Skip to main content
Log in

Menadione sodium bisulphite regulates physiological and biochemical responses to lessen salinity effects on wheat (Triticum aestivum L.)

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Salinity is a significant constraint for plant survival and productivity. Therefore, an immediate solution to this problem is sought to meet the human population's food demands. Recently, Menadione sodium bisulphite (MSB) has emerged as a significant regulator of plant defense response under abiotic stress. Studies on MSB are scarce, and a few reports on salinity (Arabidopsis and okra) and cadmium stress (okra) are present in the literature. However, these studies did not include the impact of MSB on physiological and plant water relation attributes, critical mediators of plant survival, and yield production under stress. Our results studied the impact of MSB on wheat administered to NaCl salinity in hydroponics medium. We used two wheat cultivars (salt-sensitive MH-97 and salt-tolerant Millat-2011, based on our pre-experimental studies). Seeds were primed in different MSB doses [control (unprimed), hydroprimed, 5, 10, 20, and 30 mM]. Salinity significantly diminished growth, chlorophyll molecules, photosynthesis, total free amino acids, water and turgor potentials, K, Ca, and P contents of wheat when administered NaCl salinity in the nutrient solution. Besides, a noteworthy accretion was present in oxidative stress markers [hydrogen peroxide & malondialdehyde], proline, ascorbic acid, antioxidant enzyme activities, and Na+ accumulation under salinity. Moreover, MSB noticeably enhanced chlorophyll molecules, proline, and oxidative defense to improve photosynthesis, plant water relations, and diminish specific ions toxicity. Our results manifested better defense regulation in salt-administered plants primed with 5 and 10 mM MSB. Our findings strongly advocated the use of MSB in improving plant salinity tolerance, particularly in wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Abdelaal KA, El-Maghraby LM, Elansary H, Hafez YM, Ibrahim EI, El-Banna M, El-Esawi M, Elkelish A (2020) Treatment of sweet pepper with stress tolerance-inducing compounds alleviates salinity stress oxidative damage by mediating the physio-biochemical activities and antioxidant systems. Agronomy 10(1):26

    CAS  Google Scholar 

  • Adhikari B, Dhungana SK, Kim ID, Shin DH (2020) Effect of foliar application of potassium fertilizers on soybean plants under salinity stress. J Saudi Soc Agric Sci 19(4):261–269. https://doi.org/10.1016/j.jssas.2019.02.001

    Article  Google Scholar 

  • Akram NA, Hafeez N, Farid-ul-Haq M, Ahmad A, Sadiq M, Ashraf M (2020) Foliage application and seed priming with nitric oxide causes mitigation of salinity-induced metabolic adversaries in broccoli (Brassica oleracea L.) plants. Acta Physiol Plant 42(10):155. https://doi.org/10.1007/s11738-020-03140-x

    Article  CAS  Google Scholar 

  • Akula R, Ravishankar GA (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav 6(11):1720–1731. https://doi.org/10.4161/psb.6.11.17613

    Article  CAS  Google Scholar 

  • Allen S, Grimshow H, Parkinson J, Quarmby C, Roberts J (1976) Chemical analysis in methods in plant ecology by Chapman. Black Well, London

    Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts Polyphenoloxidase in Beta vulgaris. Plant Physiol 24(1):1

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ashraf M, Parveen N (2002) Photosynthetic parameters at the vegetative stage and during grain development of two hexaploid wheat cultivars differing in salt tolerance. Biol Plant 45(3):401–407

    CAS  Google Scholar 

  • Ashraf M, Shahbaz M (2003) Assessment of genotypic variation in salt tolerance of early CIMMYT hexaploid wheat germplasm using photosynthetic capacity and water relations as selection criteria. Photosynthetica 41(2):273–280

    Google Scholar 

  • Ashraf MA, Akbar A, Parveen A, Rasheed R, Hussain I, Iqbal M (2018) Phenological application of selenium differentially improves growth, oxidative defense and ion homeostasis in maize under salinity stress. Plant Physiol Biochem 123:268–280

    CAS  PubMed  Google Scholar 

  • Ashraf MA, Asma HF, Iqbal M (2019) Exogenous menadione sodium bisulfite mitigates specific ion toxicity and oxidative damage in salinity-stressed okra (Abelmoschus esculentus Moench). Acta Physiol Plant 41(12):187. https://doi.org/10.1007/s11738-019-2978-7

    Article  CAS  Google Scholar 

  • Ashraf MA, Rasheed R, Zafar S, Iqbal M, Saqib ZA (2020) Menadione sodium bisulfite neutralizes chromium phytotoxic effects in okra by regulating cytosolutes, lipid peroxidation, antioxidant system and metal uptake. Int J Phytoremed 3:1–11

