Skip to main content

Advertisement

Log in

Biofertilizer microorganisms accompanying pathogenic attributes: a potential threat

  • Review Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Application of biofertilizers containing living or dormant plant growth promoting bacterial cells is considered to be an ecofriendly alternative of chemical fertilizers for improved crop production. Biofertilizers opened myriad doors towards sustainable agriculture as they effectively reduce heavy use of chemical fertilizers and pesticides by keeping soils profuse in micro and macronutrients, regulating plant hormones and restraining infections caused by the pests present in soil without inflicting environmental damage. Generally, pathogenicity and biosafety testing of potential plant growth promoting bacteria (PGPB) are not performed, and the bacteria are reported to be beneficial solely on testing plant growth promoting characteristics. Unfortunately, some rhizosphere and endophytic PGPB are reported to be involved in various diseases. Such PGPB can also spread virulence and multidrug resistance genes carried by them through horizontal gene transfer to other bacteria in the environment. Therefore, deployment of such microbial populations in open fields could lead to disastrous side effects on human health and environment. Careless declaration of bacteria as PGPB is more pronounced in research publications. Here, we present a comprehensive report of declared PGPB which are reported to be pathogenic in other studies. This review also suggests the employment of some additional safety assessment protocols before reporting a bacteria as beneficial and product development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Achtman M, Wagner M (2008) Microbial diversity and the genetic nature of microbial species. Nat Rev Microbiol 6:431–440

    Article  CAS  PubMed  Google Scholar 

  • Almaghrabi OA, Massoud SI, Abdelmoneim TS (2013) Influence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions. Saudi J Biol Sci 20:57–61

    Article  PubMed  Google Scholar 

  • Amini A, Namvar AE (2019) Antimicrobial resistance pattern and presence of beta-lactamase genes in Pseudomonas aeruginosa strains isolated from hospitalized patients. JMB 8:45–50

    CAS  Google Scholar 

  • Article O (2009) Nosocomial bacteremia caused by biofilm-forming Bacillus cereus and Bacillus thuringiensis. Intern Med J 48(10):791–796

    Google Scholar 

  • Barros-Rodríguez A, Rangseekaew P, Lasudee K, Pathom-Aree W, Manzanera M (2020) Regulatory risks associated with bacteria as biostimulants and biofertilizers in the frame of the European Regulation (EU) 2019/1009. Sci Total Environ 740:140239

    Article  PubMed  Google Scholar 

  • Battini F, Grønlund M, Agnolucci M, Giovannetti M, Jakobsen I (2017) Facilitation of phosphorus uptake in maize plants by mycorrhizosphere bacteria. Sci Rep 7:1–11

    Article  CAS  Google Scholar 

  • Berg G, Eberl L, Hartmann A (2005) The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ Microbiol 7:1673–1685

    Article  CAS  PubMed  Google Scholar 

  • Berg G, Alavi M, Schmid M, Hartmann A (2013) The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Mol Microb Ecol Rhizosph 2:1209–1216

    Article  CAS  Google Scholar 

  • Bevivino A et al (2002) Burkholderia cepacia complex bacteria from clinical and environmental sources in Italy: genomovar status and distribution of traits related to virulence and transmissibility. J Clin Microbiol 40:846–851

    Article  PubMed  PubMed Central  Google Scholar 

  • Biswas JK et al (2017) Multi-metal resistance and plant growth promotion potential of a wastewater bacterium Pseudomonas aeruginosa and its synergistic benefits. Environ Geochem Health 39:1583–1593

    Article  CAS  PubMed  Google Scholar 

  • Bonares MJ, Vaisman A, Sharkawy A (2016) Prosthetic vascular graft infection and prosthetic joint infection caused by Pseudomonas stutzeri. ID Cases 6:106–108

    PubMed  PubMed Central  Google Scholar 

  • Bottone EJ (2010) Bacillus cereus, a volatile human pathogen. Clin Microbiol Rev 23(2):382–398

    Article  PubMed  PubMed Central  Google Scholar 

  • Braz VS, Gallo IFL, Furlan JPR, Stehling EG, Pitondo-Silva A (2019) Evaluation of different molecular and phenotypic methods for identification of environmental Burkholderia cepacia complex. World J Microbiol Biotechnol 35:39

