Skip to main content
Log in

CCWater – A computer program for chemical classification of geothermal waters

  • Article
  • Published:
Geosciences Journal Aims and scope Submit manuscript

Abstract

CCWater is a computer program developed for the application of extensively being used triangular diagrams for chemical classification and for identification of equilibrium conditions of waters. The program for these diagrams were developed as a Microsoft Excel™ spreadsheet application and compiled using Visual Basic™ 6.0, which has enabled to execute an Excel™ file from a program created by Visual Basic™ 6.0. The performances of all the four diagrams were validated by applying for the same chemical concentration data of the waters that was used by the original authors of these diagrams. The results obtained from this program were consistent with those of the original authors of these diagrams. As an example, CCWater is applied for chemical characterization of thermal waters from springs and geothermal wells of five geothermal fields of Mexico, in which four are electricity producing fields (Cerro Prieto, CPGF; Las Tres Vírgenes, LTVGF; Los Azufres, LAGF, and Los Humeros, LHGF) and the fifth geothermal field (La Primavera, LPGF) is in exploration stage. Majority of the reservoir temperatures estimated by Na/K geothermometers from geothermal well waters of CPGF, LAGF, LTVGF, and LPGF are within the limits of accepted differences (within ±20%) comparing to the average BHTs of the respective geothermal well. The good performances of the geothermometers in predicting the reservoir temperatures from well waters is expected because the well waters are fully equilibrated and are of Cl type, thus fulfilling the basic requirements. In contrary, though the spring waters of LHGF and LAGF are of HCO3 type (immature) and exhibited no equilibrium conditions, they also predicted reliable reservoir temperatures. This unusual but important observation in the behavior of the spring waters of LHGF and LAGF was made possible to known by chemical classification of these waters in to different groups and estimation of the reservoir temperatures by considering each water type of a geothermal field as a separate group. This application has shown the importance of chemical type of water and the existing chemical equilibrium conditions in successful using these waters in estimation of the reservoir temperatures, and hence the necessity of the computer program like CCWater. The software CCWater is easy to use, reliable, freely available and will be useful in the application of ternary diagrams for chemical characterization and to evaluate the equilibrium conditions of geothermal waters, particularly during the initial stage of geothermal exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguilera, E Öztekin., Cioni, R., Gherardi, F., Magrob, G., Marini, L., and Pang, Z., 2005, Chemical and isotope characteristics of the Chachimbiro geothermal fluids (Ecuador). Geothermics, 34, 495–517.

    Article  Google Scholar 

  • Ahmad, M., Akram, W., Ahmed, N., Tasneem, M.A., and Latif, Z., 2002, Assessment of reservoir temperatures of thermal springs of the northern are–as of Pakistan by chemical and isotope geothermometry. Geothermics, 31, 613–631.

    Article  Google Scholar 

  • Aitchison, J., 1986, The Statistical Analysis of Compositional Data. Chapman and Hall, London, 416 p.

    Book  Google Scholar 

  • Appelo, C.A.J. and Postma, D., 1993, Geochemistry, Grondwater and Pollution. Balkema, Rotterdam, 649 p.

    Google Scholar 

  • Armienta, M., Villaseñor, G., Rodriguez, R., Ongley, L.K., and Mango, H., 2001, The role of arsenic-bearing rocks in groundwater pollution at Zimapán Valley, México. Environmental Geology, 40, 571–581.

    Article  Google Scholar 

  • Arnorsson, S., 1983, Chemical equilibria in icelandic geothermal systems- implications for chemical geothermometry investigations. Geothermics, 12, 119–128.

    Article  Google Scholar 

  • Arnórsson, S. (ed.), 2000, Isotopic and Chemical Techniques in Geothermal Exploration, Development and Use: Sampling Methods, Data Handling, Interpretation. International Atomic Energy Agency, Vienna, 351 p.

    Google Scholar 

  • Barragán, R.M., Nieva, D., Santoyo, E., González, P.E., Verma, M., and López, J., 1991, Geoquímica de fluidos del campo geotérmico de Los Humeros (México). Geotermia, Revista Mexicana de Geoenergía 7, 23–47.

