Skip to main content
Log in

Functional characterization and expression profile of microsomal FAD2 and FAD3 genes involved in linoleic and α-linolenic acid production in Leucas cephalotes

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

The genus Leucas belongs to Lamiaceae, and has attained more attention due to the presence of unusual allenic fatty acids called laballenic and phlomic acid in majority of its species. This genus has been known since traditional medicinal times and has numerous economical, nutritional, and industrial properties. So far genetic, molecular and biochemical analyses of lipid metabolism and fatty acid biosynthetic pathway in Leucas has not been reported. The objective of this study is to identify, isolate, analyze expression profiles, and functionally characterize the membrane-associated desaturases responsible for unsaturated fatty acid accumulation in Leucas cephalotes. Full-length LcFAD2 and LcFAD3 cDNAs were isolated and expressed in Saccharomyces cerevisiae BY4741 for functional characterization. Substrate feeding assay using S. cerevisiae confirmed that the LcFAD2 enzyme catalyzes desaturation of both palmitoleic (16:1∆9) and oleic (18:1∆9) acids to form palmitolinoleic (16:2∆9,12) and linoleic (18:2∆9,12) acids respectively. As a contrast, the heterologous activity of LcFAD2 enzyme in S. cerevisiae led to the synthesis of palmitolinoleic (16:2∆9,12) acid, an unusual fatty acid that is not found naturally in Leucas cephalotes. While the LcFAD3 enzyme catalyzed linoleic acid (18:2∆9,12) into α-linolenic acid (18:3∆9,12,15). Furthermore, transcript abundance of LcFAD2 and LcFAD3 cDNAs were estimated from various plant parts such as roots, shoots, leaves, petals and developing seeds. Our results have shown that the differential transcriptional activity of LcFAD2 and LcFAD3 desaturase genes differs significantly in developing seeds, petals, leaves, stems, and roots of L. cephalotes. Furthermore, for the industrial production of these essential fatty acids, namely, linoleic and α-linolenic acid, FAD2 and FAD3 enzyme activity could be exploited from this upcoming significant oil plant, Leucas cephalotes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aitzetmüller K, Tsevegsüren N, Vosmann K (1997) A new allenic fatty acid in Phlomis (Lamiaceae) seed oil. Eur J Lipid Sci Technol 99:74–78

    Google Scholar 

  • Al Yousuf MH, Bashir AK, Blunden G, Yang MH, Patel AV (1999) Coumarleucasin and leucasone from Leucas inflata roots. Phytochemistry 51:95–98

    Article  Google Scholar 

  • Alonso DL, Garcia-Maroto F, Rodriguez-Ruiz J, Garrido JA, Vilches MA (2003) Evolution of the membrane-bound fatty acid desaturases. Biochem Syst Ecol 31(10):1111–1124 (1)

    Article  CAS  Google Scholar 

  • Anai T, Yamada T, Kinoshita T, Rahman SM, Takagi Y (2005) Identification of corresponding genes for three low-α-linolenic acid mutants and elucidation of their contribution to fatty acid biosynthesis in soybean seed. Plant Sci 168:1615–1623

    Article  CAS  Google Scholar 

  • Andreu V, Collados R, Testillano PS, del Carmen RM, Picorel R, Alfonso M (2007) In situ molecular identification of the plastid ω3 fatty acid desaturase FAD7 from soybean: evidence of thylakoid membrane localization. Plant Physiol 145(4):1336–1344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arondel V, Lemieux B, Hwang I, Gibson S, Goodman HM, Somerville CR (1992) Map-based cloning of a gene controlling omega-3 fatty acid desaturation in Arabidopsis. Science 258:1353–1355

    Article  CAS  PubMed  Google Scholar 

  • Asif M (2011) Health effects of omega-3, 6, 9 fatty acids: Perilla frutescens is a good example of plant oils. Orient Pharm Exp Med 11:51–59

