Skip to main content
Log in

Petrology and geochemistry of the Az Zabirah south zone bauxite deposit at Al Ba’itha mine, north-central Saudi Arabia

  • Article
  • Published:
Geosciences Journal Aims and scope Submit manuscript

Abstract

In the central north of Saudi Arabia, outcrop samples from the Cretaceous bauxite profile deposits in the Az Zabirah area were subjected to a comprehensive evaluation aimed at investigating their petrographical and geochemical characteristics using X-ray diffraction analysis (XRD), Scanning electron microscope (SEM) coupled with Energy dispersive (EDS) analysis, and X-ray fluorescence spectrometer (XRF) analysis. These bauxite deposits in the Az Zabirah area comprises of three main zones: the South zone, the Central zone, and the North zone. Petrologically, the bauxite samples predominantly consist of oolitic to pisolitic grains that are bound together by a matrix comprising bauxitic materials, iron oxides, calcite, and/or kaolinite. Mineralogical investigations indicate that the primary mineral composition of the bauxite includes gibbsite, boehmite, diaspore (kaolinite), hematite, quartz, and calcite. XRF showed that the dominant chemical components of the bauxite samples are Al2O3, SiO2, and Fe2O3. When considering the collective data from the rare earth elements (REEs) analysis (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) and chemical weathering indices such as the Chemical Index of Alteration (CIA), Chemical Index of Weathering (CIW), and Weathering Index of Parker (WIP), it becomes evident that the Az Zabirah South Zone bauxite laterite profile at Al Ba’itha mine was formed under the influence of significant and persistent weathering conditions. The findings and methods used in this study are considered beneficial and valuable as they support mineral exploration in arid and semi-arid environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Bassam, K.S., 2005, Mineralogy and geochemistry of the Hussainiyat karst bauxites and Zabira stratiform bauxite in northern Arabian Peninsula. Iraqi Bulletin of Geology and Mining, 1, 15–44.

    Google Scholar 

  • Alderton, D.H.M., Pearce, J.A., and Potts, P.J., 1980, Rare earth elements mobility during granite alteration: evidence from southwest England. Earth and Planetary Science Letters, 49, 149–165. https://doi.org/10.1016/0012-821X(80)90157-0

    Article  ADS  CAS  Google Scholar 

  • Al-Mutairi, A.N., Galmed, M.A., and Aldamegh, K.S., 2015, Petrogenesis of the Az Zabirah south zone bauxite ore deposits, central northern Saudi Arabia. Arabian Journal of Geosciences, 8, 2327–2339.

    Article  CAS  Google Scholar 

  • Armstrong-Altrin, J.S., Lee, Y.I., Verma, S.P., and Ramasamy, S., 2004, Geochemistry of sandstones from the upper Miocene Kudankulam Formation, southern India: implications for provenance, weathering, and tectonic setting. Journal of Sedimentary Research, 74, 285–297.

    Article  ADS  CAS  Google Scholar 

  • Armstrong-Altrin, J.S., Nagarajan, R., Madhavaraju, J., Rosalez-Hoz, L., Lee, Y.I., Balaram, V., Adriana Cruz-Martínez, A., and Avila-Ramírez, G., 2013, Geochemistry of the Jurassic and upper cretaceous shales from the Molango region, Hidalgo, eastern Mexico: implications for source-area weathering, provenance, and tectonic setting. Comptes Rendus Geoscience, 345, 185–202.

    Article  ADS  CAS  Google Scholar 

  • Balashov, Y.A., Ronov, A.B., Migdisov, A.A., and Turanskaya, N.V., 1964, The effects of climate and facies environment on the fractionation of rare earths during sedimentation. Geochemistry International, 10, 951–969.

    Google Scholar 

  • Bardossy, G., 1982, Karst Bauxites. Elsevier, Amsterdam, Netherlands, 441 p.

    Google Scholar 

  • Berner, R.A., 1992, Weathering, plants, and the long-term carbon cycle. Geochimica et Cosmochimica Acta, 56, 3225–3231.

    Article  ADS  CAS  Google Scholar 

  • Bhukte, P., 2020, Geochemical, mineralogical and petrological characteristics of lateritic bauxite deposits formed on Deccan Trap Basalt with reference to high-level and coastal (low level) deposits of Maharashtra. Journal of the Geological Society of India, 95, 587–598. https://doi.org/10.1007/s12594-020-1485-1

    Article  CAS  Google Scholar 

  • Black, R.Y., 1982, Bauxite exploration, Khashm Khaffs Area. Saudi Arabian Deputy Ministry for Mineral Resources, Jeddah, Open-File Report RF-OF-02-7, 7 p.

