Advertisement

Biosemiotics

pp 1–31 | Cite as

Assimiliating an Associative Trait: from Eco-Physiology to Epigenetics

Original Paper

Abstract

The possible evolutionary significance of epigenetic memory and codes is a key problem for extended evolutionary synthesis and biosemiotics. In this paper, some less known original works are reviewed which highlight theoretical parallels between current evolutionary epigenetics, on the one hand, and its predecessors in the eco-physiology of higher nervous activity, on the other. Recently, these areas have begun to converge, with first evidence now indicating the possibility of transgenerational epigenetic inheritance of conditional associations in the mammalian nervous system, and related findings in other taxa. This can serve as an interesting example of evolutionary code-making, where the molecular mechanisms underlying arbitrary associations between stimuli involve lasting changes in gene expression that may be transmitted epigenetically across generations, and which in some cases could be further assimilated into the genome over subsequent evolution. Although preliminary, such epigenetic scenarios would also offer an interesting, if so far overlooked parallel to earlier research carried out by one of I.P. Pavlov’s leading students, acad. P.K. Anokhin, and his colleagues, but also by eminent eco-physiologists of the time, several of whom offered arguments for the possibility of unconditional reflexes representing evolutionarily later, specialized, and reduced forms of associative reflexes, from which they may be derived. Although discarded under the growing dominance of modern synthesis, these early epigenetic investigations may deserve renewed attention in the modern context, and if further confirmed, could open essentially new perspectives on the morphofunctional evolution of the nervous system.

Keywords

Associative learning Evolutionary epigenetics Ecological physiology Genetic assimilation Learning theory 

Notes

Acknowledgements

This work has been supported by Charles University Grant Agency grant no 926916. The author would like to thank an anonymous reviewer for extensive comments on an early version of this paper.

Conflict of Interest: The author declares no conflict of interest.