    Article  PubMed  Google Scholar 

  • Brown SP, Cornforth DM, Mideo N (2012) Evolution of virulence in opportunistic pathogens: generalism, plasticity, and control. Trends Microbiol 20:336–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carmeli Y et al (2016) Ceftazidime-avibactam or best available therapy in patients with ceftazidime-resistant Enterobacteriaceae and Pseudomonas aeruginosa complicated urinary tract infections or complicated intra-abdominal infections (REPRISE): a randomised, pathogen-directed. Lancet Infect Dis 16:661–673

    Article  CAS  PubMed  Google Scholar 

  • Charpentier A et al (2018) Native aortic valve endocarditis due to Pseudomonas stutzeri in a 91-year-old woman. Med Mal Infect 48:492–494

    Article  PubMed  Google Scholar 

  • Checcucci A, Trevisi P, Luise D, Modesto M, Blasioli S, Braschi I, Mattarelli P (2020) Exploring the animal waste resistome: the spread of antimicrobial resistance genes through the use of livestock manure. Front Microbiol 11:1416

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen X, Liu X, Zhang X, Cao L, Hu X (2017) Phytoremediation effect of Scirpus triqueter inoculated plant-growth-promoting bacteria (PGPB) on different fractions of pyrene and Ni in co-contaminated soils. J Hazard Mater 325:319–326

    Article  CAS  PubMed  Google Scholar 

  • Chun-Hao J, Chen Y, Fang Y, Zhi-Hang F, Jian-Hua G (2017) Whole-Genome Sequence of Bacillus cereus AR156, a potential biocontrol agent with high soilborne disease biocontrol efficacy and plant growth promotion. Microbiol. Resour. Announc 5:e00886-17

    Google Scholar 

  • Clina D et al (2017) Antimicrobial resistance development following surgical site infections. Mol Med Rep 15:681–688

    Article  Google Scholar 

  • Coenye T, Gevers D, De Peer YV, Vandamme P, Swings J (2005) Towards a prokaryotic genomic taxonomy. FEMS Microbiol Rev 29:147–167

    Article  CAS  PubMed  Google Scholar 

  • Coutinho CP, Barreto C, Pereira L, Lito L, Cristino JM, Sa-Correia I (2015) Incidence of Burkholderia contaminans at a cystic fibrosis centre with an unusually high representation of Burkholderia cepacia during 15 years of epidemiological surveillance. J Med Microbiol 64:927–935

    Article  CAS  PubMed  Google Scholar 

  • David BV, Chandrasehar G, Selvam PN (2018) Pseudomonas fluorescens: a plant-growth-promoting rhizobacterium (PGPR) with potential role in biocontrol of pests of crops. In: Crop improvement through microbial biotechnology. Elsevier, pp 221–243

  • Dazzo FB, Garoutte A, Hartmann A (2019) Rhizosphere, pp 147–163

  • DebMandal M, Mandal S, Kumar Pal N (2011) Antibiotic resistance prevalence and pattern in environmental bacterial isolates. Int J Antimicrob Agents 3(1):45–52

    Article  CAS  Google Scholar 

  • Dhar Purkayastha G, Mangar P, Saha A, Saha D (2018) Evaluation of the biocontrol efficacy of a Serratia marcescens strain indigenous to tea rhizosphere for the management of root rot disease in tea. PLoS ONE 13(2):e0191761

    Article  PubMed  PubMed Central  Google Scholar 

  • Dimkpa CO, Svatoš A, Dabrowska P, Schmidt A, Boland W, Kothe E (2008) Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp. Chemosphere 74(1):19–25

    Article  CAS  PubMed  Google Scholar 

  • Dubern JF et al (2015) Integrated whole genome screening for Pseudomonas aeruginosa virulence genes using multiple disease models reveals that pathogenicity is host specific. Environ Microbiol 17:4379–4393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • East R (2013) Microbiome: soil science comes to life. Nature 501:S18–S19