    Google Scholar 

  • Black, R.Y., Bognar, B., Watson, A.D., and Barnes, D.P., 1982, Evaluation of the Az Zabira bauxite deposit (1980–1982). Technical Report, Riofinex Limited, Jeddah, Saudi Arabia, 231 p.

    Google Scholar 

  • Bonnot-Courtois, C., 1981, Geochimie des terres rares dans les principaux milieux de formation et de sedimentation des argiles. Ph.D. These, Universite De Paris-Sud, Centre D’orsay, Orsay, France, 217 p.

    Google Scholar 

  • Bowden, R., 1981, Geology of the Az Zabira bauxite occurrence. Open-File Report, Riofinex Limited, Jeddah, Saudi Arabia, 157 p.

    Google Scholar 

  • Boyong, Y., Bin, H., Zhengyu, B., and Zhang, Z., 2011, REE geochemical characteristics and depositional environment of the black shale-hosted Baiguoyuan Ag-V deposit in Xingshan, Hubei Province, China. Journal of Rare Earths, 29, 499–506.

    Article  Google Scholar 

  • Braun, J.J., Pagel, M., Muller, J.P., Bilong, P., Michard, A., and Guillet, B., 1990, Cerium anomalies in lateritic profiles. Geochimica et Cosmochimica Acta, 54, 781–795.

    Article  ADS  CAS  Google Scholar 

  • Calagari, A.A. and Abedini, A., 2007, Geochemical investigations on Permo-Triassic bauxite horizon at Kanisheeteh, east of Bukan, West-Azarbaidjan, Iran. Journal of Geochemical Exploration, 94, 1–18.

    Article  CAS  Google Scholar 

  • Cox, R., Lowe, D.R., and Cullers, R.L., 1995, The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochimica et Cosmochimica Acta, 59, 2919–2940. https://doi.org/10.1016/0016-7037(95)00185-9

    Article  ADS  CAS  Google Scholar 

  • Crnički, J. and Jurković, I., 1989, Rare earth elements in Triassic bauxites of Croatia (Yugoslavia). 6th International Congress of ICSOBA, São Paulo, Brazil, May 11–20, p. 239–248.

  • D’Argenio, B. and Mindszenty, A., 1995, Bauxites and related paleokarst: tectonic and climatic event markers at regional unconformities. Eclogae Geologicae Helvetiae, 88, 453–499.

    Google Scholar 

  • Daya, A., Haruna, A.I., Maigari, A.S., Shekarau, J.I., and Yahuza, I., 2021, Mineralogy and geochemistry of bauxite ore of Mambila Plateau, NE Nigeria. SSRG International Journal of Geo-informatics and Geological Science, 8, 42–51.

    Article  Google Scholar 

  • Duddy, I.R., 1980, Redistribution and fractionation of rare-earth and other elements in a weathering profile. Chemical Geology, 30, 363–381.

    Article  ADS  CAS  Google Scholar 

  • Evans, A.M., 1993, Ore Geology and Industrial Minerals: An Introduction. Wiley-Blackwell, London, UK, 389 p.

    Google Scholar 

  • Fedo, C.M., Nesbitt, H.W., and Young, G.M., 1995, Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 23, 921–924.

    Article  ADS  CAS  Google Scholar 

  • Fleet, A.J., 1984, Aqueous and sedimentary geochemistry of the rare earth elements. In: Henderson, P. (ed.), Rare Earth Element Geochemistry (1st edition). Development of Geochemistry, Elsevier, Amsterdam, Netherlands, 2 p. 343–373. https://doi.org/10.1016/B978-0-444-42148-7.50015-0

    Chapter  Google Scholar 

  • Gaillardet, J., Dupre, B., Louvat, P., and Allegre, C., 1999, Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chemical Geology, 159, 3–30.

    Article  ADS  CAS  Google Scholar 

  • Ghrefat, H., Al Mutairi, Y., ElAraby, H., Galmed, M., and Mohamed, E., 2021, Using reflectance spectroscopy and advanced spaceborne thermal emission and reflection radiometer data to identify bauxite deposits in vicinity of Az Zabirah, northern Saudi Arabia. Arabian Journal of Geosciences, 14, 820. https://doi.org/10.1007/s12517-021-07155-7

    Article  Google Scholar 

  • Gibbs, R.J., 1970, Mechanisms controlling world water chemistry. Science, 170, 1088–1090.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Gow, N.N. and Lozej, G.P., 1993, Bauxite. Geoscience Canada, 20, 9–16.