    Google Scholar 

  • Askari SH, Ashraf MA, Ali S, Rizwan M, Rasheed R (2021) Menadione sodium bisulfite alleviated chromium effects on wheat by regulating oxidative defense, chromium speciation, and ion homeostasis. Environ Sci Pollut Res 3:1–21

    Google Scholar 

  • Bates LS, Waldren RP, Teare I (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207

    CAS  Google Scholar 

  • Binder RG, Benson ME, Flath RA (1989) Eight 1,4-naphthoquinones from Juglans. Phytochemistry 28:2799–2801. https://doi.org/10.1016/S0031-9422(00)98092-0

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1):248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  • Cakmak I, Horst WJ (1991) Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol Plant 83(3):463–468

    CAS  Google Scholar 

  • Chance B, Maehly A (1955) [136] Assay of catalases and peroxidases. Meth Enzymol 2:764–775

    Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PT, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356

    CAS  Google Scholar 

  • Egamberdieva D, Wirth S, Bellingrath-Kimura SD, Mishra J, Arora NK (2019) Salt-tolerant plant growth promoting rhizobacteria for enhancing crop productivity of saline soils. Front Microbiol 10:2791–2791. https://doi.org/10.3389/fmicb.2019.02791

    Article  PubMed  PubMed Central  Google Scholar 

  • Ellouzi H, Hamed KB, Asensi-Fabado MA, Müller M, Abdelly C, Munné-Bosch S (2013) Drought and cadmium may be as effective as salinity in conferring subsequent salt stress tolerance in Cakile maritima. Planta 237(5):1311–1323

    CAS  PubMed  Google Scholar 

  • El-Moukhtari A, Cabassa-Hourton C, Farissi M, Savouré A (2020) How does proline treatment promote salt stress tolerance during crop plant development? Front Plant Sci 11:1127. https://doi.org/10.3389/fpls.2020.01127

    Article  PubMed  PubMed Central  Google Scholar 

  • Etesami H, Beattie GA (2018) Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops. Front Microbiol 9:148. https://doi.org/10.3389/fmicb.2018.00148

    Article  PubMed  PubMed Central  Google Scholar 

  • Farouk S, Arafa SA (2018) Mitigation of salinity stress in canola plants by sodium nitroprusside application. Span J Agric Res 16(3):16

    Google Scholar 

  • Farouk S, Elhindi KM, Alotaibi MA (2020) Silicon supplementation mitigates salinity stress on Ocimum basilicum L. via improving water balance, ion homeostasis, and antioxidant defense system. Ecotoxicol Environ Saf 206:111396

    CAS  PubMed  Google Scholar 

  • Feghhenabi F, Hadi H, Khodaverdiloo H, van Genuchten MT (2020) Seed priming alleviated salinity stress during germination and emergence of wheat (Triticum aestivum L.). Agric Water Manag 231:106022. https://doi.org/10.1016/j.agwat.2020.106022

    Article  Google Scholar 

  • García-Caparrós P, Llanderal A, Hegarat E, Jiménez-Lao M, Lao MT (2020) Effects of exogenous application of osmotic adjustment substances on growth, pigment concentration, and physiological parameters of Dracaena sanderiana sander under different levels of salinity. Agronomy 10(1):125

    Google Scholar 

  • Gardner F, Pearce R, Mitchell R (1985) Physiology of crop plants. Iowa State University Press, Ames, p 327

    Google Scholar 

  • Ghorbani A, Razavi SM, Omran VOG, Pirdashti H (2018) Piriformospora indica alleviates salinity by boosting redox poise and antioxidative potential of tomato. Russ J Plant Physiol 65(6):898–907. https://doi.org/10.1134/S1021443718060079

    Article  CAS  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol 59(2):309–314

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gou T, Chen X, Han R, Liu J, Zhu Y, Gong H (2020) Silicon can improve seed germination and ameliorate oxidative damage of bud seedlings in cucumber under salt stress. Acta Physiol Plant 42(1):12. https://doi.org/10.1007/s11738-019-3007-6

    Article  CAS  Google Scholar 

  • Habiba U, Ali S, Farid M, Shakoor MB, Rizwan M, Ibrahim M, Abbasi GH, Hayat T, Ali B (2015) EDTA enhanced plant growth, antioxidant defense system, and phytoextraction of copper by Brassica napus L. Environ Sci Pollut Res 22(2):1534–1544

    CAS  Google Scholar 

  • Hamilton P, Van Slyke D (1943) Amino acid determination and metal accumulation by Brassica juncea L. Int J Plant Prod 3(1):1735–8043

