Skip to main content
Log in

Petrogenetic and metallogenic implications of the Late Mesozoic intrusive rocks in the Xuancheng ore district, eastern China: insight from in situ analysis of apatite

  • Article
  • Published:
Geosciences Journal Aims and scope Submit manuscript

Abstract

The Xuancheng ore district is a newly discovered ore district within the Middle-Lower Yangtze River Metallogenic Belt (MYRMB) of Eastern China. Here we investigated the major and trace element concentrations of apatite crystallizes in ore-related intrusions from three skarn deposits with distinctive metal endowments in this region to further reveal their implications for petrogenesis, metallogenesis, and potential for polymetallic mineralization. The studied apatite samples identified as fluorapatite, display identical contents of F (2.04–3.25 wt%), whereas distinctive variations of Cl (0.04–1.42 wt%). The different correlations between Sr contents and (La/ Yb)N, (La/Sm)N, and (Sm/Yb)N reflect the differentiation process of the magma evolution in the Xuancheng area. Furthermore, the negative Eu/Eu* and Ce/Ce* correlation, and high log fO2 values (−10.02 to −17.40) of apatite studied, further indicate more oxidized and moderate oxidized environments. Apatite chemistry is characterized by LREE enriched patterns and has high (La/Yb)N ratios with a moderate negative Eu anomaly, suggesting that these plutons originated from enriched mantle mixing with various degrees of crustal components. Meanwhile, the visible differences in apatites among skarn Cu fertile, Cu-Mo fertile, and Cu-W fertile plutons were attributed to distinctive source affinities that ultimately control their metal endowments. Also, our study demonstrates that the Cl, F/Cl, and Eu/Eu* ratios in apatite can act as powerful pointers for ore varieties and mineral exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Archibald, S.M., Migdisov, A.A., and Williams-Jones, A.E., 2001, The stability of Au-chloride complexes in water vapor at elevated temperatures and pressures. Geochimica et Cosmochimica Acta, 65, 4413–4423.

    Article  Google Scholar 

  • Belousova, E., Griffin, W., O’Reilly, S.Y., and Fisher, N., 2002, Apatite as an indicator mineral for mineral exploration: trace-element compositions and their relationship to host rock type. Journal of Geochemical Exploration, 76, 45–69.

    Article  Google Scholar 

  • Blevin, P.L. and Chappell, B.W., 1995, Chemistry, origin, and evolution of mineralized granites in the Lachlan Fold Belt, Australia: the metallogeny of I- and S-type granites. Economic Geology, 90, 1604–1619.

    Article  Google Scholar 

  • Bouzari, F., Hart, C.J., Bissig, T., and Barker, S., 2016, Hydrothermal alteration revealed by apatite luminescence and chemistry: a potential indicator mineral for exploring covered porphyry copper deposits. Economic Geology, 111, 1397–1410.

    Article  Google Scholar 

  • Boyce, J.W. and Hervig, R.L., 2008, Magmatic degassing histories from apatite volatile stratigraphy. Geology, 36, 63–66.

    Article  Google Scholar 

  • Boyce, J.W. and Hervig, R.L., 2009, Apatite as a monitor of late-stage magmatic processes at Volcán Irazú, Costa Rica. Contributions to Mineralogy and Petrology, 157, 135–145.

    Article  Google Scholar 

  • Bruand, E., Fowler, M., Storey, C., Laurent, O., Antoine, C., Guitreau, M., Heilimo, E., and Nebel, O., 2020, Accessory mineral constraints on crustal evolution: elemental fingerprints for magma discrimination. Geochemical Perspectives Letters, 13, 7–12.

    Article  Google Scholar 

  • Cao, M.J., Li, G.M., Qin, K.Z., Seitmuratova, E.Y., and Liu, Y.S., 2012, Major and trace element characteristics of apatites in granitoids from Central Kazakhstan: implications for petrogenesis and mineralization. Resource Geology, 62, 63–83.