    Google Scholar 

  • Bernard, R., Taran, Y., Pennisi, M., Tello, E., and Ramirez, A., 2011, Chloride and boron behavior in fluid of Los Humeros geothermal field (México): a model based on the existence of deep acid brine. Applied Geochemistry, 26, 2064–2073.

    Article  Google Scholar 

  • Butler, J.C., 1979, Trends in ternary petrologic variation diagrams–fact or fantasy? American Mineralogist, 64, 1115–1121.

    Google Scholar 

  • Chayes, F., 1960, On correlation between variables of constant sum. Journal of Geophysical Research, 65, 4185–4193.

    Article  Google Scholar 

  • Cortecci, G., Dinelli, E., Bolognesi, L., Boschetti, T., and Ferrara. G., 2001, Chemical and isotopic compositions of water and dissolved sulfate from shallow wells on Vulcano Island, Aeolian Archipelago, Italy. Geothermics, 30, 69–591.

    Article  Google Scholar 

  • Ellis, A. and Mahon, W., 1977, Chemistry and Geothermal Systems. Academic Press, New York, 392 p.

    Google Scholar 

  • Fara, M., Chandrasekharam, D., and Minissale, A., 1999, Hydrogeochemistry of Damt thermal spring, Yemen Republic. Geothermics, 28, 241–252.

    Article  Google Scholar 

  • Fatta, D., Papadopoulos, A., and Loizidou, M., 1999, A study on the landfill leachate and its impact on the groundwater quality of the greater area. Environmental Geochemistry and Health, 21, 175–190.

    Article  Google Scholar 

  • Freeze, R.A. and Cherry, J.A., 1979, Groundwater. Prentice-Hall, Englewood Cliffs, 588 p.

    Google Scholar 

  • Fried, J.J., 1975, Groundwater pollution theory, methodology, modelling and practical rules. In: Fried, J.J. (ed.), Developments in Water Science. Elsevier Scientific Publishing Company, Amsterdam, p. 312–346.

    Google Scholar 

  • García-Soto, A.Y., Pandarinath, K., Marrero-Ochoa, J.E., and Díaz-Gómez, C., 2016, Solute geothermometry of Cerro Prieto and Los Humeros geothermal fields Mexico. Arabian Journal of Geosciences, 9, 517. https://doi.org/10.1007/s12517-016-2529-0

    Article  Google Scholar 

  • Giggenbach, W.F., 1988, Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators. Geochimica et Cosmochimica Acta, 52, 2749–2765.

    Article  Google Scholar 

  • Glover, R. and Mroczek, E., 2009, Chemical changes in natural features and well discharges in response to production at Wairakei, New Zeland. Geothermics, 38, 117–133.

    Article  Google Scholar 

  • González-Partida, E., Carrillo-Chávez, A., Levresse, G., Tello-Hinojosa, E., Venegas-Salgado, S., Ramirez-Silva, G., Pal-Verma, M., Tritlla, J., and Camprubi, A., 2005, Hydrogeochemical and isotopic fluid evolution of the Los Azufres geothermal field, Central Mexico. Applied Geochemistry, 20, 23–39.

    Article  Google Scholar 

  • Güleç, N., 1994, Geochemistry of thermal waters and its relation to the volcanism in the Kizilcahamam (Ankara) area, Turkey. Journal of Volcanology and Geothermal Research, 59, 295–312.

    Article  Google Scholar 

  • Gunn, J., Bottrell, S.H., Lowe, D.J., and Worthington, S.R.H., 2006, Deep groundwater flow and geochemical processes in limestone aquifers: evidence from thermal waters in Derbyshire, England, UK. Hydrogeology Journal, 14, 868–881.

    Article  Google Scholar 

  • Gutiérrez-Negrín, L.C.A., 1991, Recursos Geotérmicos en La Primavera, Jalisco. Ciencia y Desarrollo, 16, 57–69.

    Google Scholar 

  • Gutiérrez-Negrín, L. and Izquierdo-Montalvo, G., 2010, Review and update of the main features of the Los Humeros Geothermal Field, Mexico. Proceedings of the World Geothermal Congress 2010, Bali, Apr. 25–30, International Geothermal Association, p. 1–7.

