Skip to main content

Advertisement

Log in

Meta-QTLs, ortho-MetaQTLs and candidate genes for grain Fe and Zn contents in wheat (Triticum aestivum L.)

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Majority of cereals are deficient in essential micronutrients including grain iron (GFe) and grain zinc (GZn), which are therefore the subject of research involving biofortification. In the present study, 11 meta-QTLs (MQTLs) including nine novel MQTLs for GFe and GZn contents were identified in wheat. Eight of these 11 MQTLs controlled both GFe and GZn. The confidence intervals of the MQTLs were narrower (0.51–15.75 cM) relative to those of the corresponding QTLs (0.6 to 55.1 cM). Two ortho-MQTLs involving three cereals (wheat, rice and maize) were also identified. Results of MQTLs were also compared with the results of earlier genome wide association studies (GWAS). As many as 101 candidate genes (CGs) underlying MQTLs were also identified. Twelve of these CGs were prioritized; these CGs encoded proteins with important domains (zinc finger, RING/FYVE/PHD type, flavin adenine dinucleotide linked oxidase, etc.) that are involved in metal ion binding, heme binding, iron binding, etc. qRT-PCR analysis was conducted for four of these 12 prioritized CGs using genotypes which have differed for GFe and GZn. Significant differential expression in these genotypes was observed at 14 and 28 days after anthesis. The MQTLs/CGs identified in the present study may be utilized in marker-assisted selection (MAS) for improvement of GFe/GZn contents and also for understanding the molecular basis of GFe/GZn homeostasis in wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbaspour N, Hurrell R, Kelishadi R (2014) Review on iron and its importance for human health. J Res Med Sci 19:164–174

    PubMed  PubMed Central  Google Scholar 

  • Akaike H (1998) A Bayesian Analysis of the Minimum AIC Procedure. In: Parzen E, Tanabe K, Kitagawa G (eds) Selected Papers of Hirotugu Akaike. Springer Series in Statistics (Perspectives in Statistics). Springer, New York, pp 275–280

    Google Scholar 

  • Alina VR, Carmen MC, Sevastita M, Andruţa M, Vlad M, Ramona S, Georgiana P, Mihaela M (2019) Food fortification through innovative technologies. In (Ed.), Food Engin. IntechOpen. https://doi.org/10.5772/intechopen.82249

    Article  Google Scholar 

  • Alomari DZ, Eggert K, Von Wirén N, Alqudah AM, Polley A, Plieske J, Ganal MW, Pilen K, Röder MS (2018) Identifying candidate genes for enhancing grain Zn concentration in wheat. Front Plant Sci 9:1313

    Article  PubMed  PubMed Central  Google Scholar 

  • Alomari DZ, Eggert K, Von Wiren N, Polley A, Plieske J, Ganal MW, Liu F, Pillen K, Röder MS (2019) Whole-genome association mapping and genomic prediction for iron concentration in wheat grains. Int J Mol Sci 20:76

    Google Scholar 

  • Arcade A, Labourdette A, Falque M, Mangin B, Chardon F, Charcosset A, Joets J (2004) BioMercator: integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics 20:2324–2326

    CAS  PubMed  Google Scholar 

  • Bhatta M, Baenziger PS, Waters BM, Poudel R, Belamkar V, Poland J, Morgounov A (2018) Genome-wide association study reveals novel genomic regions associated with 10 grain minerals in synthetic hexaploid wheat. Int J Mol Sci 19:3237

    Article  CAS  PubMed Central  Google Scholar 

  • Black R (2003) Micronutrient Deficiency: an Underlying Cause of Morbidity and Mortality. Bull World Health Organ 81:79

  • Bokore FE, Knox RE, Cuthbert RD, Pozniak CJ, McCallum BD, N’Diaye A, DePauw RM, Campbell HL, Munro C, Singh A, Hiebert CW, McCartney CA, Sharpe AG, Singh AK, Spaner D, Fowler DB, Ruan Y, Berraies S, Meyer B (2020) Mapping quantitative trait loci associated with leaf rust resistance in five spring wheat populations using single nucleotide polymorphism markers. PLoS One 15:e0230855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crespo-Herrera LA, Govindan V, Stangoulis J, Hao Y, Singh RP (2017) QTL mapping of grain Zn and Fe concentrations in two hexaploid wheat RIL populations with ample transgressive segregation. Front Plant Sci 8:1800