    Google Scholar 

  • Hasanuzzaman M, Bhuyan M, Zulfiqar F, Raza A, Mohsin SM, Mahmud JA, Fujita M, Fotopoulos V (2020) Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants 9(8):681

    CAS  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Bhuyan MHMB, Oku H, Fujita M (2018) Exogenous nitric oxide pretreatment protects Brassica napus L. seedlings from paraquat toxicity through the modulation of antioxidant defense and glyoxalase systems. Plant Physiol Biochem 126:173–186. https://doi.org/10.1016/j.plaphy.2018.02.021

    Article  CAS  PubMed  Google Scholar 

  • Henson C, Stone J (1988) Variation in α-amylase and α-amylase inhibitor activities in barley malts. J Cereal Sci 8(1):39–46

    CAS  Google Scholar 

  • Hoang HL, de Guzman CC, Cadiz NM, Hoang TTH, Tran DH, Rehman H (2020) Salicylic acid and calcium signaling induce physiological and phytochemical changes to improve salinity tolerance in red amaranth (Amaranthus tricolor L.). J Soil Sci Plant Nutr 20:1–11

    Google Scholar 

  • Jackson ML (1962) Soil chemical analysis. Prentice-Hall, Englewood Cliffs, pp 214–221

    Google Scholar 

  • James RA, Rivelli AR, Munns R, von Caemmerer S (2002) Factors affecting CO2 assimilation, leaf injury and growth in salt-stressed durum wheat. Funct Plant Biol 29(12):1393–1403

    CAS  PubMed  Google Scholar 

  • Jiménez-Arias D, García-Machado FJ, Morales-Sierra S, Suárez E, Pérez JA, Luis JC, Garrido-Orduña C, Herrera AJ, Valdés F, Sandalio LM, Borges AA (2019) Menadione sodium bisulphite (MSB): Beyond seed-soaking. Root pretreatment with MSB primes salt stress tolerance in tomato plants. Environ Exp Bot 157:161–170. https://doi.org/10.1016/j.envexpbot.2018.10.009

    Article  CAS  Google Scholar 

  • Johnson R, Puthur JT (2021) Seed priming as a cost effective technique for developing plants with cross tolerance to salinity stress. Plant Physiol Biochem 162:247–257

    CAS  PubMed  Google Scholar 

  • Kahveci H, Bilginer N, Diraz-Yildirim E, Kulak M, Yazar E, Kocacinar F, Karaman S (2021) Priming with salicylic acid, β-carotene and tryptophan modulates growth, phenolics and essential oil components of Ocimum basilicum L. grown under salinity. Sci Hortic 281:109964

    CAS  Google Scholar 

  • Kamiab F (2020) Exogenous melatonin mitigates the salinity damages and improves the growth of pistachio under salinity stress. J Plant Nutr 43(10):1468–1484. https://doi.org/10.1080/01904167.2020.1730898

    Article  CAS  Google Scholar 

  • Kaya C, Ashraf M (2020) The endogenous L-cysteine desulfhydrase and hydrogen sulfide participate in supplemented phosphorus-induced tolerance to salinity stress in maize (Zea mays) plants. Turk J Bot 44(1):36–46

    CAS  Google Scholar 

  • Khademian R, Asghari B, Sedaghati B, Yaghoubian Y (2019) Plant beneficial rhizospheric microorganisms (PBRMs) mitigate deleterious effects of salinity in sesame (Sesamum indicum L.): Physio-biochemical properties, fatty acids composition and secondary metabolites content. Ind Crops Prod 136:129–139. https://doi.org/10.1016/j.indcrop.2019.05.002

    Article  CAS  Google Scholar 

  • Khan I, Raza MA, Awan SA, Shah GA, Rizwan M, Ali B, Tariq R, Hassan MJ, Alyemeni MN, Brestic M, Zhang X, Ali S, Huang L (2020) Amelioration of salt induced toxicity in pearl millet by seed priming with silver nanoparticles (AgNPs): the oxidative damage, antioxidant enzymes and ions uptake are major determinants of salt tolerant capacity. Plant Physiol Biochem 156:221–232. https://doi.org/10.1016/j.plaphy.2020.09.018

    Article  CAS  PubMed  Google Scholar 

  • Khan MN, Siddiqui MH, Mohammad F, Khan M, Naeem M (2007) Salinity induced changes in growth, enzyme activities, photosynthesis, proline accumulation and yield in linseed genotypes. World J Agric Sci 3(5):685–695