    Article  PubMed  PubMed Central  Google Scholar 

  • Avelange-Macherel MH, Macherel D, Wada H, Murata N (1995) Site-directed mutagenesis of histidine residues in the Δ12 acyl-lipid desaturase of Synechocystis. FEBS Lett 361:111–114

    Article  CAS  PubMed  Google Scholar 

  • Ayerza R (1995) Oil content and fatty acid composition of chia (Salvia hispanica L.) from five northwestern locations in Argentina. J Am Oil Chem Soc 72:1079–1081

    Article  CAS  Google Scholar 

  • Banik M, Duguid S, Cloutier S (2011) Transcript profiling and gene characterization of three fatty acid desaturase genes in high, moderate, and low linolenic acid genotypes of flax (Linum usitatissimum L.) and their role in linolenic acid accumulation. Genome 54:471–483

    Article  CAS  PubMed  Google Scholar 

  • Broun P, Boddupalli S, Somerville C (1998) A bifunctional oleate 12-hydroxylase: desaturase from Lesquerella fendleri. Plant J 13:201–210

    Article  CAS  PubMed  Google Scholar 

  • Browse J, Somerville C (1991) Glycerolipid synthesis: biochemistry and regulation. Annu Rev Plant Biol 42:467–506

    Article  CAS  Google Scholar 

  • Browse J, Warwick N, Somerville CR, Slack CR (1986) Fluxes through the prokaryotic and eukaryotic pathways of lipid synthesis in the’16:3’plant Arabidopsis thaliana. Biochem J 235:25–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622

    Article  CAS  PubMed  Google Scholar 

  • Chi X, Yang Q, Pan L, Chen M, He Y, Yang Z, Yu S (2011) Isolation and characterization of fatty acid desaturase genes from peanut (Arachis hypogaea L.). Plant Cell Rep 30:1393–1404

    Article  CAS  PubMed  Google Scholar 

  • Choudhary AK (2018) Fatty acid profiling of genus Leucas R.Br. (Lamiaceae), characterization of fatty acid desaturases and comparative transcriptomic analysis to study unusual fatty acid biosynthesis in L. cephalotes (Roth) Spreng. Dissertation, University of Delhi

  • Choudhary AK, Sunojkumar P, Mishra G (2017) Fatty acid profiling and multivariate analysis in the genus Leucas reveals its nutritional, pharmaceutical and chemotaxonomic significance. Phytochemistry 143:72–80

    Article  CAS  PubMed  Google Scholar 

  • Chouhan HS, Singh SK (2011) A review of plants of genus Leucas. J Pharmacogn Phytother 3:13–26

    Google Scholar 

  • Dauk M, Lam P, Kunst L, Smith MA (2007) A FAD2 homologue from Lesquerella lindheimeri has predominantly fatty acid hydroxylase activity. Plant Sci 173:43–49

    Article  CAS  Google Scholar 

  • Dyer JM, Chapital DC, Kuan JCW, Mullen RT, Turner C, McKeon TA, Pepperman AB (2002) Molecular analysis of a bifunctional fatty acid conjugase/desaturase from tung. Implications for the evolution of plant fatty acid diversity. Plant Physiol 130:2027–2038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dyer JM, Chapital DC, Kuan JW, Shepherd HS, Tang F, Pepperman AB (2004) Production of linolenic acid in yeast cells expressing an omega-3 desaturase from tung (Aleurites fordii). J Amer Oil Chem Soc 81:647–651

    Article  CAS  Google Scholar 

  • Eriksson D, Merker A (2011) Cloning and functional characterization of genes involved in fatty acid biosynthesis in the novel oilseed crop Lepidium campestre L. Plant Breed 130(3):407–409

    Article  CAS  Google Scholar 

  • Fan R, Li L, Cai G, Ye J, Liu M, Wang S, Li Z (2019) Molecular cloning and function analysis of FAD2 gene in Idesia polycarpa. Phytochemistry 168:112114