    Article  Google Scholar 

  • Chang, Y.F., Li, J.H., and Song, C.Z., 2019, The regional tectonic framework and some new understandings of the Middle-Lower Yangtze River Valley Metallogenic Belt. Acta Petrologica Sinica, 35, 3579–3591. (in Chinese with English abstract)

    Article  Google Scholar 

  • Chang, Y.F., Liu, X.P., and Wu, Y.C., 1991, The Copper-Iron Belt of the Lower and Middle Reaches of the Changjiang River. Geological Publishing House, Beijing, 56 p. (in Chinese)

    Google Scholar 

  • Chen, L. and Zhang, Y., 2018, In situ major-, trace-elements and Sr-Nd isotopic compositions of apatite from the Luming porphyry Mo deposit, NE China: constraints on the petrogenetic-metallogenic features. Ore Geology Reviews, 94, 93–103.

    Article  Google Scholar 

  • Chen, L., Zheng, Y.F., and Zhao, Z.F., 2020, Origin of arc-like magmatism at fossil convergent plate boundaries: geochemical insights from Mesozoic igneous rocks in the Middle to Lower Yangtze Valley, South China. Earth-Science Reviews, 211, 103416. https://doi.org/10.1016/j.earscirev.2020.103416

    Article  Google Scholar 

  • Chu, M.F., Wang, K.L., Griffin, W.L., Chung, S.L., O’Reilly, S.Y., Pearson, N.J., and Iizuka, Y., 2009, Apatite composition: tracing petrogenetic processes in Transhimalayan Granitoids. Journal of Petrology, 50, 1829–1855.

    Article  Google Scholar 

  • Creaser, R.A. and Gray, C.M., 1992, Preserved initial 87Sr86Sr in apatite from altered felsic igneous rocks: a case study from the Middle Proterozoic of South Australia. Geochimica et Cosmochimica Acta, 56, 2789–2795.

    Article  Google Scholar 

  • Cuney, M., 2009, The extreme diversity of uranium deposits. Mineralium Deposita, 44, 3–9.

    Article  Google Scholar 

  • Deng, J.H., Yang, X.Y., Li, S., Gu, H.L., Mastoi, A.S., and Sun, W.D., 2016, Partial melting of subducted paleo-Pacific plate during the early Cretaceous: constraint from adakitic rocks in the Shaxi porphyry Cu-Au deposit, Lower Yangtze River Belt. Lithos, 262, 651–667. https://doi.org/10.1016/j.lithos.2016.07.039

    Article  Google Scholar 

  • Ding, T., Ma, D.S., Lu, J.J., and Zhang, R.Q., 2015, Apatite in granitoids related to polymetallic mineral deposits in southeastern Hunan Province, Shi-Hang zone, China: implications for petrogenesis and metallogenesis. Ore Geology Reviews, 69, 104–117.

    Article  Google Scholar 

  • Gu, H.L., Yang, X.Y., Deng, J.H., Duan, L.A., and Liu, L., 2017, Geochemical and zircon U-Pb geochronological study of the Yangshan A-type granite: insights into the geological evolution in south Anhui, eastern Jiangnan Orogen. Lithos, 284, 156–170.

    Article  Google Scholar 

  • Harlov, D.E., 2015, Apatite: a fingerprint for metasomatic processes. Elements, 11, 171–176.

    Article  Google Scholar 

  • Henrichs, I.A., O’Sullivan, G., Chew, D.M., Mark, C., Babechuk, M.G., Mckenna, C., and Emo, R., 2018, The trace element and U-Pb systematics of metamorphic apatite. Chemical Geology, 483, 218–238.

    Article  Google Scholar 

  • Hong, D.J., Huang, Z.Z., Chan, S.W., and Wang, X.H., 2017, Geological characteristics and exploration directions of the Cu-polymetallic ore deposits in the Magushan-Qiaomaishan areas in Xuancheng, Anhui Province. East China Geology, 38, 28–36. (in Chinese with English abstract)

    Google Scholar 

  • Huang, R.S. and Cao, J.Z., 2010, Analysis and study on Maoshan nappe tectonic zone in Jiangsu. Journal of Geology, 34, 6–9. (in Chinese with English abstract)

    Google Scholar 

  • Huang, J.M., Yi, H., and Chen, B.X., 2013, Geological characters of Kunshan Cu-polymetallic mineralization district in Xuancheng City, Anhui Province. Journal of Hefei University of Technology, 36, 217–223. (in Chinese with English abstract)

    Google Scholar 

  • Hughes, J.M. and Rakovan, J.F., 2015, Structurally robust, chemically diverse: apatite and apatite supergroup minerals. Elements, 11, 165–170.

