Skip to main content
Log in

Metabolic footprints in phosphate-starved plants

  • Review Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Plants’ requirement of Phosphorus (P) as an essential macronutrient is obligatory for their normal growth and metabolism. Besides restricting plants’ primary growth, P depletion affects both primary and secondary metabolism and leads to altered levels of sugars, metabolites, amino acids, and other secondary compounds. Such metabolic shifts help plants optimize their metabolism and growth under P limited conditions. Under P deprivation, both sugar levels and their mobilization change that influences the expression of Pi starvation-inducible genes. Increased sugar repartitioning from shoot to root help root growth and organic acids secretion that in turn promotes phosphate (Pi) uptake from the soil. Other metabolic changes such as lipid remodeling or P reallocation from older to younger leaves release the P from its bound forms in the cell. In this review, we summarize the metabolic footprinting of Pi-starved plants with respect to the benefits offered by such metabolic changes to intracellular Pi homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adeleke R, Nwangburuka C, Oboirien B (2017) Origins, roles and fate of organic acids in soils: a review. S Afr J Bot 108:393–406

    Article  CAS  Google Scholar 

  • Agrawal R, Singh A et al (2023) MEDIATOR SUBUNIT17 is required for transcriptional optimization of root system architecture in Arabidopsis. Plant Physiol 28:kiad129

    Google Scholar 

  • Akash PAP et al (2021) Identification, evolutionary profiling, and expression analysis of F-box superfamily genes under phosphate deficiency in tomato. Plant Physiol Biochem 162:349–362

    Article  CAS  PubMed  Google Scholar 

  • Akiyama K, Matsuoka H, Hayashi H (2002) Isolation and identification of a phosphate deficiency-induced C-glycosylflavonoid that stimulates arbuscular mycorrhiza formation in melon roots. Mol Plant Microbe Interact 15:334–340

    Article  CAS  PubMed  Google Scholar 

  • Anderson G (2015) Assessing organic phosphorus in soils. In: Khasawneh FE, Sample EC, Kamprath EJ (eds) The role of phosphorus in agriculture. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, pp 411–431

    Chapter  Google Scholar 

  • Ashihara H, Li XN, Ukaji T (1988) Effect of inorganic phosphate on the biosynthesis of purine and pyrimidine nucleotides in suspension-cultured cells of Catharanthus roseus. Ann Bot 61:225–232

    Article  CAS  Google Scholar 

  • Bassham DC, MacIntosh GC (2017) Degradation of cytosolic ribosomes by autophagy-related pathways. Plant Sci 262:169–174

    Article  CAS  PubMed  Google Scholar 

  • Batista-Silva W, Heinemann B et al (2019) The role of amino acid metabolism during abiotic stress release. Plant Cell Environ 42:1630–1644

    Article  CAS  PubMed  Google Scholar 

  • Benning C, Ohta H (2005) Three enzyme systems for galactoglycerolipid biosynthesis are coordinately regulated in plants. J Biol Chem 280:2397–2400

    Article  CAS  PubMed  Google Scholar 

  • Bozzo GG, Dunn EL, Plaxton WC (2006) Differential synthesis of phosphate-starvation inducible purple acid phosphatase isozymes in tomato (Lycopersicon esculentum) suspension cells and seedlings. Plant Cell Environ 29(2):303–313

    Article  CAS  PubMed  Google Scholar 

  • Briat JF, Rouached H et al (2015) Integration of P, S, Fe, and Zn nutrition signals in Arabidopsis thaliana: potential involvement of PHOSPHATE STARVATION RESPONSE 1 (PHR1). Front Plant Sci 6:290

    Article  PubMed  PubMed Central  Google Scholar 

  • Bünemann EK, Marschner P et al (2008) Soil organic phosphorus and microbial community composition as affected by 26 years of different management strategies. Biol Fertil Soils 44:717–726

    Article  Google Scholar 

  • Cheng Y, Zhou W et al (2011) Characterization of the Arabidopsis glycerophosphodiester phosphodiesterase (GDPD) family reveals a role of the plastid-localized AtGDPD1 in maintaining cellular phosphate homeostasis under phosphate starvation. Plant J 66:781–795

    Article  CAS  PubMed  Google Scholar 

  • Cordell D, Drangert JO, White S (2009) The story of phosphorus: global food security and food for thought. Glob Environ Chang 19:292–305

