018). https://doi.org/10.1007/s12304-018-9324-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12304-018-9324-0

Keywords

Navigation