    Article  CAS  PubMed  Google Scholar 

  • Fanelli RM (2020) The spatial and temporal variability of the effects of agricultural practices on the environment. Environments 7:33

    Article  Google Scholar 

  • Fatima S, Anjum T (2017) Identification of a potential ISR determinant from Pseudomonas aeruginosa PM12 against Fusarium wilt in tomato. Front Plant Sci 8:848

    Article  PubMed  PubMed Central  Google Scholar 

  • Feistel DJ, Elmostafa R, Nguyen N, Penley M, Morran L, Hickman MA (2019) A novel virulence phenotype rapidly assesses Candida fungal pathogenesis in healthy and immunocompromised Caenorhabditis elegans hosts. Msphere 4:e00697-e618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiore E, Van Tyne D, Gilmore MS (2019) Pathogenicity of Enterococci. Microbiol Spectr 7:1–16

    Article  Google Scholar 

  • Fitzpatrick CR, Copeland J, Wang PW, Guttman DS, Kotanen PM, Johnson MT (2018) Assembly and ecological function of the root microbiome across angiosperm plant species. Proc Natl Acad Sci 115(6):E1157–E1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forghani F, Kim JB, Oh DH (2014) Enterotoxigenic profiling of emetic toxin-and enterotoxin-producing Bacillus cereus, isolated from food, environmental, and clinical Ssamples by multiplex PCR. J Food Sci 79:M2288–M2293

    Article  CAS  PubMed  Google Scholar 

  • Fournier PE, Rossi-Tamisier M, Benamar S, Raoult D (2015) Cautionary tale of using 16S rRNA gene sequence similarity values in identification of human-associated bacterial species. Int J Syst Evol Microbiol 65:1929–1934

    Article  PubMed  Google Scholar 

  • Funabashi M (2018) Human augmentation of ecosystems: objectives for food production and science by 2045 npj. Sci Food 2:1–11

    Google Scholar 

  • Furlan JPR, Pitondo-Silva A, Braz VS, Gallo IFL, Stehling EG (2019) Evaluation of different molecular and phenotypic methods for identification of environmental Burkholderia cepacia complex. World J Microbiol Biotechnol 35:39

    Article  PubMed  Google Scholar 

  • Gewin V (2006) Genomics: discovery in the dirt. Nature 439:384–387

    Article  CAS  PubMed  Google Scholar 

  • González O, Ortíz-Castro R, Díaz-Pérez C, Díaz-Pérez AL, Magaña-Dueñas V, López-Bucio J, Campos-García J (2017) Non-ribosomal peptide synthases from Pseudomonas aeruginosa play a role in cyclodipeptide biosynthesis, quorum-sensing regulation, and root development in a plant host. Microb Ecol 73:616–629

    Article  PubMed  Google Scholar 

  • Govan JR, Deretic V (1996) Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 60(3):539–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grosso-Becerra M-V et al (2014) Pseudomonas aeruginosa clinical and environmental isolates constitute a single population with high phenotypic diversity. BMC Genomics 15:1–14

    Article  Google Scholar 

  • Halabi Z, Mocadie M, Zein SE, Kanj SS (2018) Pseudomonas stutzeri prosthetic valve endocarditis: a case report andreview of the literature. J Infect Public Health 12:434–437

    Article  PubMed  Google Scholar 

  • Hassan KA, Aftab A, Riffat M (2015) Nosocomial infections and their control strategies. Asian Pac J Trop Biomed 5:505–509

    Google Scholar 

  • Hequette-Ruz R, Charpentier A, Delabriere I, Loiez C, Guery B, Puisieux F, Beuscart J-B (2018) Native aortic valve endocarditis due to Pseudomonas stutzeri in a 91-year-old woman Med. Mal Infect 48:492–494

    Article  CAS  Google Scholar 

  • Hossain M (2016) Isolation and identification of plant growth promoting rhizobacteria from cucumber rhizosphere and their effect on plant growth promotion and disease suppression. Front Microbiol 6:1360

    PubMed  PubMed Central  Google Scholar 

  • Hussain MM (2011) Direct detection of mycobacterium tuberculosis complex using gold nanoparticles