    Article  Google Scholar 

  • Cubero B, Nakagawa Y et al (2009) The phosphate transporter PHT4;6 is a determinant of salt tolerance that is localized to the Golgi apparatus of Arabidopsis. Mol Plant 2(3):535–552

    Article  CAS  PubMed  Google Scholar 

  • Cui H, Hao Y, Kong D (2012) SCARECROW has a SHORT-ROOT-independent role in modulating the sugar response. Plant Physiol 158(4):1769–1778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai N, Schaffer A et al (1999) Overexpression of Arabidopsis hexokinase in tomato plants inhibits growth, reduces photosynthesis, and induces rapid senescence. Plant Cell 11:1253–1266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Del-Saz NF, Romero-Munar A et al (2018) (2018) Phosphorus concentration coordinates a respiratory bypass, synthesis and exudation of citrate, and the expression of high-affinity phosphorus transporters in Solanum lycopersicum. Plant Cell Environ 41(4):865–875

    Article  CAS  PubMed  Google Scholar 

  • Deng S, Li J et al (2022) Rice ACID PHOSPHATASE 1 regulates Pi stress adaptation by maintaining intracellular Pi homeostasis. Plant, Cell Environ 45(1):191–205

    Article  CAS  PubMed  Google Scholar 

  • Dissanayaka DMSB, Ghahremani M et al (2021) Recent insights into the metabolic adaptations of phosphorus-deprived plants. J Exp Bot 72(2):199–223

    Article  CAS  PubMed  Google Scholar 

  • Feder D, McGeary RP et al (2020) Structural elements that modulate the substrate specificity of plant purple acid phosphatases: avenues for improved phosphorus acquisition in crops. Plant Sci 294:110445

    Article  CAS  PubMed  Google Scholar 

  • Ferjani A, Segami S et al (2012) Regulation of pyrophosphate levels by H+-PPase is central for proper resumption of early plant development. Plant Signal Behav 7(1):38–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Florez-Sarasa IG, Lambers H et al (2014) The alternative respiratory pathway mediates carboxylate synthesis in white lupin cluster roots under phosphorus deprivation. Plant Cell Environ 37(4):922–928

    Article  CAS  PubMed  Google Scholar 

  • Floyd BE, Morriss SC et al (2015) Evidence for autophagy-dependent pathways of rRNA turnover in Arabidopsis. Autophagy 11:2199–2212

    Article  CAS  PubMed  Google Scholar 

  • Floyd BE, Mugume Y et al (2017) Localization of RNS2 ribonuclease to the vacuole is required for its role in cellular homeostasis. Planta 245:779–792

    Article  CAS  PubMed  Google Scholar 

  • Gangola MP, Ramadoss BR (2018) Sugars play a critical role in abiotic stress tolerance in plants. In: Wani SH (ed) Biochemical, physiological and molecular avenues for combating abiotic stress tolerance in plants, vol 1. Academic Press, London, pp 17–38

    Chapter  Google Scholar 

  • Gao W, Lu L et al (2017) OsPAP26 encodes a major purple acid phosphatase and regulates phosphate remobilization in rice. Plant Cell Physiol 58(5):885–892

    Article  CAS  PubMed  Google Scholar 

  • Gaude N, Nakamura Y et al (2008) Phospholipase C5 (NPC5) is involved in galactolipid accumulation during phosphate limitation in leaves of Arabidopsis. Plant J 56:28–39

    Article  CAS  PubMed  Google Scholar 

  • Ge C, Georgiev A et al (2011) Tryptophan residues promote membrane association for a plant lipid glycosyltransferase involved in phosphate stress. J Biol Chem 286:6669–6684

    Article  CAS  PubMed  Google Scholar 

  • Hammond JP, White PJ (2008) Sucrose transport in the phloem: integrating root responses to phosphorus starvation. Journal of experimental botany 59(1):93–109

    Article  CAS  PubMed  Google Scholar 

  • Härtel H, Dörmann P, Benning C (2000) DGD1-independent biosynthesis of extraplastidic galactolipids after phosphate deprivation in Arabidopsis. Proc Natl Acad Sci U S A 97:10649–10654