    Google Scholar 

  • Grantham, J.H. and Velbel, M.A., 1988, The influence of climate and topography on rock-fragment abundance in modern fluvial sands of the southern Blue Ridge Mountains, North Carolina. Journal of Sedimentary Research, 58, 219–227.

    Article  ADS  Google Scholar 

  • Hamdan, J. and Bumham, C., 1996, The contribution of nutrients from parent material in three deeply weathered soils of Peninsular Malaysia. Geoderma, 74, 219–233.

    Article  ADS  Google Scholar 

  • Harnois, L., 1988, The CIW index: a new chemical index of weathering. Sedimentary Geology, 55, 319–322.

    Article  ADS  CAS  Google Scholar 

  • Hendreson, P., 1984, General geochemical properties and abundances of the rare earth elements. In: Henderson, P. (ed.), Rare Earth Element Geochemistry (1st edition). Development of Geochemistry, Elsevier, Amsterdam, Netherlands, 2, p. 1–32. https://doi.org/10.1016/B978-0-444-42148-7.50006-X

    Google Scholar 

  • Hill, I., Worden, R., and Meighan, I., 2000, Geochemical evolution of a palaeolaterite: the interbasaltic formation, northern Ireland. Chemical geology, 166, 65–84.

    Article  ADS  CAS  Google Scholar 

  • Hongbin, J., Shijie, W., Ziyuan, O., Shen, Z., Chenxing, S., Xiuming, L., and Dequan, Z., 2004, Geochemistry of red residua underlying dolomites in karst terrains of Yunnan-Guizhou Plateau: I. The formation of the Pingba profile. Chemical Geology, 203, 1–27. https://doi.org/10.1016/j.chemgeo.2003.08.012

    Article  Google Scholar 

  • Iqbal, S., Bibi, M., and Wagreich, M., 2023, Geochemistry of the Triassic–Jurassic lateritic bauxites of the Salt Range: implications for eastward extension of the Tethyan bauxite deposits into Pakistan. International Journal of Earth Sciences, 112, 1527–1552.

    Article  ADS  CAS  Google Scholar 

  • Keselj, D., Lazic, D., Penavin-Skundric, J., Sladojevic, S., and Vasil, L., 2012, Determination of alumina oxide in bauxites by X-ray fluorescence analysis. Global Journal of Science Frontier Research, 12, 1–6.

    Google Scholar 

  • Le Nindre, Y.M., Vaslet, D., Maddah, S.S., and Al-Husseini, M.I., 2008, Stratigraphy of the Valanginian? to Early Paleocene succession in central Saudi Arabia outcrops: implications for regional Arabian sequence stratigraphy. GeoArabia, 13, 51–86. https://doi.org/10.2113/geoarabia130251

    Article  Google Scholar 

  • Liaghat, S., Hosseini, M., and Zarasvandi, A., 2003, Determination of the origin and mass change geochemistry during bauxitization process at the Hangam deposit, SW Iran. Geochemical Journal, 37, 627–637.

    Article  ADS  CAS  Google Scholar 

  • Liu, X., Wang, Q., Deng, J., Zhang, Q., Sun, S., and Meng, J., 2010, Mineralogical and geochemical investigations of the Dajia Salento-type bauxite deposits, western Guangxi, China. Journal of Geochemical Exploration, 105, 137–152. https://doi.org/10.1016/j.gexplo.2010.04.012

    Article  CAS  Google Scholar 

  • MacLean, W.H., Bonavia, F., and Sanna, G., 1997, Argillite debris converted to bauxite during karst weathering: evidence from immobile element geochemistry at the Olmedo Deposit, Sardinia. Mineralium Deposita, 32, 607–616.

    Article  ADS  CAS  Google Scholar 

  • MacLean, W.H. and Kranidiotis, P., 1987, Immobile elements as monitors of mass transfer in hydrothermal alteration: Phelps dodge massive sulfide deposits, Matagami, Quebec. Economic Geology, 2, 951–962.