  • Imran A et al (2021) Diazotrophs for lowering nitrogen pollution crises: looking deep into the roots. Front Microbiol 12:861

    Article  Google Scholar 

  • Islam S, Akanda AM, Prova A, Islam MT, Hossain MM (2016) Isolation and identification of plant growth promoting rhizobacteria from cucumber rhizosphere and their effect on plant growth promotion and disease suppression. Front Microbiol 6:1360

    Article  PubMed  PubMed Central  Google Scholar 

  • Itelima J, Bang W, Onyimba I, Sila M, Egbere O (2018) Bio-fertilizers as key player in enhancing soil fertility and crop productivity: a review

  • Jameel ZJ, Hussain AF, Al-Mahdawi MA, Alkerim NFA, Abd Alrahman ES (2017) Bioactivity of pyocyanin of Pseudomonas aeruginosa clinical isolates against a variety of human pathogenic bacteria and fungi species. Int Arab J Antimicrob Agents

  • Jeong H, Kloepper JW, Ryu C (2015) Genome sequence of rhizobacterium Serratia marcescens Strain 90–166, which triggers induced systemic resistance and plant growth. Genome Announc 3:e00667-e715

    Article  PubMed  PubMed Central  Google Scholar 

  • Jung BK, Hong SJ, Park GS, Kim MC, Shin JH (2018) Isolation of Burkholderia cepacia JBK9 with plant growth-promoting activity while producing pyrrolnitrin antagonistic to plant fungal diseases. Appl Biol Chem 61:173–180

    Article  CAS  Google Scholar 

  • Kahveci A, Asicioglu E, Tigen E, Ari E, Arikan H, Odabasi Z, Ozener C (2011) Unusualauses of peritonitis in a peritoneal dialysis patient: Alcaligenes faecalis and Pantoea agglomerans. Ann Clin Microbiol 10(1):1–3

    Google Scholar 

  • Kanter DR, Searchinger TD (2018) A technology-forcing approach to reduce nitrogen pollution. Nat Sustain 1:544–552

    Article  Google Scholar 

  • Keswani C et al (2019) Re-addressing the biosafety issues of plant growth promoting rhizobacteria. Sci Total Environ 690:841–852

    Article  CAS  PubMed  Google Scholar 

  • Kim KY, Yong D, Lee K, Kim HS, Kim DS (2016) Burkholderia sepsis in children as a hospital-acquired infection. Yonsei Med J 57:97–102

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Bahadur I, Maurya B, Raghuwanshi R, Meena V, Singh D, Dixit J (2015) Does a plant growth-promoting rhizobacteria enhance agricultural sustainability. J Pure Appl Microbiol 9:715–724

    Google Scholar 

  • Kumar V, Wani SH, Suprasanna P, Tran L-SP (2018) Salinity responses and tolerance in plants, volume 1: targeting sensory, transport and signaling mechanisms. Springer, Berlin

    Book  Google Scholar 

  • Kuroki R et al (2009) Nosocomial bacteremia caused by biofilm-forming Bacillus cereus and Bacillus thuringiensis. Intern Med J 48:791–796

    Google Scholar 

  • LiPuma JJ (2010) The changing microbial epidemiology in cystic fibrosis. Clin Microbiol Rev 23:299–323

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu M et al (2016) Selection and evaluation of phosphate-solubilizing bacteria from grapevine rhizospheres for use as biofertilizers. Span J Agric Res 14:26

    Article  Google Scholar 

  • Liu J, Tang L, Gao H, Zhang M, Guo C (2018) Enhancement of alfalfa yield and quality by plant growth-promoting rhizobacteria under saline-alkali conditions. J Sci Food Agric 7:1–33

    Google Scholar 

  • Liu J, Tang L, Gao H, Zhang M, Guo C (2019) Enhancement of alfalfa yield and quality by plant growth-promoting rhizobacteria under saline-alkali conditions. J Sci Food Agric 99:281–289

    Article  CAS  PubMed  Google Scholar 

  • Loyse A, Storring RA, Melzer M (2006) Pseudomonas stutzeri pneumonia in an HIV seropositive patient. J Infect 53(1):75–76