    Google Scholar 

  • Handa, B.K., 1964, Modified procedure for rating of irrigation waters. Soil Science, 98, 264–269.

    Article  Google Scholar 

  • Handa, B.K., 1965, Modified Hill-Piper diagram for classification of groundwater in arid and semi-arid regions. Geochemical Society of India Bulletin, 1, 20–24.

    Google Scholar 

  • Hill, R.A., 1940, Geochemical patterns in the Coachella valley, California. EOS Transactions American Geophysical Union, 21, 46–49.

    Article  Google Scholar 

  • Kumar, P.J.S., 2013, Interpretation of groundwater chemistry using piper and chadha’s diagrams: a comparative study from perambalur taluk. Elixir Geoscience, 54, 12208–12211.

    Google Scholar 

  • Lakshmanan, E., Kannan, R., and Kumar, M.S., 2003, Major ion chemistry and identification of hydrogeochemical processes of ground water in a part of Kancheepuram district, Tamil Nadu, India. Environmental Geosciences, 10, 157–166.

    Article  Google Scholar 

  • Lasaga, A.C., 1984, Chemical kinetics of water rock interactions. Journal of Geophysical Research, 89, 4009–4025.

    Article  Google Scholar 

  • Mahood, G.A., Truesdell, A.H., and Templos, M.L.A., 1983, A reconnaissance geochemical study of La Primavera geothermal area, Jalisco, Mexico. Journal of Volcanology and Geothermal Research, 16, 247–261.

    Article  Google Scholar 

  • Manon, A., Mazor, E., Jimenez, M., Sanchez, A., Fausto, J., and Zenizo, C., 1977, Extensive geochemical studies in the geothermal field of Cerro Prieto, Mexico. Report LBL-70 19, Lawrence Berkeley Laboratory, Berkeley, 121 p.

    Book  Google Scholar 

  • Marques, J., Matias, M., Basto, M., Carreira, P., Aires-Barros, L., and Goff, F., 2010, Hydrothermal alteration of Hercynian granites, its significance to the evolution of geothermal system in granitic rocks. Geothermics, 39, 152–160.

    Article  Google Scholar 

  • Martinez, R.G., Jacquier, B., and Arnold, M., 1996, The d34S composition of sulfates and sulfides at the Los Humeros geothermal system, Mexico and their application to physicochemical fluid evolution. Journal of Volcanology and Geothermal Research, 73, 99–118.

    Article  Google Scholar 

  • Michel, F., Allen, D., and Grant, M., 2002, Hydrogeochemistry and geothermal characteristics of the White Lake basin, South-central British Columbia, Canada. Geothermics, 31, 169–194.

    Article  Google Scholar 

  • Mohammadi, Z., Bagheri, R., and Jahanshahi, R., 2010, Hydrogeochemistry and geothermometry of Changal thermal springs, Zagros region, Iran. Geothermics, 39, 242–249.

    Article  Google Scholar 

  • Molina, B.R. and Banwell, C.J., 1970, Chemical studies in Mexican geothermal fields. Geothermics, 2, 1377–1391.

    Article  Google Scholar 

  • Morris, M.D., Berk, J.A., Krulik, J.W., and Eckstein, Y., 1983, A computer program for a trilinear diagram plot and analysis of water mixing systems. Ground Water, 21, 67–78.

    Article  Google Scholar 

  • Mustard, P.S. and Richardson. J.M., 1990, A Lotus 1-2-3 template for triangular plots. Geobyte, 5, 47–53.

    Google Scholar 

  • Naik, P.K., Awasthi, A.K., Anand, A.V.S.S., and Behera, P., 2009, Hydrogeochemistry of the Koyna River basin, India. Environmental Earth Sciences, 59, 613. https://doi.org/10.1007/s12665-009-0059-8

    Article  Google Scholar 

  • Nicholson, K., 1993, Geothermal Fluids: Chemistry and Exploration Techniques. Springer, New York, 263 p.

    Book  Google Scholar 

  • Ochieng, L., 2013, Overview of geothermal surface exploration methods. Short Course VIII on Exploration for Geothermal Resources, organized by UNU-GTP, GDC and KenGen, Lake Bogoria and Lake Naivasha, Kenya, Oct. 31–Nov. 22, 2013.