    PubMed  PubMed Central  Google Scholar 

  • Crespo-Herrera LA, Velu G, Singh RP (2016) Quantitative trait loci mapping reveals pleiotropic effect for grain iron and zinc concentrations in wheat. Ann Appl Biol 169:27–35

    CAS  Google Scholar 

  • Cu ST, Guild G, Nicolson A, Velu G, Singh R, Stangoulis J (2020) Genetic dissection of zinc, iron, copper, manganese and phosphorus in wheat (Triticum aestivum L.) grain and rachis at two developmental stages. Plant Sci 291:110338

    CAS  PubMed  Google Scholar 

  • Darvasi A, Soller M (1997) A simple method to calculate resolving power and confidence interval of QTL map location. Behav Gene 27:125–132

    CAS  Google Scholar 

  • De Valenca AW, Bake A, Brouwer ID, Giller KE (2017) Agronomic biofortification of crops to fight hidden hunger in sub-Saharan Africa. Glob Food Secur 12:8–14

    Article  Google Scholar 

  • Endelman JB, Plomion C (2014) LPmerge: an R package for merging genetic maps by linear programming. Bioinformatics 30:1623–1624

    CAS  PubMed  Google Scholar 

  • Gaut BS, d’Ennequin MLT, Peek AS, Sawkins MC (2000) Maize as a model for the evolution of plant nuclear genomes. Proc Natl Acad Sci 97:7008–7015

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gödecke T, Stein AJ, Qaim M (2018) The global burden of chronic and hidden hunger: trends and determinants. Glob Food Secur 17:21–29

    Google Scholar 

  • Goffinet B, Gerber S (2000) Quantitative trait loci: a meta-analysis. Genetics 155:463–473

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gorafi YS, Ishii T, Kim JS, Elbashir AAE, Tsujimoto H (2018) Genetic variation and association mapping of grain iron and zinc contents in synthetic hexaploid wheat germplasm. Plant Genet Resour 16:9–17

    CAS  Google Scholar 

  • Guo B, Sleper DA, Lu P, Shannon JG, Nguyen HT, Arelli PR (2006) QTLs associated with resistance to soybean cyst nematode in soybean: meta-analysis of QTL locations. Crop Sci 46:595–602

    Google Scholar 

  • Gupta PK, Balyan HS, Sharma S, Kumar R (2021) Biofortification and bioavailability of Zn, Fe and Se in wheat: Present status and future prospects. Theor Appl Genet 134:1–35

    CAS  PubMed  Google Scholar 

  • Hao Y, Velu G, Pena RJ, Singh S, Singh RP (2014) Genetic loci associated with high grain zinc concentration and pleiotropic effect on kernel weight in wheat (Triticum aestivum L.). Mol Breed 34:1893–1902

    CAS  Google Scholar 

  • Harding KL, Aguayo VM, Web P (2018) Hidden hunger in South Asia: a review of recent trends and persistent challenges. Public Health Nutr 21:785–795

    PubMed  Google Scholar 

  • Jan I, Saripalli G, Kumar K, Kumar A, Singh R, Batra R, Sharma PK, Balyan HS, Gupta PK (2021) Meta-QTLs and candidate genes for stripe rust resistance in wheat. Sci Rep 11:1–3

    Google Scholar 

  • Jin T, Chen J, Zhu L, Zhao Y, Guo J, Huang Y (2015) Comparative mapping combined with homology-based cloning of the rice genome reveals candidate genes for grain zinc and iron concentration in maize. BMC Genet 16:1–15

    Google Scholar 

  • Jin T, Zhou J, Chen J, Zhu L, Zhao Y, Huang Y (2013) The genetic architecture of zinc and iron content in maize grains as revealed by QTL mapping and meta-analysis. Breed Sci 63:317–324