    Article  CAS  PubMed  Google Scholar 

  • Gogna M, Choudhary A, Mishra G, Kapoor R, Bhatla SC (2020) Changes in lipid composition in response to salt stress and its possible interaction with intracellular Na+-K+ ratio in sunflower (Helianthus annuus L.). Environ Exp Bot 178:104147

    Article  CAS  Google Scholar 

  • Guo HH, Li QQ, Wang TT, Hu Q, Deng WH, Xia XL, Gao HB (2014) XsFAD2 gene encodes the enzyme responsible for the high linoleic acid content in oil accumulated in Xanthoceras sorbifolia seeds. J Sci Food Agric 94:482–488

    Article  CAS  PubMed  Google Scholar 

  • Hasan M, Burdi DK, Ahmad VU (1991) Leucasin, a triterpene saponin from Leucas nutans. Phytochemistry 30:4181–4418

    Article  CAS  PubMed  Google Scholar 

  • Heppard EP, Kinney AJ, Stecca KL, Miao GH (1996) Developmental and growth temperature regulation of two different microsomal [omega]-6 desaturase genes in soybeans. Plant Physiol 110:311–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernández ML, Mancha M, Martínez-Rivas JM (2005) Molecular cloning and characterization of genes encoding two microsomal oleate desaturases (FAD2) from olive. Phytochemistry 66:1417–1426

    Article  PubMed  CAS  Google Scholar 

  • Hernández ML, Sicardo MD, Martínez-Rivas JM (2015) Differential contribution of endoplasmic reticulum and chloroplast ω-3 fatty acid desaturase genes to the linolenic acid content of olive (Olea europaea) fruit. Plant Cell Physiol 57:138–151

    Article  PubMed  CAS  Google Scholar 

  • Iba K (2002) Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. Annu Rev Plant Biol 53:225–245

    Article  CAS  PubMed  Google Scholar 

  • Kaup MT, Froese CD, Thompson JE (2002) A role for diacylglycerol acyltransferase during leaf senescence. Plant Physiol 129:1616–1626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khalil AT, Gedara SR, Lahloub MF, Halim AF (1996) Diterpenes and a flavone from Leucas neufliseana. Phytochemistry 41:1569–1571

    Article  CAS  Google Scholar 

  • Khan LM, Hanna MA (1983) Expression of oil from oilseeds—a review. J Agric Eng Res 28(6):495–503

    Article  Google Scholar 

  • Kirsch C, Takamiya-Wik M, Reinold S, Hahlbrock K, Somssich IE (1997) Rapid, transient, and highly localized induction of plastidial ω-3 fatty acid desaturase mRNA at fungal infection sites in Petroselinum crispum. Proc Natl Acad Sci USA 94:2079–2084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    Article  CAS  PubMed  Google Scholar 

  • Li L, Wang X, Gai J, Yu D (2007) Molecular cloning and characterization of a novel microsomal oleate desaturase gene from soybean. J Plant Physiol 164:1516–1526

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Los DA, Murata N (1998) Structure and expression of fatty acid desaturases. BBA-Lipids and Lipid Metabolism 1394:3–15

    Article  CAS  PubMed  Google Scholar 

  • Luisa Hernández M, Dolores Sicardo M, Arjona PM, Martínez-Rivas JM (2020) Specialized functions of olive FAD2 gene family members related to fruit development and the abiotic stress response. Plant Cell Physiol 61(2):427–441

    Article  PubMed  CAS  Google Scholar 

  • Lummiss JA, Oliveira KC, Pranckevicius AM, Santos AG, dos Santos EN, Fogg DE (2012) Chemical plants: high-value molecules from essential oils. J Am Chem Soc 134(46):18889–18891

    Article  CAS  PubMed  Google Scholar 

  • Lunn J, Theobald HE (2006) The health effects of dietary unsaturated fatty acids. Nutr Bull 3:178–224