    Article  PubMed  Google Scholar 

  • Mahenthiralingam E, Baldwin A, Dowson C (2008) Burkholderia cepacia complex bacteria: opportunistic pathogens with important natural biology. J Appl Microbiol 104:1539–1551

    Article  CAS  PubMed  Google Scholar 

  • Manikandan R, Saravanakumar D, Rajendran L, Raguchander T, Samiyappan R (2010) Standardization of liquid formulation of Pseudomonas fluorescens Pf1 for its efficacy against Fusarium wilt of tomato. Biol Control 54:83–89

    Article  Google Scholar 

  • Martin M, Christiansen B, Caspari G, Hogardt M, Von Thomsen A, Ott E, Mattner F (2011) Hospital-wide outbreak of Burkholderia contaminans caused by prefabricated moist washcloths. J Hosp Infect 77:267–270

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Hidalgo P, Maymon M, Pule-Meulenberg F, Hirsch AM (2019) Engineering root microbiomes for healthier crops and soils using beneficial, environmentally safe bacteria Can. J Microbiol 65:91–104

    Google Scholar 

  • Marvig RL, Johansen HK, Molin S, Jelsbak L (2013) Genome analysis of a transmissible lineage of Pseudomonas aeruginosa reveals pathoadaptive mutations and distinct evolutionary paths of hypermutators. PloS Genet 9:e1003741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merikanto I, Laakso JT, Kaitala V (2014) Invasion ability and disease dynamics of environmentally growing opportunistic pathogens under outside-host competition. PLoS ONE 9:e113436

    Article  PubMed  PubMed Central  Google Scholar 

  • Merikanto I, Laakso JT, Kaitala V (2017) Outside-host predation as a biological control against an environmental opportunist disease. Ecol Modell 347:85–93

    Article  Google Scholar 

  • Morens DM, Folkers GK, Fauci AS (2004) The challenge of emerging and re-emerging infectious diseases. Nature 430:242–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ngamwongsatit P, Buasri W, Pianariyanon P, Pulsrikarn C, Ohba M, Assavanig A, Panbangred W (2008) Broad distribution of enterotoxin genes (hblCDA, nheABC, cytK, and entFM) among Bacillus thuringiensis and Bacillus cereus as shown by novel primers Int. J Food Microbiol 121:352–356

    Article  CAS  Google Scholar 

  • Nicholas M, Maurice BB, RTS, (2018) Pseudomonas aeruginosa biofilms: host response and clinical implications in lung infections. Am J Respir Cell Mol 58(4):428–439

    Article  Google Scholar 

  • Niu DD, Liu HX, Jiang CH, Wang YP, Wang QY, Jin HL, Guo JH (2011) The plant growth–promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate-and jasmonate/ethylene-dependent signaling pathways. Mol Plant Microbe Interact 24(5):533–542

    Article  CAS  PubMed  Google Scholar 

  • Noyes N, Yang X, Linke L et al (2016) Characterization of the resistome in manure, soil and wastewater from dairy and beef production systems. Sci Rep 6:24645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ouyang J et al (2008) Paenibacillus thiaminolyticus: a new cause of human infection, inducing bacteremia in a patient on hemodialysis. Ann Clin Lab Sci 38(4):393–400

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pallen MJ, Wren BW (2007) Bacterial pathogenomics. Nature 449:835–842

    Article  CAS  PubMed  Google Scholar 

  • Pandey P, Maheshwari D (2007) Bioformulation of Burkholderia sp. MSSP with a multispecies consortium for growth promotion of Cajanus cajan. Can J Microbiol 53:213–222

    Article  CAS  PubMed  Google Scholar 

  • Parvin W, Jahan QS, Rahman MM, Wong MY (2018) In vitro screening and optimization of IAA production from plant growth promoting rhizobacteria. Plant Tissue Cult Biotechnol 28(1):25–34

    Article  Google Scholar 

  • Pham VTK et al (2017) The plant growth-promoting effect of the nitrogen-fixing endophyte Pseudomonas stutzeri A15. Arch Microbiol 199:513–517