    Article  Google Scholar 

  • Madhavaraju, J., 2015, Geochemistry of Late Cretaceous sedimentary rocks of the Cauvery Basin, south India: constraints on paleoweathering, provenance and end Cretaceous environments. In: Ramkumar, M. (ed.), Chemostratigraphy: Concepts, Techniques and Applications (1st edition). Elsevier, Amsterdam, Netherlands, p. 185–214. https://doi.org/10.1016/B978-0-12-419968-2.00008-X

    Chapter  Google Scholar 

  • Madhavaraju, J., Pacheco-Olivas, S.A., González-León, C.M., Espinoza-Maldonado, I.G., Sanchez-Medrano, P.A., Villanueva-Amadoz, U., Monreal, R., Pi-Puig, T., Ramírez-Montoya, E., and Grijalva-Noriega, F.J., 2017, Mineralogy and geochemistry of the lower cretaceous siliciclastic rocks of the Morita formation, sierra San José section, Sonora, Mexico. Journal of South American Earth Sciences, 76, 397–411. https://doi.org/10.1016/j.jsames.2017.04.001

    Article  ADS  CAS  Google Scholar 

  • Maksimovic, Z. and Panto, G., 1991, Contribution to the geochemistry of the rare earth elements in the karst-bauxite deposits of Yugoslavia and Greece. Geoderma, 51, 93–109.

    Article  ADS  CAS  Google Scholar 

  • Madhavaraju, J., Rajendra, S.P., Lee, Y.I., Ramirez-Montoya, E., Ramasamy, S., and Lozano-Santacruz, R., 2020, Mineralogy and geochemistry of clastic sediments of the Terani Formation, Cauvery Basin, southern India: implications for paleoweathering, provenance and tectonic setting. Geosciences Journal, 24, 651–667. https://doi.org/10.1007/s12303-019-0047-2

    Article  ADS  CAS  Google Scholar 

  • Madhavaraju, J. and Ramasamy, S., 2002, Petrography and geochemistry of Late Maastrichtian-Early Paleocene sediments of Tiruchirapalli Cretaceous, Tamil Nadu - paleoweathering and provenance implications. Journal of the Geological Society of India, 59, 133–142.

    CAS  Google Scholar 

  • Madhavaraju, J., Ramírez-Montoya, E., Monreal, R., Gonzalez-Leon, C.M., Pi-Puig, T., Espinoza-Maldonado, I.G., and Grijalva-Noriega, F.J., 2016, Paleoclimate, paleoweathering and paleoredox conditions of lower Cretaceous shales from the Mural Limestone, Tuape section, northern Sonora, Mexico: constraints from clay mineralogy and geochemistry. Revista Mexicana De Ciencias Geologicas, 33, 34–48.

    Google Scholar 

  • Mameli, P., Mongelli, G., Oggiano, G., and Dinelli, E., 2007, Geological, geochemical and mineralogical features of some bauxite deposits from Nurra (Western Sardinia, Italy): insights on conditions of formation and parental affinity. International Journal of Earth Sciences, 96, 887–902.

    Article  ADS  CAS  Google Scholar 

  • Meybeck, M., 1987, Global chemical weathering of surficial rocks estimated from river dissolved loads. American Journal of Science, 287, 401–428.

    Article  ADS  CAS  Google Scholar 

  • Mongelli, G., Boni, M., Buccione, R., and Sinisi, R., 2014, Geochemistry of the Apulian karst bauxites (Southern Italy): chemical fractionation and parental affinities. Ore Geology Reviews, 63, 9–21.

    Article  Google Scholar 

  • Nagarajan, R., Armstrong-Altrin, J.S., Nagendra, R., Madhavaraju, J., and Moutte, J., 2007, Petrography and geochemistry of terrigenous sedimentary rocks in the Neoproterozoic Rabanpalli Formation, Bhima Basin, southern India: implications for paleoweathering condition, provenance, and source rock composition. Journal of the Geological Society of India, 70, 297–312.

    CAS  Google Scholar 

  • Nesbitt, H.W., 1979, Mobility and fractionation of rare earth elements during weathering of a granodiorite. Nature, 279, 206–210.

    Article  ADS  CAS  Google Scholar 

  • Nesbitt, H.W. and Young, G.M., 1982, Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, 715–717.

    Article  ADS  CAS  Google Scholar 

  • Ohta, T. and Arai, H., 2007, Statistical empirical index of chemical weathering in igneous rocks: a new tool for evaluating the degree of weathering. Chemical Geology, 240, 280–297.

    Article  ADS  CAS  Google Scholar 

  • Oliva, P., Viers, J., and Dupre, B., 2003, Chemical weathering in granitic environments. Chemical Geology, 202, 225–256.