    Article  Google Scholar 

  • McCartney AW, Dyer JM, Dhanoa PK, Kim PK, Andrews DW, McNew JA, Mullen RT (2004) Membrane-bound fatty acid desaturases are inserted co-translationally into the ER and contain different ER retrieval motifs at their carboxy termini. Plant J 37:156–173

    Article  CAS  PubMed  Google Scholar 

  • Menard GN, Moreno JM, Bryant FM, Munoz-Azcarate O, Kelly AA, Hassani-Pak K, Kurup S, Eastmond PJ (2017) Genome wide analysis of fatty acid desaturation and its response to temperature. Plant Physiol 173(3):1594–1605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miao X, Zhang L, Hu X, Nan S, Chen X, Fu H (2019) Cloning and functional analysis of the FAD2 gene family from desert shrub Artemisia sphaerocephala. BMC Plant Biol 19(1):481

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mikami K, Murata N (2003) Membrane fluidity and the perception of environmental signals in cyanobacteria and plants. Prog Lipid Res 42:527–543

    Article  CAS  PubMed  Google Scholar 

  • Minto RE Jr, Gibbons WJ, Cardon TB, Lorigan GA (2002) Synthesis and conformational studies of a transmembrane domain from a diverged microsomal Δ12-desaturase. Anal biochem 308:134–140

    Article  CAS  PubMed  Google Scholar 

  • Misra TN, Singh RS, Prasad C, Singh S (1992) Two aliphatic ketols from Leucas aspera. Phytochemistry 32:199–201

    Article  CAS  Google Scholar 

  • Moody JO, Gundidza M, Wyllie G (2006) Essential oil composition of Leucas milanjiana Guerke. Flavour Frag J 21:872–874

    Article  CAS  Google Scholar 

  • Ohlrogge J, Browse J (1995) Lipid biosynthesis. Plant Cell 7(7):957

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohlrogge JB, Jaworski JG (1997) Regulation of fatty acid synthesis. Annu Rev Plant Biol 48:109–136

    Article  CAS  Google Scholar 

  • Okuley J, Lightner J, Feldmann K, Yadav N, Lark E (1994) Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell 6(1):147–158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patel NK, Khan MS, Bhutani KK (2015) Investigations on Leucas cephalotes (Roth.) Spreng. For inhibition of LPS-induced pro-inflammatory mediators in murine macrophages and in rat model. EXCLI J 14:508

    PubMed  PubMed Central  Google Scholar 

  • Pradhan BP, Chakraborty DK, Subba GC (1990) A triterpenoid lactone from Leucas aspera. Phytochemistry 29:1693–1695

    Article  CAS  Google Scholar 

  • Radovanovic N, Thambugala D, Duguid S, Loewen E, Cloutier S (2014) Functional characterization of flax fatty acid desaturase FAD2 and FAD3 isoforms expressed in yeast reveals a broad diversity in activity. Mol Biotechnol 56:609–620

    Article  CAS  PubMed  Google Scholar 

  • Reed DW, Schäfer UA, Covello PS (2000) Characterization of the Brassica napus extra plastidial linoleate desaturase by expression in Saccharomyces cerevisiae. Plant Physiol 122:715–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riekens B, Ong WK, Chin NP (2010) Cost savings in real-time PCR with Eppendorf twin. Tec real-time PCR Plates. Eppendrof 213:1–4

    Google Scholar 

  • Rodríguez-Rodríguez MF, Salas JJ, Venegas-Calerón M, Garcés R, Martínez-Force E (2016) Molecular cloning and characterization of the genes encoding a microsomal oleate Δ12 desaturase (CsFAD2) and linoleate Δ15 desaturase (CsFAD3) from Camelina sativa. Ind Crops Prod 89:405–415