    Google Scholar 

  • Öztekin, O. and Çetindag, B., 2005, Hydrogeochemical and isotopic investigation of the Kolan geothermal field, southeastern Turkey. Environmental Geology, 48, 179–188.

    Article  Google Scholar 

  • Palabiyik, Y. and Serpen, U., 2008, Geochemical assessment of Simav geothermal field, Turkey. Revista Mexicana de Ciencias Geológicas, 25, 408–425.

    Google Scholar 

  • Pandarinath, K., 2011, Solute geothermometry of springs and wells of the Los Azufres and Las Tres Vírgenes geothermal fields, Mexico. International Geology Review, 53, 1032–1058.

    Article  Google Scholar 

  • Pandarinath, K., 2014, Testing of the recently developed tectonomagmatic discrimination diagrams from hydrothermally altered igneous rocks of 7 geothermal fields. Turkish Journal of Earth Sciences, 23, 412–426.

    Article  Google Scholar 

  • Pandarinath, K., Shankar, R., Torres-Alvarado, I.S., and Warrier, A.K., 2014, Magnetic susceptibility of volcanic rocks in geothermal areas: application potential in geothermal exploration studies for identification of rocks and zones of hydrothermal alteration. Arabian Journal of Geosciences, 7, 2851–2860.

    Article  Google Scholar 

  • Pandarinath, K. and Domínguez, H., 2015, Evaluation of the solute geothermometry of thermal springs and drilled wells of La Primavera (Cerritos Colorados) geothermal field, Mexico: a geochemometrics approach. Journal of South American Earth Sciences, 62, 109–124.

    Article  Google Scholar 

  • Partida, E.G., Tello, H.E., and Verma, M.P., 2001, Características geoquímicas de las aguas del reservorio del sistema hidrotermal actual de las Tres Vírgenes B. C. S. México. Ingeniería Hidráulica en México, XVI, 47–56.

    Google Scholar 

  • Piper, A.M., 1944, A graphic procedure in the geochemical interpretation of water-analyses. Eos, Transactions American Geophysical Union, 25, 914–928.

    Article  Google Scholar 

  • Pirlo, M.C. and Giblin, A.M., 2004, Application of groundwater-mineral equilibrium calculationsto geochemical exploration for sediment- hosted uranium: observations from the Frome Embayment, South Australia. Geochemistry: Exploration, Environment, Analysis, 4, 113–127.

    Google Scholar 

  • Portugal, E., Birkle, P., Barragán, R., Arellano, G., Tello, E., and Tello, M., 2000, Hydrochemicalisotopic and hydrogeological conceptual model of the Las Tres Vírgenes geothermal field, California Sur, México. Journal of Volcanology and Geothermal Research, 101, 223–244.

    Article  Google Scholar 

  • Prol-Ledesma, R.M., Hernandez-Lombardini, S.I., and Lozano-Santa Cruz, R., 1995, Chemical variations in the rocks of La Primavera geothermal field (Mexico) related with hydrothermal alteration. Proceedings of the 17th New Zealand Geothermal Workshop, Auckland, p. 47–53.

    Google Scholar 

  • Ragland, P.C., 1989, Basic Analytical Petrology. Oxford University Press, New York, 369 p.

    Google Scholar 

  • Ramírez-Domínguez, E., Verma, M.P., Nieva, D., Quijano, J.L., and Moreno, J., 1988, Ebullicion y mezcla en procesos de formacion de Fuentes termales en Los Azufres, Mich. Geotermia Revista Mexicana de Geoenergía, 2, 59–77.

    Google Scholar 

  • Rao, N., 1998, MHPT.BAS: a computer program for modified Hill-Piper diagram for classification of ground water. Computers & Geosciences, 24, 991–1008.

    Article  Google Scholar 

  • Rao, N.S., Rao, P.S., Reddy, G.V., Nagamani, M., Vidyasagar, G., and Satyanarayana, N.L.V.V., 2012, Chemical characteristics of groundwater and assessment of groundwater quality in Varaha River Basin, Visakhapatnam District, Andhra Pradesh, India. Environmental Monitoring and Assessment, 184, 5189–5214.