    Article  CAS  PubMed  Google Scholar 

  • Phi QT, Park YM, Seul KJ, Ryu CM, Park SH, Kim JG, Ghim SY (2010) Assessment of root-associated Paenibacillus polymyxa groups on growth promotion and induced systemic resistance in pepper. J Microbiol Biotechnol 20(12):1605–1613

    CAS  PubMed  Google Scholar 

  • Pramanik K, Mitra S, Sarkar A, Maiti TK (2018) Alleviation of phytotoxic effects of cadmium on rice seedlings by cadmium resistant PGPR strain Enterobacter aerogenes MCC 3092. J Hazard Mater 351:317–329

    Article  CAS  PubMed  Google Scholar 

  • Qin X, Yang Y, Hu F, Zhu D (2014) Hospital clonal dissemination of Enterobacter aerogenes producing carbapenemase KPC-2 in a Chinese teaching hospital. J Med Microbiol 63:222–228

    Article  CAS  PubMed  Google Scholar 

  • Raphael E, Riley LW (2017) Infections caused by antimicrobial drug-resistant saprophytic Gram-negative bacteria in the environment. Front Med 4:183

    Article  Google Scholar 

  • Ray S, Singh V, Singh S, Sarma BK, Singh HB (2016) Biochemical and histochemical analyses revealing endophytic Alcaligenes faecalis mediated suppression of oxidative stress in Abelmoschus esculentus challenged with Sclerotium rolfsii. Plant Physiol Biochem 109:430–441

    Article  CAS  PubMed  Google Scholar 

  • Rieg S et al (2010) Paenibacillus larvae bacteremia in injection drug users. Emerg Infect Dis 16(3):487

    Article  PubMed  PubMed Central  Google Scholar 

  • Ritchie KB, Schwarz M, Mueller J, Lapacek VA, Merselis D, Walsh CJ, Luer CA (2017) Survey of antibiotic-producing bacteria associated with the epidermal mucus layers of rays and skates. Front Microbiol 8:1050

    Article  PubMed  PubMed Central  Google Scholar 

  • Riviere E, Neau D, Roux X, Lippa N, Roger-Schmeltz J, Mercie P, Longy-Boursier M (2012) Pulmonary streptomyces infection in patient with sarcoidosis, France, 2012. Emerg Infect Dis 18(11):1907

    Article  PubMed  PubMed Central  Google Scholar 

  • Rojas-Solís D, Zetter-Salmón E, Contreras-Pérez M, del Carmen R-G, Macías-Rodríguez L, Santoyo G (2018) Pseudomonas stutzeri E25 and Stenotrophomonas maltophilia CR71 endophytes produce antifungal volatile organic compounds and exhibit additive plant growth-promoting effects. Biocatal Agric Biotechnol 13:46–52

    Article  Google Scholar 

  • Rosier A, Medeiros FH, Bais HP (2018) Defining plant growth promoting rhizobacteria molecular and biochemical networks in beneficial plant-microbe interactions. Plant Soil 428:35–55

    Article  CAS  Google Scholar 

  • Rosselló-Mora R, Amann R (2001) The species concept for prokaryotes. FEMS Microbiol Rev 25:39–67

    Article  PubMed  Google Scholar 

  • Rossi-Tamisier M, Benamar S, Raoult D, Fournier P-E (2015) Cautionary tale of using 16S rRNA gene sequence similarity values in identification of human-associated bacterial species. Int J Syst Evol 65:1929–1934

    Article  CAS  Google Scholar 

  • Rozier C, Hamzaoui J, Lemoine D, Czarnes S, Legendre L (2017) Field-based assessment of the mechanism of maize yield enhancement by Azospirillum lipoferum CRT1. Sci Rep 7:1–12

    Article  CAS  Google Scholar 

  • Russo TA et al. (2015) Optimisation of the Caenorhabditis elegans model for studying the pathogenesis of opportunistic Acinetobacter baumannii. Int J Antimicrob Agents 1–8

  • Rutherford ST, Bassler BL (2012) Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med 2:a012427

    Article  PubMed  PubMed Central  Google Scholar 

  • Safdarian M, Askari H, Shariati V, Nematzadeh G (2019) Transcriptional responses of wheat roots inoculated with Arthrobacter nitroguajacolicus to salt stress. Sci Rep 9:1–12