References

  1. Ader, R. (2003). Conditioned immunomodulation: Research needs and directions. Brain, Behavior, and Immunity 17(1): 51–57.Google Scholar
  2. Alaux, C., Sinha, S., Hasadsri, L., Hunt, et al. (2009). Honey bee aggression supports a link between gene regulation and behavioral evolution. Proceedings of the National Academy of Sciences, 106(36), 15400–15405.CrossRefGoogle Scholar
  3. Anokhin, P. K. (1964). Systemogenesis as a general regulator of brain development. In: Progress in Brain Research, Vol. 9, pp. 54–86. Elsevier.Google Scholar
  4. Anokhin, P. K. (1974). Biology and neurophysiology of the conditioned reflex and its role in adaptive behavior. Oxford: Pergamon Press.Google Scholar
  5. Anokhin, P. K. (1975) [1949]. Essential problems in the study of higher nervous activity. In: Essays in the physiology of functional systems. (pp. 108–226). Moscow: Medizina. [In Russian].Google Scholar
  6. Anokhin, P. K. (1978 [1962]). Anticipatory reflection of reality. In Konstantinov, F. B., Lomov, B. F., Schvyrkov, V. B. (Eds.), Philosophical aspects of the functional systems theory (pp. 7–26). Moscow: Nauka.Google Scholar
  7. Anokhin, K. V. (1997). Molecular-genetic preconditions for the systemogenesis of behavioral acts. In K. Sudakov (Ed.), Theory of Systemogenesis (pp. 215–276). Russian Academy of Medical Sciences: Moscow.Google Scholar
  8. Anokhin, K. V. (2010). The brain and memory: The biology of traces of time past. Herald of the Russian Academy of Sciences, 80(3), 237–242.CrossRefGoogle Scholar
  9. Anokhin, K. V., & Sudakov, K. V. (2003). Genome of brain neurons in organization of systemic mechanisms of behavior. Bulletin of Experimental Biology and Medicine, 135(2), 107–113.PubMedCrossRefGoogle Scholar
  10. Ardiel, E. L., & Rankin, C. H. (2010). An elegant mind: Learning and memory in Caenorhabditis elegans. Learning & Memory, 17(4), 191–201.CrossRefGoogle Scholar
  11. Arnellos, A., Bruni, L. E., El-Hani, C. N., & Collier, J. (2012). Anticipatory functions, digital-analog forms and biosemiotics: Integrating the tools to model information and normativity in autonomous biological agents. Biosemiotics, 5(3), 331–367.CrossRefGoogle Scholar
  12. Badyaev, A. V. (2005). Stress-induced variation in evolution: From behavioural plasticity to genetic assimilation. Proceedings of the Royal Society of London B: Biological Sciences, 272(1566), 877–886.CrossRefGoogle Scholar
  13. Bagnères, A. G., Hossaert-McKey, M. (Eds.). (2016). Chemical ecology. John Wiley & Sons.Google Scholar
  14. Baldwin, J. M. (1896). A new factor in evolution. The American Naturalist, 30(354), 441–451.CrossRefGoogle Scholar
  15. Balykin, M. V., Ibraimova, G. I., Kozyreva, T. V., Krivoshchekov, S. G., Trufakin, V. A., & Shoshenko, K. A. (2003). On the centennial of the birth of Abram Donovich Slonim. Human Physiology, 29(6), 763–764.CrossRefGoogle Scholar
  16. Barbieri, M. (2015). Code biology. A new science of life. Springer International Publishing.Google Scholar
  17. Barry, R. J. (2012). Habituation and sensitization. In Encyclopedia of the Sciences of Learning (pp. 1413–1414). Springer US.Google Scholar
  18. Baskin, L. M. (1976). Behavior of ungulates. Moscow: Nauka [In Russian].Google Scholar
  19. Bateson, P. (2006). The adaptability driver: Links between behavior and evolution. Biological Theory, 1(4), 342–345.CrossRefGoogle Scholar
  20. Bateson, P. (2009). The value of truly comparative and holistic approaches in the neurosciences. In: Oxford Handbook of Developmental Behavioral Neuroscience, (Eds., Blumberg, Mark S., Freeman, John H., Robinson, Scott R., pp. 7–11.Google Scholar
  21. Bell, A. M., & Robinson, G. E. (2011). Behavior and the dynamic genome. Science, 332(6034), 1161–1162.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Belyaev, D. K. (1979). Destabilizing selection as a factor in domestication. Journal of Heredity, 70(5), 301–308.PubMedCrossRefGoogle Scholar
  23. Berthon, K. (2015). How do native species respond to invaders? Mechanistic and trait-based perspectives. Biological Invasions, 17(8), 2199–2211.CrossRefGoogle Scholar
  24. Bertossa, R. C. (2011). Introduction. Morphology and behaviour: functional links in development and evolution. Philosophical Transactions of the Royal Society B, 366, 2056–2068.CrossRefGoogle Scholar
  25. Biryukov, D. A. (1948). Conditional reflexes. Materials for Comparative Physiology, Vol. 14. Voronezh: Transactions of Voronezh State Medical Institute. [In Russian].Google Scholar
  26. Biryukov, D. A. (Ed.). (1955). Questions on the comparative physiology and pathology of higher nervous activity. Leningrad: Medgiz [In Russian].Google Scholar