    Article  ADS  CAS  Google Scholar 

  • Parker, A., 1970, An index of weathering for silicate rocks. Geological Magazine, 107, 501–504.

    Article  ADS  CAS  Google Scholar 

  • Parthasarathy, P., Madhavaraju, J., Ramirez-Montoya, E., and Ramasamy, S., 2020, Geochemistry of estuarine sediments from Marakkanam area, Tamil Nadu, India: source area weathering and provenance. Arabian Journal of Geosciences, 13, 157. https://doi.org/10.1007/s12517-019-5008-6

    Article  CAS  Google Scholar 

  • Patino, L.C., Velbel, M.A., Price, J.R., and Wade, J.A., 2003, Trace element mobility during spheroidal weathering of basalts and andesites in Hawaii and Guatemala. Chemical Geology, 202, 343–364.

    Article  ADS  CAS  Google Scholar 

  • Powers, R.W., Ramirez, L.F., Redmond, C.D., and Elberg Jr., E.L., 1966, Geology of the Arabian Peninsula: sedimentary geology of Saudi Arabia. USGS Professional Paper, 560-D, U.S. Geological Survey, 147 p. https://doi.org/10.3133/pp560D

  • Putzolu, F., Piccolo Papa, A., Mondillo, N., Boni, M., Balassone, G., and Mormone, A., 2018, Geochemical characterization of bauxite deposits from the Abruzzi Mining District (Italy). Minerals, 8, 298. https://doi.org/10.3390/min8070298

    Article  ADS  Google Scholar 

  • Ramírez-Montoya, E., Madhavaraju, J., and Monreal, R., 2021, Geochemistry of the sedimentary rocks from the Antimonio and Rio Asuncion Formations, Sonora, Mexico: implications for weathering, provenance and chemostratigraphy. Journal of South American Earth Sciences, 106, 103035, https://doi.org/10.1016/j.jsames.2020.103035

    Article  Google Scholar 

  • Ramírez-Montoya, E., Madhavaraju, J., Monreal, R., González-León, C.M., Grijalva-Noriega, F.J., Saucedo-Samaniego, J.C., and Espinoza-Maldonado, I.G., 2018, Meteorización y marco tectónico de rocas siliciclásticas de la Formación Morita, noreste de Sonora, México. Revista Mexicana de Ciencias Geológicas, 35, 103–115. https://doi.org/10.22201/cgeo.20072902e.2018.2.481

    Article  Google Scholar 

  • Roaldset, E., 1973, Rare earth elements in Quaternary clays of the Numedal area, southem Norway. Lithos, 6, 349–372.

    Article  ADS  CAS  Google Scholar 

  • Robelin, C., Al-Muallem, M.S., Brosse, J.M., Fourniguet, J., Garcin, M., Gouyet, J.F., Halawani, M., Janjou, D., and Le Nindre, Y.M., 1994, Geologic map of the Qibah quadrangle, sheet 27G, Kingdom of Saudi Arabia (Scale 1:250,000). Ministry of Petroleum and Mineral Resources, Geoscience Map Series GM-136, 33 p.

  • Ronov, A.B., Balashov, Y.A., and Migdisov, A.A., 1967, Geochemistry of the rare earths in the sedimentary cycle. Geochemistry International, 4, 1–17.

    Google Scholar 

  • Schroll, E. and Sauer, D., 1968, Beitrage zur geochemie von Titan, Chrom, Nikel, Cobalt, Vanadium und Molibdan in bauxitischen Gesteinen und problem der stofflichen herkunft des Aluminiums. Travaux du ICSOBA, 5, 83–96.

    Google Scholar 

  • Stallard, R.F., 1995, Tectonic, environmental, and human aspects of weathering and erosion: a global review from a steady-state perspective. Annual Review of Earth and Planetary Sciences, 23, 11–40.

    Article  ADS  CAS  Google Scholar 

  • Steinberg, M. and Courtois, C., 1976, Le comportement des terres rares au cours de l’alteration et ses consequences. Bulletin de la Société Géologique de France, S7-XVIII, 13–20. https://doi.org/10.2113/gssgfbull.S7-XVIII.1.13

    Article  Google Scholar 

  • Tardy, Y., Kobilsek, B., Roquin, C., and Paquet, H., 1990, Influence of Periatlantic climates and paleoclimates on the distribution and mineralogical composition of bauxites and ferricretes. Chemical Geology, 84, 179–182.