    Article  PubMed  PubMed Central  Google Scholar 

  • Hayat S, Hayat Q et al (2012) Role of proline under changing environments. Plant Signal Behav 7(11):1456–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Y, Zhang X et al (2021) SPX4 interacts with both PHR1 and PAP1 to regulate critical steps in phosphorus-status-dependent anthocyanin biosynthesis. New Phytol 230:205–217

    Article  CAS  PubMed  Google Scholar 

  • Hernández G, Ramírez M et al (2007) Phosphorus stress in common bean: root transcript and metabolic responses. Plant Physiol 144:752–767

    Article  PubMed  PubMed Central  Google Scholar 

  • Hernández G, Valdés-López O et al (2009) Global changes in the transcript and metabolic profiles during symbiotic nitrogen fixation in phosphorus-stressed common bean plants. Plant Physiol 151:1221–1238

    Article  PubMed  PubMed Central  Google Scholar 

  • Hildebrandt TM (2018) Synthesis versus degradation: directions of amino acid metabolism during Arabidopsis abiotic stress response. Plant Mol Biol 98:121–135

    Article  CAS  PubMed  Google Scholar 

  • Iqbal A, Qiang D et al (2023) Integrative physiological, transcriptome and metabolome analysis reveals the involvement of carbon and flavonoid biosynthesis in low phosphorus tolerance in cotton. Plant Physiol Biochem 196:302–317

    Article  CAS  PubMed  Google Scholar 

  • Jia F, Wan X et al (2015) Overexpression of mitochondrial phosphate transporter 3 severely hampers plant development through regulating mitochondrial function in Arabidopsis. PLoS ONE 10(6):e0129717

    Article  PubMed  PubMed Central  Google Scholar 

  • Jouhet J, Maréchal E et al (2003) Transient increase of phosphatidylcholine in plant cells in response to phosphate deprivation. FEBS Lett 544:63–68

    Article  CAS  PubMed  Google Scholar 

  • Karlsson PM, Herdean A et al (2015) The Arabidopsis thylakoid transporter PHT4;1 influences phosphate availability for ATP synthesis and plant growth. Plant J 84:99–110

    Article  CAS  PubMed  Google Scholar 

  • Karthikeyan AS, Varadarajan DK et al (2007) Phosphate starvation responses are mediated by sugar signaling in Arabidopsis. Planta 225:907–918

    Article  CAS  PubMed  Google Scholar 

  • Kaur G, Shukla V et al (2021) Physiological and molecular responses to combinatorial iron and phosphate deficiencies in hexaploid wheat seedlings. Genomics 113:3935–3950

    Article  CAS  PubMed  Google Scholar 

  • Kc S, Long L et al (2021) Light intensity modulates the effect of phosphate limitation on carbohydrates, amino acids, and catechins in tea plants (Camellia sinensis L.). Front Plant Sci 12:2107

    Article  Google Scholar 

  • Khurana A, Akash RA (2021) Identification of phosphorus starvation inducible SnRK genes in tomato (Solanum lycopersicum L.). J Plant Biochem Biotechnol 2021:1–12

    Google Scholar 

  • Kong Y, Li X et al (2014) GmPAP4, a novel purple acid phosphatase gene isolated from soybean (Glycine max), enhanced extracellular phytate utilization in Arabidopsis thaliana. Plant Cell Rep 33:655–667

    Article  CAS  PubMed  Google Scholar 

  • Kong Y, Li X et al (2018) The soybean purple acid phosphatase GmPAP14 predominantly enhances external phytate utilization in plants. Front Plant Sci 9:292

    Article  PubMed  PubMed Central  Google Scholar 

  • Koyama H, Kawamura A et al (2000) Overexpression of mitochondrial citrate synthase in Arabidopsis thaliana improved growth on a phosphorus-limited soil. Plant Cell Physiol 41(9):1030–1037

    Article  CAS  PubMed  Google Scholar 

  • Lambers H, Plaxton WC (2015) Phosphorus: back to the roots. Annu Plant Rev 48:1–22