  27. Biryukov, D. A. (1960). Ecological Physiology of Higher Nervous Activity. (Some Questions on the Biological Foundations of Medical Theory). Leningrad: Medgiz [In Russian].Google Scholar
  28. Biryukov, D. A. (1974). In Vasilevsky, N. N. (Ed.), Selected Works. Leningrad: Medizina [In Russian].Google Scholar
  29. Bohacek, J., & Mansuy, I. M. (2015). Molecular insights into transgenerational non-genetic inheritance of acquired behaviours. Nature Reviews. Genetics, 16(11), 641–652.PubMedCrossRefGoogle Scholar
  30. Briggs, J. A., Wolvetang, E. J., Mattick, J. S., Rinn, J. L., & Barry, G. (2015). Mechanisms of long non-coding RNAs in mammalian nervous system development, plasticity, disease, and evolution. Neuron, 88(5), 861–877.Google Scholar
  31. Bronfman, Z. Z., Ginsburg, S., & Jablonka, E. (2016). The transition to minimal consciousness through the evolution of associative learning. Frontiers in Psychology, 7/1954.Google Scholar
  32. Bruni, L. E. (2008). Hierarchical categorical perception in sensing and cognitive processes. Biosemiotics, 1(1), 113.CrossRefGoogle Scholar
  33. Brunke, S., & Hube, B. (2014). Adaptive prediction as a strategy in microbial infections. PLoS Pathogens, 10(10), e1004356.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Burggren, W. (2016). Epigenetic inheritance and its role in evolutionary biology: Re-evaluation and new perspectives. Biology, 5(2), 24.PubMedCentralCrossRefGoogle Scholar
  35. Bykov, K. M. (1959). The cerebral cortex and the internal organs. Moscow: Foreign Languages Pub. House.Google Scholar
  36. Bykov, K. M., & Slonim, A. D. (1960). Investigations on the complex-Reflectory activity of animals and man in natural living conditions. Moscow, Leningrad: Academy of Science Press USSR.Google Scholar
  37. Cabej, N. R. (2011). Epigenetic principles of evolution. London: Elsevier.Google Scholar
  38. Caddick, R. A., & Isles, A. R. (2015). Can Environmentally Induced Epigenetic Changes be Trans-Generationally Inherited by Offspring, Resulting in the Expression of Psychological, Behavioural, or Psychiatric Phenotypes? A Systematic Review. Journal of Clinical Epigenetics, 1(1), 1–21.Google Scholar
  39. Caller, G., & Brown, C. (2013). Evolutionary responses to invasion: Cane toad sympatric fish show enhanced avoidance learning. PLoS One, 8(1), e54909.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Candolin, U., & Wong, B. B. (2012). Behavioural responses to a changing world: Mechanisms and consequences. In OUP oxford.Google Scholar
  41. Cherkashin, A. N., Sheiman, I. M., & Bogorovskaya, G. I. (1967). Conditioned reflexes in planarians and regeneration experiments. Neuroscience Translations, 1(1), 12–14.Google Scholar
  42. Corning, W. C. (1966). Retention of a position discrimination after regeneration in planarians. Psychonomic Science, 5(1), 17–18.Google Scholar
  43. Costa, F. F. (2008). Non-coding RNAs, epigenetics and complexity. Gene, 410(1), 9–17.PubMedCrossRefGoogle Scholar
  44. Crispo, E. (2007). The Baldwin effect and genetic assimilation: Revisiting two mechanisms of evolutionary change mediated by phenotypic plasticity. Evolution, 61(11), 2469–2479.PubMedCrossRefGoogle Scholar
  45. Danchin, É. (2013). Avatars of information: Towards an inclusive evolutionary synthesis. Trends in Ecology & Evolution, 28(6), 351–358.CrossRefGoogle Scholar
  46. Devanapally, S., Ravikumar, S., & Jose, A. M. (2015). Double-stranded RNA made in C. Elegans neurons can enter the germline and cause transgenerational gene silencing. Proceedings of the National Academy of Sciences, 112(7), 2133–2138.CrossRefGoogle Scholar
  47. Dias, B. G., & Ressler, K. J. (2014). Parental olfactory experience influences behavior and neural structure in subsequent generations. Nature Neuroscience, 17(1), 89–96.PubMedCrossRefGoogle Scholar
  48. Dias, B. G., Maddox, S. A., Klengel, T., & Ressler, K. J. (2015). Epigenetic mechanisms underlying learning and the inheritance of learned behaviors. Trends in Neurosciences, 38(2), 96–107.PubMedCrossRefGoogle Scholar
  49. Diogo, R. (2017). Evolution driven by organismal behavior. Cham: Springer International Publishing.CrossRefGoogle Scholar
  50. Domjan, M. (2000). General process learning theory: Challenges from response and stimulus factors. International Journal of Comparative Psychology, 13(3), 101–118.Google Scholar
  51. Domjan, M. (2005). Pavlovian Conditioning: A Functional Perspective. Annual Review of Psychology 56(1): 179–206.Google Scholar