    Article  Google Scholar 

  • Jia, F.D., Zhang, C.Q., Liu, H., Meng, X.Y., and Kong, Z.G., 2020, In situ major and trace element compositions of apatite from the Yangla skarn Cu deposit, southwest China: implications for petrogenesis and mineralization. Ore Geology Reviews, 127, 103360. https://doi.org/10.1016/j.oregeorev.2020.103360

    Article  Google Scholar 

  • Jiang, F., Xu, X.C., Qian, S.L., Wang, M., Yang, Q.G., and Li, K., 2017, Zircon U-Pb age and genesis of the ore-bearing quartz-dioritic porphyries in the chating Cu-Au ore deposit, Xuancheng City, Anhui Province. Geological Journal of China Universities, 23, 591–605. (in Chinese with English abstract)

    Google Scholar 

  • Jiang, X.Y., Li, H., Ding, X., Wu, K., Guo, J., Liu, J.Q., and Sun, W.D., 2018a, Formation of A-type granites in the Lower Yangtze River Belt: a perspective from apatite geochemistry. Lithos, 304, 125–134.

    Article  Google Scholar 

  • Jiang, X.Y., Ling, M.X., Wu, K., Zhang, Z.K., Sun, W.D., Sui, Q.L., and Xia, X.P., 2018b, Insights into the origin of coexisting A1-and A2-type granites: implications from zircon Hf-O isotopes of the Huayuangong intrusion in the Lower Yangtze River Belt, eastern China. Lithos, 318, 230–243.

    Article  Google Scholar 

  • Kendrick, M.A., Scambelluri, M., Honda, M., and Phillips, D., 2011, High abundances of noble gas and chlorine delivered to the mantle by serpentinite subduction. Nature Geoscience, 4, 807–812.

    Article  Google Scholar 

  • Ketcham, R.A., Donelick, R.A., Balestrieri, M.L., and Zattin, M., 2009, Reproducibility of apatite fission-track length data and thermal history reconstruction. Earth and Planetary Science Letters, 284, 504–515.

    Article  Google Scholar 

  • Lassiter, J.C., Hauri, E.H., Nikogosian, I.K., and Barsczus, H.G., 2002, Chlorine-potassium variations in melt inclusions from Raivavae and Rapa, Austral Islands: constraints on chlorine recycling in the mantle and evidence for brine-induced melting of oceanic crust. Earth and Planetary Science Letters, 202, 525–540.

    Article  Google Scholar 

  • Li, H.J. and Hermann, J., 2015, Apatite as an indicator of fluid salinity: an experimental study of chlorine and fluorine partitioning in subducted sediments. Geochimica et Cosmochimica Acta, 166, 267–297.

    Article  Google Scholar 

  • Li, H.J. and Hermann, J., 2017, The effect of fluorine and chlorine on trace element partitioning between apatite and sediment melt at subduction zone conditions. Chemical Geology, 473, 55–73.

    Article  Google Scholar 

  • Li, J.W., Zhao, X.F., Zhou, M.F., Vasconcelos, P., Ma, C.Q., Deng, X.D., de Souza, Z.S., Zhao, Y.X., and Wu, G., 2008, Origin of the Tongshankou porphyry-skarn Cu-Mo deposit, eastern Yangtze craton, Eastern China: geochronological, geochemical, and Sr-Nd-Hf isotopic constraints. Mineralium Deposita, 43, 315–336.

    Article  Google Scholar 

  • Li, Y., Yuan, F., Jowitt, S.M., Deng, Y.F., Hu, X.Y., Liu, G.X., Li, X.H., and Zhou, T.F., 2020, Geochronology, petrogenesis and metallogenic implications of mineralization-related intrusive rocks in the Xuancheng ore district, Eastern China. Ore Geology Reviews, 125, 103690. https://doi.org/10.1016/j.oregeorev.2020.103690

    Article  Google Scholar 

  • Li, Z.H., Duan, D.F., Jiang, S.Y., Ma, Y., and Yuan, H.W., 2018, In situ analysis of major elements, trace elements and Sr isotopic compositions of apatite from the granite in the Chengchao skarn-type Fe deposit, Edong ore district: implications for petrogenesis and mineralization. Journal of Earth Science, 29, 295–306.