    Google Scholar 

  • Lei M, Liu Y et al (2011) Genetic and genomic evidence that sucrose is a global regulator of plant responses to phosphate starvation in Arabidopsis. Plant Physiol 156:1116–1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Welti R, Wang X (2006) Quantitative profiling of Arabidopsis polar glycerolipids in response to phosphorus starvation. Roles of phospholipases Dζ1 and Dζ2 in phosphatidylcholine hydrolysis and digalactosyldiacylglycerol accumulation in phosphorus-starved plants. Plant Physiol 142:750–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li K, Xu C et al (2007) Proteomic analysis of roots growth and metabolic changes under phosphorus deficit in maize (Zea mays L.) plants. Proteomics 7(9):1501–12

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Van Den Ende W, Rolland F (2014) Sucrose induction of anthocyanin biosynthesis is mediated by DELLA. Mol Plant 7:570–572

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Qiu Q et al (2021) Metabolite alteration in response to low phosphorus stress in developing tomato fruits. Plant Physiol Biochem 159:234–243

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Hu J et al (2022) Integrative analysis of the metabolome and transcriptome reveal the phosphate deficiency response pathways of alfalfa. Plant Physiol Biochem 170:49–63

    Article  CAS  PubMed  Google Scholar 

  • Li H, He K et al (2023a) Molecular mechanism of phosphorous signaling inducing anthocyanin accumulation in Arabidopsis. Plant Physiol Biochem 196:121–129

    Article  CAS  PubMed  Google Scholar 

  • Li J, Su Y et al (2023b) Phosphate deficiency modifies lipid composition and seed oil production in Camelina. Plant Sci 330:111636

    Article  CAS  PubMed  Google Scholar 

  • Liang C, Wang J et al (2014) Control of phosphate homeostasis through gene regulation in crops. Curr Opin Plant Biol 21:59–66

    Article  CAS  PubMed  Google Scholar 

  • Ligaba A, Shen H et al (2004) The role of phosphorus in aluminium-induced citrate and malate exudation from rape (Brassica napus). Physiol Plant 120:575–584

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Yang L et al (2015) A vacuolar phosphate transporter essential for phosphate homeostasis in Arabidopsis. Proc Natl Acad Sci U S A 112:E6571–E6578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu TY, Huang TK et al (2016) (2016) Identification of plant vacuolar transporters mediating phosphate storage. Nat Commun 71(7):1–11

    Google Scholar 

  • Liu XL, Wang L et al (2020) Mutation of the chloroplast-localized phosphate transporter OsPHT2;1 reduces flavonoid accumulation and UV tolerance in rice. Plant J 102:53–67

    Article  CAS  PubMed  Google Scholar 

  • Luan M, Zhao F et al (2019) Vacuolar phosphate transporters contribute to systemic phosphate homeostasis vital for reproductive development in arabidopsis. Plant Physiol 179:640–655

    Article  CAS  PubMed  Google Scholar 

  • Luo B, Ma P et al (2019) Metabolite profiling and genome-wide association studies reveal response mechanisms of phosphorus deficiency in maize seedling. Plant J 97:947–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo J, Liu Y et al (2020) Metabolic alterations provide insights into Stylosanthes roots responding to phosphorus deficiency. BMC Plant Biol 20:1–16

    Article  Google Scholar 

  • Lyu Y, Tang H et al (2016) Major crop species show differential balance between root morphological and physiological responses to variable phosphorus supply. Front Plant Sci 7:1939

    Article  PubMed  PubMed Central  Google Scholar 

  • Mano Y, Nemoto K (2012) The pathway of auxin biosynthesis in plants. J Exp Bot 63:2853–2872

    Article  CAS  PubMed  Google Scholar 

  • Mehra P, Pandey BK et al (2019) A novel glycerophosphodiester phosphodiesterase improves phosphate deficiency tolerance in rice. Plant Cell Environ 42:1167–1179

    Article  CAS  PubMed  Google Scholar 

  • Meng L, Qi C (2021) Determinant factors and regulatory systems for anthocyanin biosynthesis in rice Apiculi and Stigmas. Rice 14:1–18

    Article  Google Scholar 

  • Minnikin DE, Abdolrahimzadeh H, Baddiley J (1974) Replacement of acidic phosphates by acidic glycolipids in Pseudomonas diminuta. Nature 249:268–269