    Article  ADS  Google Scholar 

  • Tardy, Y. and Roquin, C., 1998, Dérive des Continents, Paléoclimats et Altérations Tropicales. BRGM, Orléans, France, 473 p. (in French)

    Google Scholar 

  • Taylor, G., Eggleton, R.A., Foster, L.D., Tilley, D.B., Le Gleuher, M., and Morgan, C.M., 2008, Nature of the Weipa Bauxite deposit, northern Australia. Australian Journal of Earth Sciences, 55, S45–S70. https://doi.org/10.1080/08120090802438241

    Article  ADS  CAS  Google Scholar 

  • Taylor, S.R. and McLennan, S.M., 1985, The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publication, Oxford, UK, 312 p.

    Google Scholar 

  • Uysal, I.T. and Golding, S.D., 2003, Rare earth element fractionation in authigenic illite-smectite from Late Permian clastic rocks, Bowen Basin, Australia: implications for physico-chemical environments of fluids during illitization. Chemical Geology, 193, 167–179.

    Article  ADS  CAS  Google Scholar 

  • Valeton, I., Biermann, M., Reche, R., and Rosenberg, F., 1987, Genesis of nickel laterites and bauxites in Greece during the Jurassic and Cretaceous, and their relation to ultrabasic parent rocks. Ore Geology Reviews, 2, 359–404.

    Article  CAS  Google Scholar 

  • Vincent, P., 2008, Saudi Arabia: An Environmental Overview. Taylor & Francis, London, UK., 332 p. https://doi.org/10.1201/9780203030882

    Book  Google Scholar 

  • White, A.F. and Blum, A.E., 1995, Effects of climate on chemical-weathering in watersheds. Geochimica et Cosmochimica Acta, 59, 1729–1747.

    Article  ADS  CAS  Google Scholar 

  • Wilde, P., Quinby-Hunt, M.S., and Erdtmann, B.D., 1996, The whole-rock cerium anomaly: a potential indicator of eustatic sea-level changes in shales of the anoxic facies. Sedimentary Geology, 101, 43–53.

    Article  ADS  CAS  Google Scholar 

  • Worrall, F. and Pearson, D., 2001, The development of acidic ground-waters in coal-bearing strata: Part I. Rare earth element fingerprinting. Applied Geochemistry, 16, 1465–1480. https://doi.org/10.1016/S0883-2927(01)00018-X

    Article  ADS  CAS  Google Scholar 

  • Yahya, M.M.A., Hakimi, M.H., Galmed, M.A., El-Sabrouty, M.N., and Ibrahimd, Y.K., 2018, Paleoenvironmental and paleoclimatic conditions during the deposition of the bauxite layer (Upper Cretaceous) using multi-proxy geochemical and palynological analyses, in the Zabirah Area, northern Saudi Arabia. Arabian Journal of Geosciences, 11, 15. https://doi.org/10.1007/s12517-017-3379-0

    Article  Google Scholar 

  • Zaid, S.M., 2012, Provenance, diagenesis, tectonic setting and geochemistry of Rudies sandstone (Lower Miocene), Warda Field, Gulf of Suez, Egypt. Journal of African Earth Sciences, 66–67, 56–71. https://doi.org/10.1016/j.jafrearsci.2012.03.008

    Article  ADS  Google Scholar 

  • Zarasvandi, A., Carranza, E.J.M., and Ellahi, S.S., 2012, Geological, geochemical, and mineralogical characteristics of the Mandan and Deh-now bauxite deposits, Zagros Fold Belt, Iran. Ore Geology Reviews, 48, 125–138. https://doi.org/10.1016/j.oregeorev.2012.02.010

    Article  Google Scholar 

  • Zarasvandi, A., Zamanian, H., and Hejazi, E., 2010, Immobile elements and mass changes geochemistry at Sar-Faryab bauxite deposit, Zagros Mountains, Iran. Journal of Geochemical Exploration, 107, 77–85.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was funded by the National Plan for Science, Technology and Innovation (MAARIFAH), King Abdulaziz City for Science and Technology, Kingdom of Saudi Arabia, Award Number (14-SPA686-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud A. Galmed.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galmed, M.A., Gahlan, H.A., Ghrefat, H.A. et al. Petrology and geochemistry of the Az Zabirah south zone bauxite deposit at Al Ba’itha mine, north-central Saudi Arabia. Geosci J (2024). https://doi.org/10.1007/s12303-023-0046-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12303-023-0046-1

Key words

Navigation