    Article  Google Scholar 

  • Li, Z.X. and Li, X.H., 2007, Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: a flat-slab subduction model. Geology, 35, 179–182.

    Article  Google Scholar 

  • Ling, M.X., Wang, F.Y., Ding, X., Hu, Y.H., Zhou, J.B., Zartman, R.E., Yang, X.Y., and Sun, W.D., 2009, Cretaceous ridge subduction along the lower Yangtze River belt, eastern China. Economic Geology, 104, 303–321.

    Article  Google Scholar 

  • Liu, X.M. and Duan, L.A., 2015, Geological features and metallogenic regularity of the Tongshan-Qiaomaishan Cu-S-W-Fe polymetallic ore deposit in Xuancheng City. Geology of Anhui, 25, 174–178. (in Chinese with English abstract)

    Google Scholar 

  • Liu, Y.S., Hu, Z.C., Gao, S., Günther, D., Xu, J., Gao, C.G., and Chen, H.H., 2008, In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257, 34–43.

    Article  Google Scholar 

  • Mao, J.W., Duan, C., Liu, J.L., and Zhang, C., 2012, Metallogeny and corresponding mineral deposit model of the Cretaceous terrestrial volcanic-intrusive rocks-related polymetallic iron deposits in Middle-Lower Yangtze River Valley. Acta Petrologica Sinica, 28, 1–14. (in Chinese with English abstract)

    Google Scholar 

  • Mao, J.W., Wang, Y.T., Lehmann, B., Yu, J.J., Du, A.D., Mei, Y.X., Li, Y.F., Zang, W.S., Stein, H.J., and Zhou, T.F., 2006, Molybdenite Re-Os and albite 40Ar/39Ar dating of Cu-Au-Mo and magnetite porphyry systems in the Yangtze River valley and metallogenic implications. Ore Geology Reviews, 29, 307–324.

    Article  Google Scholar 

  • Mao, J.W., Xie, G.Q., Duan, C., Pirajno, F., Ishiyama, D., and Chen, Y.C., 2011, A tectono-genetic model for porphyry-skarn-stratabound Cu-Au-Mo-Fe and magnetite-apatite deposits along the Middle-Lower Yangtze River Valley, Eastern China. Ore Geology Reviews, 43, 294–314.

    Article  Google Scholar 

  • Mao, M., Rukhlov, A.S., Rowins, S.M., Spence, J., and Coogan, L.A., 2016, Apatite trace element compositions: a robust new tool for mineral exploration. Economic Geology, 111, 1187–1222.

    Article  Google Scholar 

  • Miles, A.J., Graham, C.M., Hawkesworth, C.J., Gillespie, M.R., and Hinton, R.W., 2013, Evidence for distinct stages of magma history recorded by the compositions of accessory apatite and zircon. Contributions to Mineralogy and Petrology, 166, 1–19.

    Article  Google Scholar 

  • Miles, A.J., Graham, C.M., Hawkesworth, C.J., Gillespie, M.R., Hinton, R.W., and Bromiley, G.D., 2014, Apatite: a new redox proxy for silicic magmas? Geochimica et Cosmochimica Acta, 132, 101–119.

    Article  Google Scholar 

  • Palma, G., Barra, F., Reich, M., Valencia, V., Simon, A.C., Vervoort, J., Leisen, M., and Romero, R., 2019, Halogens, trace element concentrations, and Sr-Nd isotopes in apatite from iron oxide-apatite (IOA) deposits in the Chilean iron belt: evidence for magmatic and hydrothermal stages of mineralization. Geochimica et Cosmochimica Acta, 246, 515–540.

    Article  Google Scholar 

  • Pan, L.C., Hu, R.Z., Wang, X.S., Bi, X.W., Zhu, J.J., and Li, C., 2016, Apatite trace element and halogen compositions as petrogenetic-metallogenic indicators: examples from four granite plutons in the Sanjiang region, SW China. Lithos, 254, 118–130.