  52. Domjan, M., & Galef, B. G. (1983). Biological constraints on instrumental and classical conditioning: Retrospect and prospect. Animal Learning & Behavior, 11(2), 151–161.CrossRefGoogle Scholar
  53. Dunlap, A. S., & Stephens, D. W. (2014). Experimental evolution of prepared learning. Proceedings of the National Academy of Sciences, 111(32), 11750–11755.CrossRefGoogle Scholar
  54. Dworkin, B. R. (1993). Learning and physiological regulation. Chicago: University of Chicago Press.Google Scholar
  55. Ehrenreich, I. M., & Pfennig, D. W. (2015). Genetic assimilation: A review of its potential proximate causes and evolutionary consequences. Annals of Botany, 117(5), 769–779.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Fanselow, M. S., & Poulos, A. M. (2005). The neuroscience of mammalian associative learning. Annual Review of Psychology, 56, 207–234.PubMedCrossRefGoogle Scholar
  57. Favareau, D. (2010). Essential readings in biosemiotics: Anthology and commentary (Vol. 3). Springer Science & Business Media.Google Scholar
  58. Foster, S. A., & Sih, A. (2013). Special issue: Behavioural plasticity and evolution. Animal Behaviour, 5(85), 1003.CrossRefGoogle Scholar
  59. Freddolino, P. L., & Tavazoie, S. (2012). Beyond homeostasis: A predictive-dynamic framework for understanding cellular behavior. Annual Review of Cell and Developmental Biology, 28, 363–384.PubMedCrossRefGoogle Scholar
  60. Frégnac, Y. (2017). Big data and the industrialization of neuroscience: A safe roadmap for understanding the brain? Science, 358(6362), 470–477.PubMedCrossRefGoogle Scholar
  61. Gagliano, M., Vyazovskiy, V. V., et al. (2016). Learning by association in plants. Scientific Reports, 6, 38427.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Galván, A. (2010). Neural plasticity of development and learning. Human Brain Mapping, 31(6), 879–890.PubMedCrossRefGoogle Scholar
  63. Gapp, K., Jawaid, A., Sarkies, P., Bohacek, J., Pelczar, P., Prados, J., et al. (2014). Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nature Neuroscience, 17(5), 667.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Gilbert, S. F. (1994). Dobzhansky, Waddington and Schmalhausen: Embryology and the modern synthesis. In The evolution of Theodosius Dobzhansky: Essays on his life and thought in Russia and America (pp. 143–154).Google Scholar
  65. Gilbert, S. F. (2003a). The morphogenesis of evolutionary developmental biology. International Journal of Developmental Biology, 47(7–8), 467–477.PubMedGoogle Scholar
  66. Gilbert, S. F. (2003b). The role of predator-induced polyphenism in the evolution of cognition: A Baldwinian speculation. In: Evolution and learning: The Baldwin effect reconsidered. (Ed. Weber, B. H.; Depew, D.J.) (pp. 235–252). Mit Press.Google Scholar
  67. Ginsburg, S., & Jablonka, E. (2010). The evolution of associative learning: A factor in the Cambrian explosion. Journal of Theoretical Biology, 266(1), 11–20.PubMedCrossRefGoogle Scholar
  68. Gissis, S., & Jablonka, E. (Eds.). (2011). Transformations of Lamarckism: From subtle fluids to molecular biology. Cambridge: MIT press.Google Scholar
  69. Graham, L. (2016). Lysenko's ghost. Epigenetics and Russia. Cambridge: Harvard University Press.CrossRefGoogle Scholar
  70. Greenlees, M. J., Phillips, B. L., & Shine, R. (2010). Adjusting to a toxic invader: Native Australian frogs learn not to prey on cane toads. Behavioral Ecology, 21(5), 966–971.CrossRefGoogle Scholar
  71. Haralson, J. V., Groff, C. I., & Haralson, S. J. (1975). Classical conditioning in the sea anemone, Cribrina xanthogrammica. Physiology & Behavior, 15(4), 455–460.CrossRefGoogle Scholar
  72. Heard, E., & Martienssen, R. A. (2014). Transgenerational epigenetic inheritance: Myths and mechanisms. Cell, 157(1), 95–109.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Heyes, C. (2012). Simple minds: a qualified defence of associative learning. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1603), 2695–2703.Google Scholar
  74. Hinde, R. A., & Stevenson-Hinde, J. (Eds.) (1973). Constraints on learning. London, New York: Academic Press.Google Scholar
  75. Hofmann, H. A. (2003). Functional genomics of neural and behavioral plasticity. Developmental Neurobiology, 54(1), 272–282.CrossRefGoogle Scholar
  76. Hofmeyr, J. H. S. (2017). Basic biological anticipation. In R. Poli (Ed.), Handbook of anticipation: Theoretical and applied aspects of the use of future in decision making (pp. 1–15). Cham: Springer International Publishing.Google Scholar
  77. Holliday, R. (2006). Epigenetics: A historical overview. Epigenetics, 1(2), 76–80.PubMedCrossRefGoogle Scholar