    Article  CAS  Google Scholar 

  • Samuelsson A, Isaksson B, Hanberger H, Olhager E (2014) Late-onset neonatal sepsis, risk factors and interventions: an analysis of recurrent outbreaks of Serratia marcescens, 2006–2011. J Hosp Infect 86(1):57–63

    Article  CAS  PubMed  Google Scholar 

  • Shen Y, Xiao WQ, Gong JM, Pan J, Xu QX (2017) Detection of New Delhi metallo-beta-lactamase (Encoded by bla NDM-1) in Enterobacter aerogenes in China. J Clin Lab Anal 31:e22044

    Article  Google Scholar 

  • Sheppard SK, Guttman DS, Fitzgerald JR (2018) Population genomics of bacterial host adaptation. Nat Rev Genet 19:549–565

    Article  CAS  PubMed  Google Scholar 

  • Shrivastava B, Sriram A, Shetty S, Doshi R, Varior R (2016) An unusual source of Burkholderia cepacia outbreak in a neonatal intensive care unit. J Hosp Infect 94:358–360

    Article  CAS  PubMed  Google Scholar 

  • Singh VK, Singh AK, Kumar A (2017) Disease management of tomato through PGPB: current trends and future perspective. 3 Biotech 7:1–10

    Article  Google Scholar 

  • Stets MI, Alqueres SMC, Souza EM, Pedrosa FDO, Schmid M, Hartmann A, Cruz LM (2015) Quantification of Azospirillum brasilense FP2 bacteria in wheat roots by strain-specific quantitative PCR. Appl Environ Microbiol 81(19):6700–6709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Syed-Ab-Rahman SF, Carvalhais LC, Chua ET, Chung FY, Moyle PM, Eltanahy EG, Schenk PM (2019) Soil bacterial diffusible and volatile organic compounds inhibit Phytophthora capsici and promote plant growth. Sci Total Environ 692:267–280

    Article  CAS  PubMed  Google Scholar 

  • Tagele SB, Kim SW, Lee HG, Kim HS, Lee YS (2018) Effectiveness of multi-trait Burkholderia contaminans KNU17BI1 in growth promotion and management of banded leaf and sheath blight in maize seedling. Microbiol Res 214:8–18

    Article  CAS  PubMed  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677

    Article  CAS  PubMed  Google Scholar 

  • Tiwari P, Singh JS (2017) A plant growth promoting rhizospheric Pseudomonas aeruginosa strain inhibits seed germination in Triticum aestivum (L) and Zea mays (L). Microbiol Res 8:7233

    Article  Google Scholar 

  • Tiwari G, Duraivadivel P, Sharma S, Hariprasad P (2018) 1-Aminocyclopropane-1-carboxylic acid deaminase producing beneficial rhizobacteria ameliorate the biomass characters of Panicum maximum Jacq. by mitigating drought and salt stress. Sci Rep 8:1–12

    Article  Google Scholar 

  • Udikovic-Kolic N, Wichmann F, Broderick NA, Handelsman J (2014) Bloom of resident antibiotic-resistant bacteria in soil following manure fertilization. PNAS 111:15202–15207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umesha S, Singh PK, Singh RP (2018) Microbial biotechnology and sustainable agriculture. In: Biotechnology for sustainable agriculture. Elsevier, Amsterdam, pp 185–205

  • Van Oosten MJ et al (2018) Root inoculation with Azotobacter chroococcum 76A enhances tomato plants adaptation to salt stress under low N conditions. BMC Plant Biol 18:1–12

    Google Scholar 

  • Váradi L, Luo JL, Hibbs DE, Perry JD, Anderson RJ, Orenga S, Groundwater PW (2017) Methods for the detection and identification of pathogenic bacteria: past, present, and future. Chem Soc Rev 46(16):4818–4832

    Article  PubMed  Google Scholar 

  • Velázquez-Becerra C, Macías-Rodríguez LI, López-Bucio J, Flores-Cortez I, Santoyo G, Hernández-Soberano C, Valencia-Cantero E (2013) The rhizobacterium Arthrobacter agilis produces dimethylhexadecylamine, a compound that inhibits growth of phytopathogenic fungi in vitro. Protoplasma 250(6):1251–1262