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson MP (2016) Photosynthesis. Essays Biochem 60:255–273

  • Kambe T, Hashimoto A, Fujimoto S (2014) Current understanding of ZIP and ZnT zinc transporters in human health and diseases. Cell Mol Life Sci 7:3281–3295

    Google Scholar 

  • Khahani B, Tavakol E, Shariati V, Fornara F (2020) Genome wide screening and comparative genome analysis for meta-QTLs, ortho-MQTLs and candidate genes controlling yield and yield-related traits in rice. BMC Genom 21:1–24

    Google Scholar 

  • Kobayashi T, Itai RN, Aung MS, Senouram T, Nakanishi H, Nishizawa NK (2011) The rice transcription factor IDEF1 directly binds to iron and other divalent metals for sensing cellular iron status. Plant J 69:81–91

    PubMed  Google Scholar 

  • Kobayashi T, Nagasaka S, Senoura T, Itai RN, Nakanishi H, Nishizawa NK (2013) Iron-binding haemerythrin RING ubiquitin ligases regulate plant iron responses and accumulation. Nat Commun 4:2792

    PubMed  Google Scholar 

  • Krishnappa G, Singh AM, Chaudhary S, Ahlawat AK, Singh SK, Shukla RB, Jaiswal JP, Singh GP, Solanki IS (2017) Molecular mapping of the grain iron and zinc concentration, protein content and thousand kernel weight in wheat (Triticum aestivum L.). PLoS One 12:e0174972

    PubMed  PubMed Central  Google Scholar 

  • Kumar A, Saripalli G, Jan I, Kumar K, Sharma PK, Balyan HS, Gupta PK (2020) Meta-QTL analysis and identification of candidate genes for drought tolerance in bread wheat (Triticum aestivum L.). Physiol Mol Biol Plants 26:1713–1725

    CAS  Google Scholar 

  • Kumar J, Saripalli G, Gahlaut V, Goel N, Meher PK, Mishra KK, Mishra PC, Sehgal D, Vikram P, Sansaloni C, Singh S, Sharma PK, Gupta PK (2018) Genetics of Fe, Zn, β-carotene, GPC and yield traits in bread wheat (Triticum aestivum L.) using multi-locus and multi-traits GWAS. Euphytica 214:1–17

    Google Scholar 

  • Kumar S, Singh VP, Saini DK, Sharma H, Saripalli G, Kumar S, Balyan HS, Gupta PK (2021) Meta-QTLs, ortho-MQTLs and candidate genes for thermotolerance in wheat (Triticum aestivum L.). Mol Breed 41:1–22

    Google Scholar 

  • Liu H, Mullan D, Zhang C, Zhao S, Li X, Zhang A, Lu Z, Wang Y, Yan G (2020a) Major genomic regions responsible for wheat yield and its components as revealed by meta-QTL and genotype–phenotype association analyses. Planta 252:1–22

    Google Scholar 

  • Liu J, Huang L, Li T, Liu Y, Yan Z, Tang G, Zheng Y, Liu D, Wu (2021a) B Genome-wide association study for grain micronutrient concentrations in wheat advanced lines derived from wild emmer. Front Plant Sci 12:792

  • Liu J, Wu B, Singh RP, Velu G (2019) QTL mapping for micronutrients concentration and yield component traits in a hexaploid wheat mapping population. J Cereal Sci 88:57–64

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Chen Y, Yang Y, Zhang Q, Fu B, Cai J, Guo W, Shi L, Wu J, Chen Y (2021b) A thorough screening based on QTLs controlling zinc and copper accumulation in the grain of different wheat genotypes. Environ Sci Pollut Res 28:15043–15054

    CAS  Google Scholar 

  • Liu Y, Salsman E, Wang R, Galagedara N, Zhang Q, Fiedler JD, Liu Z, Xu S, Faris JD, Li X (2020b) Meta-QTL analysis of tan spot resistance in wheat. Theor Appl Genet 133:2363–2375