  78. Hollis, K. L. (1982). Pavlovian conditioning of signal-centered action patterns and autonomic behavior: A biological analysis of function. In Advances in the Study of Behavior (Vol. 12, pp. 1–64). Academic Press.Google Scholar
  79. Hollis, K., & Guillette, L. (2015). What associative learning in insects tells us about the evolution of learning and fixed behavior. International Journal of Comparative Psychology, 28, 1–18.Google Scholar
  80. Janecka, J., Chowdhary, B., & Murphy, W. (2012). Exploring the correlations between sequence evolution rate and phenotypic divergence across the mammalian tree provides insights into adaptive evolution. Journal of Biosciences, 37(5), 897–909.PubMedCrossRefGoogle Scholar
  81. Johnston, T. D. (1981). Contrasting approaches to a theory of learning. Behavioral and Brain Sciences, 4(1), 125–139.CrossRefGoogle Scholar
  82. Johnston, T. D., & Pietrewicz, A. T. (Eds.). (1985). Issues in the ecological study of learning. London: Lawrence Erlbaum Associates Publishers.Google Scholar
  83. Jozefowiez, J. (2012). Associative learning. In: Encyclopedia of the Sciences of Learning, pp. 330–334. Springer US.Google Scholar
  84. Khautin, S. N. (1963). Factors in the development of feeding behavior of the muscicapa-hypoleuca squeakers. Bulletin of Experimental Biology and Medicine, 56(4), 1063–1066.Google Scholar
  85. Kogan, A. B., & Ratner, I.M. (1964). Some relations between inborn and acquired forms of behavior in Drosophila. In Kreps, E. M. (Ed.), Evolution of functions: Physiological, biochemical, and structural foundations of the evolution of functions. (pp. 76-80). Leningrad, Moscow: Nauka. [In Russian].Google Scholar
  86. Kogan, A. B., & Semenovich, A. P. (1955). On the hereditary fixation of conditional reflexes in lower animals. Priroda, 9, 110–111.Google Scholar
  87. Kosik, K. S. (2009). MicroRNAs tell an evo–devo story. Nature Reviews Neuroscience, 10(10), 754–759.PubMedCrossRefGoogle Scholar
  88. Kosik, K. S., & Nowakowski, T. (2018). Evolution of new miRNAs and Cerebro-cortical development. Annual Review of Neuroscience, 41, 119–137.CrossRefGoogle Scholar
  89. Kovach, J. K. (1971). Ethology in the soviet union. Behaviour, 39, 237–265.PubMedCrossRefGoogle Scholar
  90. Krakauer, J. W., Ghazanfar, A. A., Gomez-Marin, ... & Poeppel, D. (2017). Neuroscience needs behavior: correcting a reductionist Bias. Neuron, 93(3), 480–490.Google Scholar
  91. Krause, M. A. (2015). Evolutionary perspectives on learning: Conceptual and methodological issues in the study of adaptive specializations. Animal Cognition, 18(4), 807–820.PubMedCrossRefGoogle Scholar
  92. Krause, M. A., & Domjan, M. (2017). Ethological and Evolutionary Perspectives on Pavlovian Conditioning. In: APA Handbook of Comparative Psychology. Vol 2. Perception, Learning, and Cognition (Ed., Call, J.), pp. 247–266.Google Scholar
  93. Krushinsky, L. V. (1968). Are conditional reflexes heritable? Priroda, 1, 120–123.Google Scholar
  94. Kull, K. (2009). Umwelt and modelling. In P. Cobley (Ed.), The Routledge companion to semiotics (pp. 65–78). Routledge: London and New York.Google Scholar
  95. Kull, K. (2015). Evolution, choice, and scaffolding: Semiosis is changing its own building. Biosemiotics, 8(2), 223–234.CrossRefGoogle Scholar
  96. Kull, K., Emmeche, C., & Hoffmeyer, J. (2011). Why biosemiotics? An introduction to our view on the biology of life itself. In C. Emmeche & K. Kull (Eds.), Towards a Semiotic Biology. Life is the Action of Signs (pp. 1–21). London: Imperial College Press.Google Scholar
  97. Laland, K., Uller, T., Feldman, M., Sterelny, K., Müller, G. B., Moczek, A., et al. (2014). Does evolutionary theory need a rethink? Nature, 514(7521), 161–164.PubMedCrossRefGoogle Scholar
  98. Laland, K. N., Uller, T., Feldman, M. W., Sterelny, K., Müller, G. B., Moczek, A., ... & Odling-Smee, J. (2015). The extended evolutionary synthesis: its structure, assumptions and predictions. In Proc. R. Soc. B. Vol. 282, No. 1813. The Royal Society.Google Scholar
  99. Laurent III, G. S., & Wahlestedt, C. (2007). Noncoding RNAs: couplers of analog and digital information in nervous system function?. Trends in neurosciences, 30(12), 612–621.Google Scholar
  100. Leadbeater, E. (2015). What evolves in the evolution of social learning?. Journal of Zoology, 295(1), 4–11.Google Scholar
  101. Ledón-Rettig, C. C., Richards, C. L., & Martin, L. B. (2012). Epigenetics for behavioral ecologists. Behavioral Ecology, 24(2), 311–324.CrossRefGoogle Scholar