    Article  CAS  Google Scholar 

  • Sadhu SK, Okuyama E, Fujimoto H, Ishibashi M (2006) Diterpenes from Leucas aspera Inhibiting Prostaglandin-Induced Contractions. J Nat Prod 69:988–994

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Shanklin J, Whittle E, Fox BG (1994) Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase. Biochemistry 33:12787–12794

    Article  CAS  PubMed  Google Scholar 

  • Simopoulos AP (1999) Essential fatty acids in health and chronic disease. Am J Clin Nutr 70:560–569

    Article  Google Scholar 

  • Sinha S, Anasari AA, Osman SM (1978) Leucas cephalotes: a new seed oil rich in laballenic acid. Chem Ind Lond 1:67

    Google Scholar 

  • Sperling P, Ternes P, Zank TK, Heinz E (2003) The evolution of desaturases. Prostaglandins Leukot Essent Fatty Acids 68(2):73–95

    Article  CAS  PubMed  Google Scholar 

  • Swanson D, Block R, Mousa SA (2012) Omega-3 fatty acids EPA and DHA: health benefits throughout life. Adv Nutr 3:1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallis JG, Browse J (2002) Mutants of Arabidopsis reveal many roles for membrane lipids. Prog Lipid Res 41:254–278

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Xu C, Benning C (2012) TGD4 involved in endoplasmic reticulum-to-chloroplast lipid trafficking is a phosphatidic acid binding protein. Plant J 70:614–623

    Article  CAS  PubMed  Google Scholar 

  • Wei D, Li M, Zhang X, Ren Y, Xing L (2004) Identification and characterization of a novel Δ12-fatty acid desaturase gene from Rhizopus arrhizus. FEBS Lett 573:45–50

    Article  CAS  PubMed  Google Scholar 

  • Wu P, Zhang S, Zhang L, Chen Y, Li M, Jiang H, Wu G (2013) Functional characterization of two microsomal fatty acid desaturases from Jatropha curcas L. J Plant Physiol 170:1360–1366

    Article  CAS  PubMed  Google Scholar 

  • Xue Y, Yin N, Chen B, Liao F, Win AN, Jiang J, Wang R, Jin X, Lin N, Chai Y (2017) Molecular cloning and expression analysis of two FAD2 genes from chia (Salvia hispanica). Acta Physiol Plant 39(4):95 (1)

    Article  CAS  Google Scholar 

  • Xue Y, Chen B, Win AN, Fu C, Lian J, Liu X, Wang R, Zhang X, Chai Y (2018) Omega-3 fatty acid desaturase gene family from two ω-3 sources, Salvia hispanica and Perilla frutescens: cloning, characterization and expression. PLoS ONE 13(1):e0191432 (19)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yadav NS, Wierzbicki A, Aegerter M, Caster CS, Perez-Grau L, Kinney AJ, Hitz WD, Booth JR Jr, Schweiger B, Stecca KL, Allen SM (1993) Cloning of higher plant [omega]-3 fatty acid desaturases. Plant Physiol 103:467–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Liu H, Sun J, Li B, Zhu Q, Chen S, Zhang H (2012) Arabidopsis fatty acid desaturase FAD2 is required for salt tolerance during seed germination and early seedling growth. PLoS ONE 7:e30355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

This work was financially supported by DU R&D. AKC acknowledges the non-NET fellowship support from the University of Delhi. The authors thank Prof. M. Agrawal and Ms. B. Kukreja for their help in quantitative expression profiling. The authors gratefully acknowledge the generous gift of cultures of S. cerevisiae strain BY4741 by Prof. G. Pandey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Girish Mishra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 24 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhary, A.K., Mishra, G. Functional characterization and expression profile of microsomal FAD2 and FAD3 genes involved in linoleic and α-linolenic acid production in Leucas cephalotes. Physiol Mol Biol Plants 27, 1233–1244 (2021). https://doi.org/10.1007/s12298-021-01016-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-021-01016-z

Keywords

Navigation