    Article  CAS  PubMed  Google Scholar 

  • Mo X, Zhang M et al (2021) Phosphate (Pi) starvation upregulated GMCSN5A/B participates in anthocyanin synthesis in soybean (Glycine max) dependent on pi availability. Int J Mol Sci 22:12348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller J, Gödde V et al (2015) Metabolic adaptations of white lupin roots and shoots under phosphorus deficiency. Front Plant Sci 6:1–10

    Article  Google Scholar 

  • Nakajima Y, Umena Y et al (2018) Thylakoid membrane lipid sulfoquinovosyl-diacylglycerol (SQDG) is required for full functioning of photosystem II in Thermosynechococcus elongatus. J Biol Chem 293:14786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura Y (2013) Phosphate starvation and membrane lipid remodeling in seed plants. Prog Lipid Res 52:43–50

    Article  CAS  PubMed  Google Scholar 

  • Nezamivand-Chegini M, Metzger S et al (2023) Integration of transcriptomic and metabolomic analyses provides insights into response mechanisms to nitrogen and phosphorus deficiencies in soybean. Plant Sci 326:111498

    Article  CAS  PubMed  Google Scholar 

  • Ngo AH, Nakamura Y (2022) Phosphate starvation-inducible GLYCEROPHOSPHODIESTER PHOSPHODIESTERASE6 is involved in Arabidopsis root growth. J Exp Bot 73(9):2995–3003

    Article  CAS  PubMed  Google Scholar 

  • Okazaki Y, Shimojima M et al (2009) A chloroplastic UDP-glucose pyrophosphorylase from Arabidopsis Is the committed enzyme for the first step of sulfolipid biosynthesis. Plant Cell 21:892–909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okazaki Y, Takano K, Saito K (2017) Lipidomic analysis of soybean leaves revealed tissue-dependent difference in lipid remodeling under phosphorus-limited growth conditions. Plant Biotechnol 34:57–63

    Article  CAS  Google Scholar 

  • Osorio MB, Ng S et al (2019) SPX4 Acts on PHR1-dependent and -independent regulation of shoot phosphorus status in Arabidopsis. Plant Physiol 181:332–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: an overview. J Nutr Sci 5:e47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pant BD, Pant P et al (2015) Identification of primary and secondary metabolites with phosphorus status-dependent abundance in Arabidopsis, and of the transcription factor PHR1 as a major regulator of metabolic changes during phosphorus limitation. Plant Cell Environ 38:172–187

    Article  CAS  PubMed  Google Scholar 

  • Peret B, Desnos T et al (2014) Root architecture responses. Search Phosphate Plant Physiol 166:1713–1723

    PubMed  Google Scholar 

  • Pfaff J, Denton AK et al (2020) Phosphate starvation causes different stress responses in the lipid metabolism of tomato leaves and roots. Biochem Biophys Acta Mol Cell Biol Lipids 1865:158763

    CAS  Google Scholar 

  • Phoenix GK, Johnson DA et al (2020) Niche differentiation and plasticity in soil phosphorus acquisition among co-occurring plants. Nat Plants 64(6):349–354

    Article  Google Scholar 

  • Raya-González J, Ojeda-Rivera JO et al (2021) (2021) MEDIATOR16 orchestrates local and systemic responses to phosphate scarcity in Arabidopsis roots. New Phytol 229(3):1278–1288

    Article  PubMed  Google Scholar 

  • Richardson AE, Lynch JP et al (2011) Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant Soil 349:121–156

    Article  CAS  Google Scholar 

  • Robinson WD, Park J et al (2012) The secreted purple acid phosphatase isozymes AtPAP12 and AtPAP26 play a pivotal role in extracellular phosphate-scavenging by Arabidopsis thaliana. J Exp Bot 63:6531–6542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santosh KC, Liu M et al (2018) Metabolic changes of amino acids and flavonoids in tea plants in response to inorganic phosphate limitation. Int J Mol Sci 19:3683

    Article  Google Scholar 

  • Shane MW, Stigter K et al (2014) Senescence-inducible cell wall and intracellular purple acid phosphatases: Implications for phosphorus remobilization in Hakea prostrata (Proteaceae) and Arabidopsis thaliana (Brassicaceae). J Exp Bot 65:6097–6106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shane MW, Feil R et al (2016) Light-dependent activation of phosphoenolpyruvate carboxylase by reversible phosphorylation in cluster roots of white lupin plants: diurnal control in response to photosynthate supply. Ann Bot 118:637–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen C, Wang S et al (2013) OsARF16, a transcription factor, is required for auxin and phosphate starvation response in rice (Oryza sativa L.). Plant Cell Environ 36:607–620