    Article  PubMed  Google Scholar 

  • Veysseyre F, Fourcade C, Lavigne J-P, Sotto A (2015) Bacillus cereus infection: 57 case patients and a literature review. Med Mal Infect 45:436–440

    Article  CAS  PubMed  Google Scholar 

  • Vílchez JI, Lally RD, Morcillo RJL (2017) biosafety evaluation: a necessary process ensuring the equitable beneficial effects of PGPR. Adv PGPR Res 50

  • Wall DH, Nielsen UN, Six J (2015) Soil biodiversity and human health. Nature 528:69–76

    Article  CAS  PubMed  Google Scholar 

  • Walsh TR, Weeks J, Livermore DM, Toleman MA (2011) Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet Infect Dis 11:355–362

    Article  PubMed  Google Scholar 

  • Xu S, Bai Z, Jin B, Xiao R, Zhuang G (2014) Bioconversion of wastewater from sweet potato starch production to Paenibacillus polymyxa biofertilizer for tea plants. Sci Rep 4:1–7

    CAS  Google Scholar 

  • Yadav KK, Sarkar S (2019) Biofertilizers, impact on soil fertility and crop productivity under sustainable agriculture. Environ Ecol 37:89–93

    Google Scholar 

  • Yagmur B, Gunes A (2021) Evaluation of the effects of plant growth promoting rhizobacteria (PGPR) on yield and quality parameters of tomato plants in organic agriculture by principal component analysis (PCA). Gesunde Pflanz 73(2):219–228

    Article  CAS  Google Scholar 

  • Yasmeen T, Aziz A, Tariq M, Arif MS, Shahzad SM, Riaz M, Javed A, Ali S, Rizwan M (2021) Pseudomonas as plant growth-promoting bacteria and its role in alleviation of abiotic stress plant growth-promoting microbes for sustainable biotic and abiotic stress management. Springer, Berlin, pp 157–185

    Book  Google Scholar 

  • Yasmin S et al (2017) Biocontrol of Bacterial Leaf Blight of rice and profiling of secondary metabolites produced by rhizospheric Pseudomonas aeruginosa BRp3. Front Microbiol 8:1895

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoolong S, Kruasuwan W, Pham HTT, Jaemsaeng R, Jantasuriyarat C, Thamchaipenet A (2019) Modulation of salt tolerance in Thai jasmine rice (Oryza sativa L. cv. KDML105) by Streptomyces venezuelae ATCC 10712 expressing ACC deaminase. Sci Rep 9:1–10

    Article  CAS  Google Scholar 

  • Zeng Q, Xie J, Li Y, Gao T, Xu C, Wang Q (2018) Comparative genomic and functional analyses of four sequenced Bacillus cereus genomes reveal conservation of genes relevant to plant-growth-promoting traits. Sci Rep 8:1–10

    Article  Google Scholar 

  • Zhang X, Davidson EA, Mauzerall DL, Searchinger TD, Dumas P, Shen Y (2015) Managing nitrogen for sustainable development. Nature 528:51–59

    Article  CAS  PubMed  Google Scholar 

  • Zhou D, Huang X (2015) Root and bacterial secretions regulate the interaction between plants and PGPR leading to distinct plant growth promotion effects. Plant Soil 401(1–2):259–272

    Google Scholar 

  • Zhou D, Huang X-F, Chaparro JM, Badri DV, Manter DK, Vivanco JM, Guo J (2016) Root and bacterial secretions regulate the interaction between plants and PGPR leading to distinct plant growth promotion effects. Plant Soil 401:259–272

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

MT conceived the project and designed the studies. All team members collected data and wrote different segments of the review paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mohsin Tariq.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tariq, M., Jameel, F., Ijaz, U. et al. Biofertilizer microorganisms accompanying pathogenic attributes: a potential threat. Physiol Mol Biol Plants 28, 77–90 (2022). https://doi.org/10.1007/s12298-022-01138-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-022-01138-y

Keywords

Navigation