  102. Levit, G. S. (2007). The roots of evo-devo in Russia: Is there a characteristic “Russian tradition”? Theory in Biosciences, 126(4), 131–148.PubMedCrossRefGoogle Scholar
  103. Levit, G. S., Hossfeld, U., & Olsson, L. (2006). From the “modern synthesis” to cybernetics: Ivan Ivanovich Schmalhausen (1884–1963) and his research program for a synthesis of evolutionary and developmental biology. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 306((2), 89–106.CrossRefGoogle Scholar
  104. Lyon, P. (2015). The cognitive cell: Bacterial behavior reconsidered. Frontiers in Microbiology, 6, 264.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Manteufel, B. P. (1980). Ecology of animal behavior. Moscow: Nauka [In Russian].Google Scholar
  106. Marshall, C. R. (2006). Explaining the Cambrian “explosion” of animals. Annual Review of Earth and Planetary Sciences, 34, 355–384.CrossRefGoogle Scholar
  107. Mattick, J. S. (2011). RNA Networks as Digital Control Circuits of Nuclear Functions. In: (Ed. Rippe, K.), Genome Organization and Function in the Cell Nucleus. (pp. 353–363). Wiley-VCH Verlag & Co. KGaA.Google Scholar
  108. McFarland, D. J. (1973). Stimulus relevance and homeostasis. In R. A. Hinde & J. Stevenson-Hinde (Eds.), Constraints on Learning (pp. 141–155). London, New York: Academic Press.Google Scholar
  109. Mesoudi, A., Blanchet, S., Charmantier, A., Danchin, E., et al. (2013). Is non-genetic inheritance just a proximate mechanism? A corroboration of the extended evolutionary synthesis. Biological Theory, 7(3), 189–195.CrossRefGoogle Scholar
  110. Milyagin, Y. A. (1954). On the decisive role of environmental conditions in the phylogenetic development of alimentary reactions in rook nestlings. In: Collection of Studies by the Moscow Society of Physiologists, Biochemists, and Pharmacologists. Vol 2. pp. 13–24. [In Russian].Google Scholar
  111. Milyagin, Y. A. (1957). On the Defining Role of Ecological Factors in the Embryogenesis of Unconditional Reactions. Self-summary of the Dissertation for the degree Doctor of Biol. Sciences. Academy of Medical Sciences, USSR, Moscow. [In Russian].Google Scholar
  112. Moczek, A. P. (2007). Developmental capacitance, genetic accommodation, and adaptive evolution. Evolution & Development, 9(3), 299–305.CrossRefGoogle Scholar
  113. Moczek, A. P., Sultan, S., Foster, S., Ledón-Rettig, C., Dworkin, I., Nijhout, H. F., et al. (2011). The role of developmental plasticity in evolutionary innovation. Proceedings of the Royal Society of London B: Biological Sciences, 278(1719), 2705–2713.CrossRefGoogle Scholar
  114. Moore, B. R. (2004). The evolution of learning. Biological Reviews, 79(2), 301–335.PubMedCrossRefGoogle Scholar
  115. Moray, N., & Connolly, K. (1963). A possible case of genetic assimilation of behaviour. Nature, 199(4891), 358–360.CrossRefGoogle Scholar
  116. Murphy, R. A., & Honey, R. C. (Eds.). (2016). The Wiley handbook on the cognitive neuroscience of learning. Chichester: John Wiley & Sons.Google Scholar
  117. Nadin, M. (Ed.). (2015). Anticipation: Learning from the past. Cham: Springer International Publishing.Google Scholar
  118. Nadin, M. (Ed.). (2016). Anticipation across disciplines. Cham: Springer International Publishing.Google Scholar
  119. Nadin, M. (Ed.). (2017). Anticipation and medicine. Cham: Springer International Publishing.Google Scholar
  120. Neuhof, M., Levin, M., & Rechavi, O. (2016). Vertically- and horizontally-transmitted memories–the fading boundaries between regeneration and inheritance in planaria. Biology open, 5(9), 1177–1188.Google Scholar
  121. Noble, D., Jablonka, E., et al. (2014). Evolution evolves: Physiology returns to Centre stage. The Journal of Physiology, 592(11), 2237–2244.PubMedPubMedCentralCrossRefGoogle Scholar
  122. Nowlin, D. (2017). Reconstructing Umwelt: A biosemiotic approach to medicine. Master Thesis. University of Tartu, Department of Semiotics. Supervisor: Kalevi Kull, Ph.D. Tartu.Google Scholar
  123. Orbeli, L. A. (1961). Problems of Evolutionary Physiology. Collected Works of Leon Abgarovich Orbeli in 5 volumes (Vol. 1). Leningrad: USSR Academy of Sciences Press.Google Scholar
  124. Papini, M. R. (2002). Pattern and process in the evolution of learning. Psychological Review, 109(1), 186–201.PubMedCrossRefGoogle Scholar
  125. Rando, O. J., & Verstrepen, K. J. (2007). Timescales of genetic and epigenetic inheritance. Cell, 128(4), 655–668.PubMedCrossRefGoogle Scholar
  126. Reader, S. M. (2016). Animal social learning: associations and adaptations. F1000Research, 5: 2120.Google Scholar