    Article  Google Scholar 

  • Pan, Y.M. and Dong, P., 1999, The Lower Changjiang (Yangzi/Yangtze River) metallogenic belt, east central China: intrusion-and wall rockhosted Cu-Fe-Au, Mo, Zn, Pb, Ag deposits. Ore Geology Reviews, 15, 177–242.

    Article  Google Scholar 

  • Piccoli, P.M. and Candela, P.A., 2002, Apatite in igneous systems. Reviews in Mineralogy and Geochemistry, 48, 255–292.

    Article  Google Scholar 

  • Qi, H.S., Lu, S.M, Yang, X.Y., Deng, J.H., Zhou, Y.Z., Zhao, L.L., Li, J.S., and Lee, I., 2020a, The role of magma mixing in generating granodioritic intrusions related to Cu-W mineralization: a case study from Qiaomaishan deposit, eastern China. Minerals, 10, 171. https://doi.org/10.3390/min10020171

    Article  Google Scholar 

  • Qi, H.S., Lu, S.M., Yang, X.Y., Zhao, L.L., Zhou, Y.Z., Deng, J.H., and Li, J.S., 2020b, Genesis of Cretaceous igneous rocks and its related large scale porphyry Cu-Au mineralization in Chating, the Middle-Lower Yangtze River Metallogenic Belt: the geochemical constrains. Ore Geology Reviews, 127, 103793. https://doi.org/10.1016/j.oregeorev.2020.103793

    Article  Google Scholar 

  • Qi, H.S., Lu, S.M., Yang, X.Y., Zhou, Y.Z., Zhao, L.L., Deng, J.H., and Li, J.S., 2019, Formation of the granodiorite-hosting Magushan Cu-Mo polymetallic deposit in southern Anhui, eastern China: evidences from geochronology and geochemistry. Minerals, 9, 475. https://doi.org/10.3390/min9080475

    Article  Google Scholar 

  • Qi, H.S., Yang, X.Y., Lu, S.M., Tang, C., Cao, J.Y., Zhao, L.L., Deng, J.H., Sun, C., Zhao, Z., and Lee, I., 2020c, Ore genesis and fluid evolution of the Qiaomaishan Cu-W deposit, in the Middle-Lower Yangtze River Metallogenic Belt: evidence from in situ analyses of apatite and scheelite. Ore Geology Reviews, 127, 103864. https://doi.org/10.1016/j.oregeorev.2020.103864

    Article  Google Scholar 

  • Qian, L., Wang, Y., Xie, J.C., and Sun, W.D., 2019, The Late Mesozoic granodiorite and polymetallic mineralization in southern Anhui Province, China: a perspective from apatite geochemistry. Solid Earth Sciences, 4, 178–189.

    Article  Google Scholar 

  • Reynard, B., 2013, Serpentine in active subduction zones. Lithos, 178, 171–185.

    Article  Google Scholar 

  • Sha, L.K. and Chappell, B.W., 1999, Apatite chemical composition, determined by electron microprobe and laser-ablation inductively coupled plasma mass spectrometry, as a probe into granite petrogenesis. Geochimica et Cosmochimica Acta, 63, 3861–3881.

    Article  Google Scholar 

  • Stepanov, A.S., Hermann, J., Rubatto, D., and Rapp, R.P., 2012, Experimental study of monazite/melt partitioning with implications for the REE, Th and U geochemistry of crustal rocks. Chemical Geology, 300–301, 200–220.

    Article  Google Scholar 

  • Stroncik, N.A. and Haase, K.M., 2004, Chlorine in oceanic intraplate basalts: constraints on mantle sources and recycling processes. Geology, 32, 945–948.

    Article  Google Scholar 

  • Sun, S.S. and McDonough, W.F., 1989, Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D. and Norry, M.J. (eds.), Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42, p. 313–345.

    Google Scholar 

  • Sun, S.J., Yang, X.Y., Wang, G.J., Sun, W.D., Zhang, H., Li, C.Y., and Ding, X., 2019, In situ elemental and Sr-O isotopic studies on apatite from the Xu-Huai intrusion at the southern margin of the North China Craton: implications for petrogenesis and metallogeny. Chemical Geology, 510, 200–214.