    CAS  PubMed  Google Scholar 

  • Lyons GH, Judson GJ, Ortiz-Monasterio I, Genc Y, Stangoulis JCR, Graham RD (2005) Selenium in Australia: Selenium status and biofortification of wheat for better health. J Trace Elem Med Biol 19:75–82

    CAS  PubMed  Google Scholar 

  • Ma X, Das NK, Castillo C, Gourani A, Perekatt AO, Verzi MP, Shah YM (2019) SMAD family member 3 (SMAD3) and SMAD4 repress HIF2α-dependent iron-regulatory genes. J Biol Chem 294:3974–3986

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maccaferri M, Cane MA, Sanguineti MC, Salvi S, Colalongo MC, Massi A, Clarke F, Knox R, Pozniak CJ, Clarke JM, Fahima T, Dubcovsky J, Xu S, Ammar K, Karsai I, Vida G, Tuberosa R (2014) A consensus framework map of durum wheat (Triticum durum Desf.) suitable for linkage disequilibrium analysis and genome-wide association mapping. BMC Genom 15:1–21

    Google Scholar 

  • Mallimar M, Surendra P, Hundekar R, Jogi M, Lakkangoudar MCS (2016) Correlation studies for micronutrients, yield and yield components in F3 population of rice (Oryza Sativa L.). Res Environ Life Sci 9:1140–1142

    Google Scholar 

  • Marone D, Laido G, Gadaleta A, Colasuonno P, Ficco DBM, Giancaspro A, Giove S, Panio G, Russo MA, De Vita P, Cattivelli L, Papa R, Blanco A, Mastrangelo AM (2012) A high-density consensus map of A and B wheat genomes. Theor Appl Genet 125:1619–1638

    PubMed  PubMed Central  Google Scholar 

  • Ozturk L, Yazici MA, Yucel C, Torun A, Cekic C, Bagci A, Ozkan H, Braun HJ, Sayers Z, Cakmak I (2006) Concentration and localization of zinc during seed development and germination in wheat. Physiol Plant 128:144–152

    CAS  Google Scholar 

  • Pu ZE, Ma YU, He QY, Chen GY, Wang JR, Liu YX, Jiang QT, Li W, Dai SF, Wei YM, Zheng YL (2014) Quantitative trait loci associated with micronutrient concentrations in two recombinant inbred wheat lines. J Integrat Agri 13:2322–2329

    CAS  Google Scholar 

  • Quraishi UM, Pont C, Ain QU, Flores R, Burlot L, Alaux M, Quesneville H, Salse J (2017) Combined genomic and genetic data integration of major agronomical traits in bread wheat (Triticum aestivum L.). Front Plant Sci 8:1843

    PubMed  PubMed Central  Google Scholar 

  • Raza Q, Riaz A, Sabar M, Atif RM, Bashir K (2019) Meta-analysis of grain iron and zinc associated QTLs identified hotspot chromosomal regions and positional candidate genes for breeding biofortified rice. Plant Sci 288:110214

    CAS  PubMed  Google Scholar 

  • Robinson NJ, Procter CM, Connolly EL, Guerinot ML (1999) A ferric-chelate reductase for iron uptake from soils. Nature 397:694–697

    CAS  PubMed  Google Scholar 

  • Roohani N, Hurrell R, Kelishadi R, Schulin R (2013) Zinc and its importance for human health: an integrative review. J Res Med Sci 18:144–157

    PubMed  PubMed Central  Google Scholar 

  • Roshanzamir H, Kordenaeej A, Bostani A (2013) Mapping QTLs related to Zn and Fe concentrations in bread wheat (Triticum aestivum) grain using microsatellite markers. Iran J Genet Plant Breed 2:10–17

    Google Scholar 

  • Saini DK, Chopra Y, Pal N, Chahal A, Srivastava P, Gupta PK (2021) Meta-QTLs, ortho-MQTLs and candidate genes for nitrogen use efficiency and root system architecture in bread wheat (Triticum aestivum L.). Physiol Mol Biol Plants 27:2245–2267

  • Schagerlöf U, Wilson G, Hebert H, Al-Karadaghi S, Hägerhäll C (2006) Transmembrane topology of FRO2, a ferric chelate reductase from Arabidopsis thaliana. Plant Mol Biol 62:215–221