    Article  CAS  PubMed  Google Scholar 

  • Singh NRR, Roychowdhury A et al (2023) Silencing of SlSPX1 and SlSPX2 promote growth and root mycorrhization in tomato (Solanum lycopersicum L.) seedlings. Plant Sci 333:111723

    Article  CAS  PubMed  Google Scholar 

  • Srivastava R, Parida AP et al (2020) Identification, structure analysis, and transcript profiling of purple acid phosphatases under Pi deficiency in tomato (Solanum lycopersicum L.) and its wild relatives. Int J Biol Macromol 165:2253–66

    Article  CAS  PubMed  Google Scholar 

  • Srivastava R, Basu S, Kumar R (2021a) Phosphorus starvation response dynamics and management in plants for sustainable agriculture. J Plant Biochem Biotechnol 30:829–847

    Article  CAS  Google Scholar 

  • Srivastava R, Sirohi P et al (2021b) The enhanced phosphorus use efficiency in phosphate-deficient and mycorrhiza-inoculated barley seedlings involves activation of different sets of PHT1 transporters in roots. Planta 254:1–17

    Article  Google Scholar 

  • Stigter KA, Plaxton WC (2015) Molecular mechanisms of phosphorus metabolism and transport during leaf senescence. Plants 4:773–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strock CF, De La Riva LM, Lynch JP (2018) Reduction in root secondary growth as a strategy for phosphorus acquisition. Plant Physiol 176:691–703

    Article  CAS  PubMed  Google Scholar 

  • Sulieman S, Tran LSP (2017) Legume nitrogen fixation in soils with low phosphorus availability: adaptation and regulatory implication. Springer, Berlin, pp 1–287

    Google Scholar 

  • Sun J, Li Q et al (2022) Analysis of metabolomic changes in xylem and phloem sap of cucumber under phosphorus stresses. Metabolites 12(4):361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sung J, Lee S et al (2015) Metabolomic profiling from leaves and roots of tomato (Solanum lycopersicum L.) plants grown under nitrogen, phosphorus or potassium-deficient condition. Plant Sci 241:55–64

    Article  CAS  PubMed  Google Scholar 

  • Takami T, Ohnishi N et al (2018) Organelle DNA degradation contributes to the efficient use of phosphate in seed plants. Nat Plants 412(4):1044–1055

    Article  Google Scholar 

  • Tian J, Wang C et al (2012) Overexpression of OsPAP10a, a root-associated acid phosphatase, increased extracellular organic phosphorus utilization in rice. J Int Plant Biol 54(9):631–639

    Article  CAS  Google Scholar 

  • Uhde-Stone C, Gilbert G et al (2003) Acclimation of white lupin to phosphorus deficiency involves enhanced expression of genes related to organic acid metabolism. Plant Soil 248:99–116

    Article  CAS  Google Scholar 

  • Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157(3):423–447

    Article  CAS  PubMed  Google Scholar 

  • Veljanovski V, Vanderbeld B et al (2006) Biochemical and molecular characterization of AtPAP26, a vacuolar purple acid phosphatase up-regulated in phosphate-deprived arabidopsis suspension cells and seedlings. Plant Physiol 142:1282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veramendi J, Willmitzer L, Trethewey RN (1999) In vitro grown potato microtubers are a suitable system for the study of primary carbohydrate metabolism. Plant Physiol Biochem 37:693–697

    Article  CAS  Google Scholar 

  • Verma L, Bhadouria J et al (2022) Monogalactosyl diacylglycerol synthase 3 affects phosphate utilization and acquisition in rice. J Exp Bot 73(14):5033–5051

    Article  CAS  PubMed  Google Scholar 

  • Walan P, Davidsson S et al (2014) Phosphate rock production and depletion: regional disaggregated modeling and global implications. Resour Conserv Recycl 93:178–187

    Article  Google Scholar 

  • Wang C, Yue W et al (2015) Rice SPX-major facility superfamily3, a vacuolar phosphate efflux transporter, is involved in maintaining phosphate homeostasis in rice. Plant Physiol 169:01005