    Article  Google Scholar 

  • Sun, W.D., Binns, R.A., Fan, A.C., Kamenetsky, V.S., Wysoczanski, R., Wei, G.J., Hu, Y.H., and Arculus, R.J., 2007a, Chlorine in submarine volcanic glasses from the eastern Manus basin. Geochimica et Cosmochimica Acta, 71, 1542–1552.

    Article  Google Scholar 

  • Sun, W.D., Ding, X., Hu, Y.H., and Li, X.H., 2007b, The golden transformation of the Cretaceous plate subduction in the west Pacific. Earth and Planetary Science Letters, 262, 533–542.

    Article  Google Scholar 

  • Sun, W.D., Huang, R.F., Li, H., Hu, Y.B., Zhang, C.C., Sun, S.J., Zhang, L.P., Ding, X., Li, C.Y., and Zartman, R.E., 2015, Porphyry deposits and oxidized magmas. Ore Geology Reviews, 65, 97–131.

    Article  Google Scholar 

  • Sun, W.D., Ling, M.X., Yang, X.Y., Fan, W.M., Ding, X., and Liang, H.Y., 2010, Ridge subduction and porphyry copper-gold mineralization: an overview. Science China Earth Sciences, 53, 475–484.

    Article  Google Scholar 

  • Sun, W.D., Xie, Z., Chen, J.F., Zhang, X., Chai, Z.F., Du, A.D., Zhao, J.S., Zhang, C.H., and Zhou, T.F., 2003, Os-Os dating of copper and molybdenum deposits along the middle and lower reaches of the Yangtze River, China. Economic Geology, 98, 175–180.

    Google Scholar 

  • Vigneresse, J.L., 2009, Evaluation of the chemical reactivity of the fluid phase through hard-soft acid-base concepts in magmatic intrusions with applications to ore generation. Chemical Geology, 263, 69–81.

    Article  Google Scholar 

  • Wang, Y.S., Tian, Z.Q., Song, C.Z., and Bai, Q., 2019, Structural characteristics and geochronology of thrust faulting in the Jiulianshan anticlinorium, the Lower Yangtze region, East China. Geological Journal, 54, 913–928.

    Article  Google Scholar 

  • Webster, J. and Piccoli, P., 2015, Magmatic apatite: a powerful, yet deceptive, mineral. Elements, 11, 177–182.

    Article  Google Scholar 

  • Webster, J., Thomas, R., Förster, H.J., Seltmann, R., and Tappen, C., 2004, Geochemical evolution of halogen-enriched granite magmas and mineralizing fluids of the Zinnwald tin-tungsten mining district, Erzgebirge, Germany. Mineralium Deposita, 39, 452–472.

    Article  Google Scholar 

  • Xiao, Q.L., Zhou, T.F., Wang, S.W., Yuan, F., White, N.C., Wang, F.Y., Xie, Z.J., and Liu, J., 2019, Genesis of Chating Cu-Au deposit in the Middle-Lower Yangtze River Metallogenic Belt, Eastern China: implications from magnetite and biotite geochemistry. Ore Geology Reviews, 106, 113–133.

    Article  Google Scholar 

  • Xie, J.C., Wang, Y., Li, Q.Z., Yan, J., and Sun, W.D., 2018, Petrogenesis and metallogenic implications of Late Mesozoic intrusive rocks in the Tongling region, eastern China: a case study and perspective review. International Geology Review, 60, 1361–1380.

    Article  Google Scholar 

  • Xie, J.C., Yang, X.Y., Sun, W.D., and Du, J.G., 2012, Early Cretaceous dioritic rocks in the Tongling region, eastern China: implications for the tectonic settings. Lithos, 150, 49–61.