    PubMed  Google Scholar 

  • Selote D, Samira R, Matthiadis A, Gillikin JW, Long TA (2015) Iron-binding E3 ligase mediates iron response in plants by targeting basic helix-loop-helix transcription factors. Plant Physiol 167:273–286

    CAS  PubMed  Google Scholar 

  • Shariatipour N, Heidari B, Richards CM (2021a) Meta-analysis of QTLome for grain zinc and iron contents in wheat (Triticum aestivum L.). Euphytica 217:1–14

    Google Scholar 

  • Shariatipour N, Heidari B, Tahmasebi A, Richards CM (2021b) Comparative genomic analysis of QTLs associated with micronutrient contents, grain quality and agronomic traits in wheat (Triticum aestivum L.). Front Plant Sci 2142

  • Shariatipour N, Heidari B, Ravi S, Stevanato P (2021c) Genomic analysis of ionome-related QTLs in Arabidopsis thaliana. Sci Rep 11:1–4

    Google Scholar 

  • Shi RL, Tong YP, Jing RL, Zhang FS, Zou CQ (2013) Characterization of quantitative trait loci for grain minerals in hexaploid wheat (Triticum aestivum L.). J Integr Agri 12:1512–1521

    Google Scholar 

  • Shi R, Li H, Tong Y, Jing R, Zhang F, Zou C (2008) Identification of quantitative trait locus of zinc and phosphorus density in wheat (Triticum aestivum L.) grain. Plant Soil 306:95–104

    CAS  Google Scholar 

  • Singh K, Batra R, Sharma S, Saripalli G, Gautam T, Singh R, Pal S, Malik P, Kumar M, Jan I, Singh S, Kumar D, Pundir S, Chaturvedi D, Verma A, Rani A, Kumar A, Sharma H, Chaudhary J, Kumar K, Kumar S, Singh VK, Singh VP, Kumar S, Kumar R, Gaurav SS, Sharma S, Sharma PK, Balyan HS, Gupta PK (2021) WheatQTLdb: a QTL database for wheat. Mol Genet Genom 296:1051–1056

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    CAS  PubMed  Google Scholar 

  • Sosnowski O, Charcosset A, Joets J (2012) BioMercator V3: an upgrade of genetic map compilation and quantitative trait loci meta-analysis algorithms. Bioinformatics 28:2082–2083

    CAS  PubMed  PubMed Central  Google Scholar 

  • Srinivasa J, Arun B, Mishra VK, Singh GP, Velu G, Babu R, Vasistha NK, Joshi AK (2014) Zinc and iron concentration QTL mapped in a Triticum spelta × T. aestivum cross. Theor App Genet 127:1643–1651

    CAS  Google Scholar 

  • Stein AJ, Qaim M (2007) The human and economic cost of hidden hunger. Food Nutr Bull 28:125–134

    PubMed  Google Scholar 

  • Tiwari C, Wallwork H, Arun B, Mishra VK, Velu G, Stangoulis JCR, Kumar U, Joshi AK (2016) Molecular mapping of quantitative trait loci for zinc, iron and protein content in the grains of hexaploid wheat. Euphytica 207:563–570

    CAS  Google Scholar 

  • Velu G, Singh RP, Huerta J, Guzman C (2017a) Genetic impact of Rht dwarfing genes on grain micronutrients concentration in wheat. Field Crops Res 214:373–377

    PubMed  PubMed Central  Google Scholar 

  • Velu G, Singh RP, Crespo-Herrera L, Juliana P, Dreisigacker S, Valluru R, Stangoulis J, Sohu VS, Mavi GS, Mishra VK, Balasubramaniam A, Chatrath R, Gupta V, Singh GP, Joshi AK (2018) Genetic dissection of grain zinc concentration in spring wheat for mainstreaming biofortification in CIMMYT wheat breeding. Sci Rep 8:1–10