    Article  Google Scholar 

  • Romani, S., 1981, A new diagram for classification of natural waters and interpretation of chemical analyses data. Studies in Environmental Science, 17, 743–748.

    Article  Google Scholar 

  • Ruffa, G.L., Panichi, C., Kavouridis, T., Liberopoulou, V., Leontiadis, J., and Caprai, A., 1999, Isotope and chemical assessment of geothermal potential of Kos Island Greece. Geothermics, 28, 205–217.

    Article  Google Scholar 

  • Sadashivaiah, C., Ramakrishnaiah, C.R., and Ranganna, G., 2008, Hydrochemical analysis and evaluation of groundwater quality in Tumkur Taluk, Karnataka State, India. International Journal of Environmental Research and Public Health, 5, 158–164.

    Article  Google Scholar 

  • Saibi, H. and Ehara, S., 2010, Temperature and chemical changes in the fluids of the Obama geothermal field (SW Japan) in response to field utilization. Geothermics, 39, 228–241.

    Article  Google Scholar 

  • Stumm, W. and Morgan, J.J., 1995, Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters (3rd edition). John Wiley & Sons, New York, 1040 p.

    Google Scholar 

  • Sugiaman, F., Sunio, E., Molling, P., and Stimac, J., 2004, Geothermal response to production of the Tiwi geothermal field, Philippines. Geothermics, 33, 57–86.

    Article  Google Scholar 

  • Takeno, N., 2000, Thermal and geochemical structure of the Uenotai geothermal system, Japan. Geothermics, 29, 257–277.

    Article  Google Scholar 

  • Taran, Y. and Peiffer, L., 2009, Hydrology, hydrochemistry and geothermal potential of El Chichón volcano-hydrothermal system, Mexico. Geothermics, 38, 370–378.

    Article  Google Scholar 

  • Tello, H., 1992, Composición química de la fase liquida a descarga total ya condiciones de reservorio de pozos geotérmicos de Los Humeros Puebla México. Geofísica internacional, 31, 383–390.

    Google Scholar 

  • Tello, H., Verma, M., and Tovar, A., 2000, Origin of acidity in the Los Humeros, México, geothermal reservoir. Proceedings of the World Geothermal Congress 2000, Kyushu-Yohoku, May 28–Jun. 10, p. 2959–2966.

    Google Scholar 

  • Templos, M.L., 1980, Geoquímica preliminar del campo geotérmico de la primavera Jalisco, México. Comisión Federal de Electricidad, Departamento de Geotermia, Internal Report, 20 p.

    Google Scholar 

  • Valette-Silver, J.N., Esquer, P.I., Elders, W.A., Collier, P.C., and Hoagland, J.R., 1981, Hydrothermal alteration of sediments associated with surface emissions from the Cerro Prieto geothermal field. Proceedings of the 3rd Symposium on the Cerro Prieto Geothermal Field, Baja California, Mexico, San Francisco, Mar. 24–26, p. 140–145.

    Google Scholar 

  • Verma, S.P., 2015, Monte Carlo comparison of conventional ternary diagrams with new log-ratio bivariate diagrams and an example of tectonic discrimination. Geochemical Journal, 49, 393–412.

    Article  Google Scholar 

  • Verma, S.P., Pandarinath, K., Santoyo, E., González-Partida, E., Torres- Alvarado, I.S., and Tello-Hinojosa, E., 2006, Fluid chemistry and temperatures prior to exploitation of the Las Tres Vírgenes geothermal field, Mexico. Geothermics, 35, 156–180.

    Article  Google Scholar 

  • Verma, S.P., Pandarinath, K., and Santoyo, E., 2008, SolGeo: A new computer program for solute geothermometers and its application to Mexican geothermal fields. Geothermics, 37, 597–621.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kailasa Pandarinath.

Additional information

Rodolfo Pérez-Espinosa was on an academic stay at IER-UNAM, during 2010–2011, for realizing this work as a part of his undergraduate thesis.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Espinosa, R., Pandarinath, K. & Hernández-Campos, F.J. CCWater – A computer program for chemical classification of geothermal waters. Geosci J 23, 621–635 (2019). https://doi.org/10.1007/s12303-018-0064-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12303-018-0064-6

Key words

Navigation