  127. Remy, J. J. (2010). Stable inheritance of an acquired behavior in Caenorhabditis elegans. Current Biology, 20(20), R877–R878.PubMedCrossRefGoogle Scholar
  128. Remy, J. J., & Hobert, O. (2005). An interneuronal chemoreceptor required for olfactory imprinting in C. elegans. Science, 309(5735), 787–790.PubMedCrossRefGoogle Scholar
  129. Rendall, D., & Di Fiore, A. (2007). Homoplasy, homology, and the perceived special status of behavior in evolution. Journal of Human Evolution, 52(5), 504–521.PubMedCrossRefGoogle Scholar
  130. Renn, S. C., & Schumer, M. E. (2013). Genetic accommodation and behavioural evolution: Insights from genomic studies. Animal Behaviour, 85(5), 1012–1022.CrossRefGoogle Scholar
  131. Rey, O., Danchin, E., Mirouze, M., Loot, C., & Blanchet, S. (2016). Adaptation to global change: A transposable element–epigenetics perspective. Trends in Ecology & Evolution, 31(7), 514–526.CrossRefGoogle Scholar
  132. Rittschof, C. C., & Robinson, G. E. (2014). Genomics: Moving behavioural ecology beyond the phenotypic gambit. Animal Behaviour, 92, 263–270.PubMedPubMedCentralCrossRefGoogle Scholar
  133. Rittschof, C. C., Bukhari, S. A., Sloofman, L. G., Troy, J. M., Caetano-Anollés, D., Cash-Ahmed, A., et al. (2014). Neuromolecular responses to social challenge: Common mechanisms across mouse, stickleback fish, and honey bee. Proceedings of the National Academy of Sciences, 111(50), 17929–17934.CrossRefGoogle Scholar
  134. Robinson, G. E., & Barron, A. B. (2017). Epigenetics and the evolution of instincts. Science, 356(6333), 26–27.PubMedCrossRefGoogle Scholar
  135. Robinson, G. E., Fernald, R. D., & Clayton, D. F. (2008). Genes and social behavior. Science, 322(5903), 896–900.PubMedPubMedCentralCrossRefGoogle Scholar
  136. Rosen, R. (1991). Life itself: A comprehensive inquiry into the nature, origin, and fabrication of life. Columbia University Press.Google Scholar
  137. Rosen, R. (2012). Anticipatory systems: Philosophical, mathematical, and methodological foundations. Second Edition. New York: Springer.CrossRefGoogle Scholar
  138. Saraiva, R. d. S.-N. (2006). Classic ethology reappraised. Behavior and Philosophy, 34, 89–107.Google Scholar
  139. Schedlowski, M., & Pacheco-López, G. (2010). The learned immune response: Pavlov and beyond. Brain, behavior, and immunity, 24(2), 176–185Google Scholar
  140. Schingarov, G. H. (1978). Conditioned reflex and the problem of sign and meaning. Moscow: Nauka [In Russian].Google Scholar
  141. Schingarov, G. H. (2008). Pavlovian conditional reflex – a naturalistic scientific model for the study of sign systems. Epistemology & Philosophy of Science, 18(4), 145–163 [In Russian].CrossRefGoogle Scholar
  142. Schmalhausen, I. I. (1949). Factors of evolution: The theory of stabilizing selection. Oxford: Blakiston.Google Scholar
  143. Sharma, A. (2017). Transgenerational epigenetics: Integrating soma to germline communication with gametic inheritance. Mechanisms of Ageing and Development, 163, 15–22.PubMedCrossRefGoogle Scholar
  144. Shomrat, T., & Levin, M. (2013). An automated training paradigm reveals long-term memory in planarians and its persistence through head regeneration. Journal of Experimental Biology, 216(20), 3799–3810.Google Scholar
  145. Shumny, V.K.; Kolchanov, N.A.; Zakharov, I.K. (Eds.) (2012). Genetics evolving in Siberia. The Institute of Cytology and Genetics of the USSR Academy of Sciences During its First Two Decades – the Origin and Formation. Novosibirsk ICG SB RAS.Google Scholar
  146. Skinner, M. K. (2011). Environmental epigenetic transgenerational inheritance and somatic epigenetic mitotic stability. Epigenetics, 6(7), 838–842.PubMedPubMedCentralCrossRefGoogle Scholar
  147. Skinner, M. K. (2014). Environmental stress and epigenetic transgenerational inheritance. BMC Medicine, 12(1), 153.PubMedPubMedCentralCrossRefGoogle Scholar
  148. Slonim, A. D. (1961). Principles of general ecological physiology of mammals. Leningrad: Academy of Sciences USSR [In Russian].Google Scholar
  149. Slonim, A. D. (1967). Instinct: Enigmas of innate animal behavior. Leningrad: Nauka. [In Russian].Google Scholar
  150. Slonim, A. D. (1968). Unconditioned reflex as specific character and problem of studying instinct. In: Progress in Brain Research, Vol. 22, pp. 506–517. Elsevier.Google Scholar
  151. Slonim, A. D. (1976). Environment and behavior: Development of adaptive behavior. Leningrad: Nauka [In Russian].Google Scholar
  152. Stotz, K., & Allen, C. (2012). From cell-surface receptors to higher learning: A whole world of experience. In Philosophy of behavioral biology (pp. 85–123). Dordrecht: Springer.CrossRefGoogle Scholar