    Article  Google Scholar 

  • Xu, X.C., An, Y.H., Xu, X.Y., and Fu, Z.Y., 2020, Zircon U-Pb ages and element geochemistry characteristics of magmatic rocks in Nanling-Xuancheng area of Anhui, China. Journal of Earth Sciences and Environment, 42, 15–35. (in Chinese with English abstract)

    Google Scholar 

  • Xue, H.M., Ma, F., Song, Y.Q., and Xie, Y.P., 2010, Geochronology and geochemistry of the Neoproterozoic granitoid association from eastern segment of the Jiangnan orogen, China: constraints on the timing and process of amalgamation between the Yangtze and Cathaysia Blocks. Acta Petrologica Sinica, 26, 3215–3244. (in Chinese with English abstract)

    Google Scholar 

  • Yan, J., Liu, J.M., Li, Q.Z., Xing, G.F., Liu, X.Q., Xie, J.C., Chu, X.Q., and Chen, Z.H., 2015, In situ zircon Hf-O isotopic analyses of late Mesozoic magmatic rocks in the Lower Yangtze River Belt, central eastern China: implications for petrogenesis and geodynamic evolution. Lithos, 227, 57–76.

    Article  Google Scholar 

  • Yang, F., Santosh, M., Glorie, S., Xue, F., Zhang, S., and Zhang, X.H., 2020, Apatite geochronology and chemistry of Luanchuan granitoids in the East Qinling Orogen, China: implications for petrogenesis, metallogenesis and exploration. Lithos, 378–379, 105797. https://doi.org/10.1016/j.lithos.2020.105797

    Article  Google Scholar 

  • Yang, X.Y. and Lee, I., 2011, Review of the stable isotope geochemistry of Mesozoic igneous rocks and Cu-Au deposits along the middle-lower Yangtze metallogenic belt, China. International Geology Review, 53, 741–757.

    Article  Google Scholar 

  • Zafar, T., Rehman, H.U., Mahar, M.A., Alam, M., Oyebamiji, A., Rehman, S.U., and Leng, C.B., 2020, A critical review on petrogenetic, metallogenic and geodynamic implications of granitic rocks exposed in north and east China: new insights from apatite geochemistry. Journal of Geodynamic, 136, 101723. https://doi.org/10.1016/j.jog.2020.101723

    Article  Google Scholar 

  • Zhang, H., Liang, H.Y., Zhao, Y., Ling, M.X., and Sun, W.D., 2018, Investigation of the geochemical characteristics of apatite trace elements from the Yulong porphyry copper belt, Eastern Tibet. Geochimica, 47, 14–32. (in Chinese with English abstract)

    Google Scholar 

  • Zhang, X.B., Guo, F., Zhang, B., Zhao, L., Wu, Y.M., Wang, G.Q., and Alemayehu, M., 2020, Magmatic evolution and post-crystallization hydrothermal activity in the early Cretaceous Pingtan intrusive complex, SE China: records from apatite geochemistry. Contributions to Mineralogy and Petrology, 175, 35. https://doi.org/10.1007/s00410-020-1675-2

    Article  Google Scholar 

  • Zhou, T.F., Fan, Y., Yuan, F., Zhang, L.J., Qian, B., Ma, L., Yang, X.F., and Cooke, D.R., 2011, Geochronology and significance of volcanic rocks in the Ning-Wu Basin of China. Science China Earth Sciences, 54, 185–196.

    Article  Google Scholar 

  • Zhu, X.Q., Wang, Z.G., Huang, Y., and Wang, G.L., 2004, REE content and distribution in apatite and its geological tracing significance. Chinese Rare Earths, 25, 41–45. (in Chinese with English abstract)

    Google Scholar 

Download references

Acknowledgments

This contribution is financially supported by grants from the National Natural Science Foundation of China (Nos. 42030801, 42011540384, and 41673040). We thank Yuzhang Zhou, Lili Zhao from the Public Geological Survey Management Center of Anhui Province, and Shilong Qian, Zujun Xie from the No. 322 Geological Team of Anhui Province for their friendly help in the fieldwork.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyong Yang.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Table S1

. The major elements of apatite from ore related intrusions in the Xuancheng area

Table S2

. The trace elements of apatite from ore related intrusions in the Xuancheng area

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, H., Yang, X., Lu, S. et al. Petrogenetic and metallogenic implications of the Late Mesozoic intrusive rocks in the Xuancheng ore district, eastern China: insight from in situ analysis of apatite. Geosci J 26, 113–128 (2022). https://doi.org/10.1007/s12303-021-0019-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12303-021-0019-1

Key words

Navigation