    Google Scholar 

  • Wang Z, Kuo HF, Chiou TJ (2021) Intracellular phosphate sensing and regulation of phosphate transport systems in plants. Plant Physiol 187:2043–2055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Hu J et al (2022) Involvement of PtPHR1 in phosphates starvation-induced alkaloid biosynthesis in Pinellia ternata (Thunb.) Breit. Front Plant Sci 13:2709

    CAS  Google Scholar 

  • Watanabe M, Walther D et al (2020) Metabolomic markers and physiological adaptations for high phosphate utilization efficiency in rice. Plant Cell Environ 43:2066–2079

    Article  CAS  PubMed  Google Scholar 

  • Wen T, Yuan J et al (2020) Enrichment of beneficial cucumber rhizosphere microbes mediated by organic acid secretion. Hortic Res 1:7

    Google Scholar 

  • Wu L, Kobayashi Y et al (2018) Organic acid excretion from roots: a plant mechanism for enhancing phosphorus acquisition, enhancing aluminum tolerance, and recruiting beneficial rhizobacteria. Soil Sci Plant Nutr 64:697–704

    Article  CAS  Google Scholar 

  • Xiao X, Zhang J et al (2022) SHORT-ROOT stabilizes PHOSPHATE1 to regulate phosphate allocation in Arabidopsis. Nat Plants 9:1074–1081

    Article  Google Scholar 

  • Yang SY, Huang TK et al (2017) Role of vacuoles in phosphorus storage and remobilization. J Exp Bot 68:3045–3055

    CAS  PubMed  Google Scholar 

  • Yu RP, Li XX et al (2020) Phosphorus facilitation and covariation of root traits in steppe species. New Phytol 226(5):1285–1298

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Chen H et al (2021) Comparative transcriptomic and metabolomic analyses reveal the protective effects of silicon against low phosphorus stress in tomato plants. Plant Physiol Biochem 166:78–87

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Chen KK et al (2023) Transcriptome analysis provides insights into the response of Lotus corniculatus roots to low-phosphorus stress. Front Plant Sci 14:1089380

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng L, Wang R et al (2023) Comparative physiological and proteomic response to phosphate deficiency between two wheat genotypes differing in phosphorus utilization efficiency. J Proteomics 280:104894

    Article  CAS  PubMed  Google Scholar 

  • Zhu W, Miao Q et al (2012) The mitochondrial phosphate transporters modulate plant responses to salt stress via affecting ATP and gibberellin metabolism in Arabidopsis thaliana. PLoS One. https://doi.org/10.1371/journal.pone.0043530

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu S, Chen M et al (2020) Characterization of purple acid phosphatase family and functional analysis of GmPAP7a/7b involved in extracellular ATP utilization in soybean. Front Plant Sci 11:661

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu H, Bing H, Wu Y (2022) Citric acid promotes the mobilization of phosphorus under the lower concentration of low molecular weight organic acids in acidic forest soil. Adsorpt Sci Technol. https://doi.org/10.1155/2022/5071907

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the Indo-Bulgarian Bilateral Research Cooperation (projects INT/BLG/P-06/2019 and KP-06-India-9). In addition, R.K. acknowledges the financial support from the Science and Engineering Research Board (SERB), Government of India (CRG/2018/001033) and to the University of Hyderabad-IoE by MHRD (F11/9/2019-U3(A) and DBT-support to the School of Life Sciences under BUILDER program. A.R. thanks SERB, Government of India (CRG/2018/001033), and UoH BBL for his fellowships. R.S. and Akash thank the Council of Scientific and Industrial Research, Govt. of India, for the JRF and SRF fellowships and UoH BBL for the research fellowship.

Author information

Authors and Affiliations

Authors

Contributions

The idea was conceived by RK, KM and GZ. The manuscript was written by AR, RS, and GS. Akash made the figure. Final drafts of the manuscript were read and approved by all authors.

Corresponding authors

Correspondence to Kiril Mishev or Rahul Kumar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roychowdhury, A., Srivastava, R., Akash et al. Metabolic footprints in phosphate-starved plants. Physiol Mol Biol Plants 29, 755–767 (2023). https://doi.org/10.1007/s12298-023-01319-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-023-01319-3

Keywords

Navigation