  153. Sudakov, K. V. (2015). Theory of functional systems: A keystone of integrative biology. In Anticipation: Learning from the past (pp. 153–173). Cham: Springer International Publishing.CrossRefGoogle Scholar
  154. Suvorov, N. F., & Andreeva, V. N. (1991). Problems of the inheritance of conditioned reflexes in Pavlov's school. Neuroscience and Behavioral Physiology, 21(1), 8–16.PubMedCrossRefGoogle Scholar
  155. Szyf, M. (2014). Lamarck revisited: Epigenetic inheritance of ancestral odor fear conditioning. Nature Neuroscience, 17(1), 2–4.PubMedCrossRefGoogle Scholar
  156. Taft, R. J., Pheasant, M., & Mattick, J. S. (2007). The relationship between non-protein-coding DNA and eukaryotic complexity. BioEssays, 29(3), 288–299.PubMedCrossRefGoogle Scholar
  157. Tebbich, S., Taborsky, M., Fessl, B., & Blomqvist, D. (2001). Do woodpecker finches acquire tool-use by social learning? Proceedings of the Royal Society of London B: Biological Sciences, 268(1482), 2189–2193.CrossRefGoogle Scholar
  158. Trut, L., Oskina, I., & Kharlamova, A. (2009). Animal evolution during domestication: The domesticated fox as a model. BioEssays, 31, 349–360.PubMedPubMedCentralCrossRefGoogle Scholar
  159. Turner, B. M. (2007). Defining an epigenetic code. Nature Cell Biology, 9(1), 2.PubMedCrossRefGoogle Scholar
  160. Turner, B. M. (2009). Epigenetic responses to environmental change and their evolutionary implications. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1534), 3403–3418.CrossRefGoogle Scholar
  161. Ukhtomsky, A. A. (1966). The dominant. Leningrad: Leningrad State University [In Russian].Google Scholar
  162. Ukhtomsky, A. A. (1978 [1942]). The problem of reflexes in the ascending order. In Kreps, E. M. & Golikov, N. V. (Eds.), Selected Works. (pp. 259-263). Leningrad: Nauka. [In Russian].Google Scholar
  163. van Duijn, M. (2017). Phylogenetic origins of biological cognition: Convergent patterns in the early evolution of learning. Interface Focus, 7(3), 20160158.PubMedPubMedCentralCrossRefGoogle Scholar
  164. Vancassel, M. (1990). Behavioural development and adaptation: An assimilation of some of Waddington's ideas? Behavioural Processes, 22(1–2), 23–31.PubMedCrossRefGoogle Scholar
  165. Vanderwolf, C. H. (2007). The evolving brain: The mind and the neural control of behavior. New York: Springer Science & Business Media.Google Scholar
  166. Vane-Wright, R. I. (2014). What is life? And what might be said of the role of behaviour in its evolution? Biological Journal of the Linnean Society, 112(2), 219–241.CrossRefGoogle Scholar
  167. Waddington, C. H. (1942). Canalization of development and the inheritance of acquired characters. Nature, 150(3811), 563–565.CrossRefGoogle Scholar
  168. Waddington, C. H. (1961). Genetic assimilation. Advances in Genetics, 10, 257–293.PubMedGoogle Scholar
  169. Walker, S. J., Goldschmidt, D., & Ribeiro, C. (2017). Craving for the future: The brain as a nutritional prediction system. Current Opinion in Insect Science, 23, 96–103.PubMedCrossRefGoogle Scholar
  170. Wang, Y., Liu, H., & Sun, Z. (2017). Lamarck rises from his grave: parental environment]induced epigenetic inheritance in model organisms and humans. Biological Reviews, 92(4), 2084–2111.Google Scholar
  171. West-Eberhard, M. J. (2003). Developmental plasticity and evolution. Oxford University Press.Google Scholar
  172. West-Eberhard, M. J. (2005). Phenotypic accommodation: Adaptive innovation due to developmental plasticity. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 304((6), 610–618.CrossRefGoogle Scholar
  173. Wisenden, B. D., Chivers, D. P., & Smith, R. J. F. (1997). Learned recognition of predation risk by Enallagma damselfly larvae (Odonata, Zygoptera) on the basis of chemical cues. Journal of Chemical Ecology, 23(1), 137–151.CrossRefGoogle Scholar
  174. Yan, W. (2014). Potential roles of noncoding RNAs in environmental epigenetic transgenerational inheritance. Molecular and Cellular Endocrinology, 398(1–2), 24–30.PubMedPubMedCentralCrossRefGoogle Scholar
  175. Zimmer, R. K., & Derby, C. D. (2011). Neuroecology and the need for broader synthesis. Integrative and Comparative Biology, 51(5), 751–755.PubMedCrossRefGoogle Scholar
  176. Zuk, M., Bastiaans, E., Langkilde, T., & Swanger, E. (2014). The role of behaviour in the establishment of novel traits. Animal Behaviour, 92, 333–344.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Philosophy and History of Science, Faculty of ScienceCharles University in PraguePraha 2Czech Republic

Personalised recommendations