    CAS  Google Scholar 

  • Velu G, Tutus Y, Gomez-Becerra HF, Hao Y, Demir L, Kara R, Crespo-Herrera LA, Orhan S, Yazici A, Singh RP, Cakmak I (2017b) QTL mapping for grain zinc and iron concentrations and zinc efficiency in a tetraploid and hexaploid wheat mapping populations. Plant Soil 411:81–99

    CAS  Google Scholar 

  • Venske E, Dos Santos RS, Farias DDR, Rother V, da Maia LC, Pegoraro C, Costa de Oliveira A (2019) Meta-analysis of the QTLome of Fusarium head blight resistance in bread wheat: refining the current puzzle. Front Plant Sci 10:727

    PubMed  PubMed Central  Google Scholar 

  • Wang GF, Li WQ, Li WY, Wu GL, Zhou CY, Chen KM (2013) Characterization of rice NADPH oxidase genes and their expression under various environmental conditions. Int J Mol Sci 14:9440–9458

    PubMed  PubMed Central  Google Scholar 

  • Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L, Mastrangelo AM, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, International Wheat Genome Sequencing Consortium, Lillemo M, Mathe RD, Appels R, Dolferus R, Brown-Guedira G, Korol A, Akhunova AR, Feuillet C, Salse J, Morgante M, Pozniak C, Luo MC, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards KJ, Hayden M, Akhunov E (2014) Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol J12;787 – 96

  • Wang X, Shi X, Hao B, Ge S, Luo J (2005) Duplication and DNA segmental loss in the rice genome: implications for diploidization. New Phytol 165:937–946

    CAS  PubMed  Google Scholar 

  • Ward E (2014) Addressing nutritional gaps with multivitamin and mineral supplements. Nutr J 13:72

    PubMed  PubMed Central  Google Scholar 

  • Yang Y, Amo A, Wei D, Chai Y, Zheng J, Qiao P, Cui C, Lu S, Chen L, Hu YG (2021) Large-scale integration of meta-QTL and genome-wide association study discovers the genomic regions and candidate genes for yield and yield-related traits in bread wheat. Theor Appl Genet 134:3083–3109

    CAS  PubMed  Google Scholar 

  • Yin C, Wang F, Fan H, Fang Y, Li W (2019) Identification of tea plant purple acid phosphatase genes and their expression responses to excess iron. Int J Mol Sci 20:1954

  • Zheng T, Hua C, Li L, Sun Z, Yuan M, Bai G, Humphreys G, Li T (2021) Integration of meta-QTL discovery with omics: Towards a molecular breeding platform for improving wheat resistance to Fusarium head blight. Crop J 9:739–749

    Google Scholar 

Download references

Acknowledgements

Thanks are due to the Department of Biotechnology (DBT), Govt of India for providing funds in the form of a research project (BT/NABI-Flagship/2018) and a DBT-RA position to RB (DBT/2020/July/189 (Batch 37) ). Thanks, are also due to Indian National Science Academy (INSA), New Delhi for the award of positions of INSA-Senior Scientist and INSA Honorary Scientist to HSB. The authors are thankful to Ch. Charan Singh University, Meerut for providing laboratory and field facilities.

Author information

Authors and Affiliations

Authors

Contributions

PKG, HSB, SS, and RK conceived and designed the experiment. RS prepared the first draft of the MS with the help of GS. AK, IJ, RB; JK helped in the collection of literature. TG helped in qRT-PCR analysis. PKG, HSB and SS finalized the manuscript.

Corresponding authors

Correspondence to Shailendra Sharma or Pushpendra Kumar Gupta.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information 1

Online Resource 1 Summary of 151 original QTLs that were used for conducting meta-QTL analysis.

Online Resource 2 Ortho-MQTLs and underlying orthologous genes along with their functional descriptions.

Online Resource 3 List of 12 candidate genes selected on the basis of gene ontology.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R., Saripalli, G., Gautam, T. et al. Meta-QTLs, ortho-MetaQTLs and candidate genes for grain Fe and Zn contents in wheat (Triticum aestivum L.). Physiol Mol Biol Plants 28, 637–650 (2022). https://doi.org/10.1007/s12298-022-01149-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-022-01149-9

Keywords

Navigation