    Google Scholar 

  • Kumar Arora N, Fatima T, Mishra J, Mishra I, Verma S, Verma R, Verma M, Bhattacharya A, Verma P, Mishra P, Bharti C (2020) Halo-tolerant plant growth promoting rhizobacteria for improving productivity and remediation of saline soils. J Adv Res 26:69–82. https://doi.org/10.1016/j.jare.2020.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar SS, Gaurav AK, Srivastava S, Verma JP (2020) Plant growth-promoting bacteria: biological tools for the mitigation of salinity stress in plants. Front Microbiol 11:1216–1216. https://doi.org/10.3389/fmicb.2020.01216

    Article  PubMed  PubMed Central  Google Scholar 

  • Kwon OK, Mekapogu M, Kim KS (2019) Effect of salinity stress on photosynthesis and related physiological responses in carnation (Dianthus caryophyllus). Hortic Environ Biotechnol 60(6):831–839. https://doi.org/10.1007/s13580-019-00189-7

    Article  CAS  Google Scholar 

  • Latef AAHA, Alhmad MFA, Abdelfattah KE (2017) The possible roles of priming with ZnO nanoparticles in mitigation of salinity stress in lupine (Lupinus termis) plants. J Plant Growth Regul 36(1):60–70

    Google Scholar 

  • Mahajan M, Sharma S, Kumar P, Pal PK (2020) Foliar application of KNO3 modulates the biomass yield, nutrient uptake and accumulation of secondary metabolites of Stevia rebaudiana under saline conditions. Ind Crops Prod 145:112102. https://doi.org/10.1016/j.indcrop.2020.112102

    Article  CAS  Google Scholar 

  • Mahmood N, Hameed A, Hussain T (2020) Vitamin E and selenium treatment alleviates saline environment-induced oxidative stress through enhanced antioxidants and growth performance in suckling kids of beetal goats. Oxid Med Cell Longev. https://doi.org/10.1155/2020/4960507

    Article  PubMed  PubMed Central  Google Scholar 

  • Manzotti P, De Nisi P, Zocchi G (2008) Vitamin K in plants. Funct Plant Sci Biotech 2:29–35

    Google Scholar 

  • Meloni DA, Oliva MA, Martinez CA, Cambraia J (2003) Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot 49(1):69–76

    CAS  Google Scholar 

  • Mishra J, Fatima T, Arora NK (2018) Role of secondary metabolites from plant growth-promoting rhizobacteria in combating salinity stress. Plant microbiome: stress response. Springer, Berlin, pp 127–163

    Google Scholar 

  • Mita S, Murano N, Akaike M, Nakamura K (1997) Mutants of Arabidopsis thaliana with pleiotropic effects on the expression of the gene for β-amylase and on the accumulation of anthocyanin that are inducible by sugars. Plant J 11(4):841–851

    CAS  PubMed  Google Scholar 

  • Mohsin SM, Hasanuzzaman M, Parvin K, Fujita M (2020) Pretreatment of wheat (Triticum aestivum L.) seedlings with 2,4-D improves tolerance to salinity-induced oxidative stress and methylglyoxal toxicity by modulating ion homeostasis, antioxidant defenses, and glyoxalase systems. Plant Physiol Biochem 152:221–231. https://doi.org/10.1016/j.plaphy.2020.04.035

    Article  CAS  PubMed  Google Scholar 

  • Moradbeygi H, Jamei R, Heidari R, Darvishzadeh R (2020) Investigating the enzymatic and non-enzymatic antioxidant defense by applying iron oxide nanoparticles in Dracocephalum moldavica L. plant under salinity stress. Sci Hortic 272:109537. https://doi.org/10.1016/j.scienta.2020.109537

    Article  CAS  Google Scholar 

  • Moradi F, Ismail AM (2007) Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. Ann Bot 99(6):1161–1173

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee SP, Choudhuri MA (1983) Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiol Plant 58(2):166–170. https://doi.org/10.1111/j.1399-3054.1983.tb04162.x

    Article  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22(5):867–880

    CAS  Google Scholar 

  • Petropoulos SA, Levizou E, Ntatsi G, Fernandes Â, Petrotos K, Akoumianakis K, Barros L, Ferreira ICFR (2017) Salinity effect on nutritional value, chemical composition and bioactive compounds content of Cichorium spinosum L. Food Chem 214:129–136. https://doi.org/10.1016/j.foodchem.2016.07.080

    Article  CAS  PubMed  Google Scholar 

  • Polle A, Otter T, Seifert F (1994) Apoplastic peroxidases and lignification in needles of norway spruce (Picea abies L.). Plant Physiol 106(1):53–60. https://doi.org/10.1104/pp.106.1.53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qadir M, Quillérou E, Nangia V, Murtaza G, Singh M, Thomas RJ, Drechsel P, Noble AD (2014) Economics of salt-induced land degradation and restoration. Nat Resour Forum 38(4):282–295. https://doi.org/10.1111/1477-8947.12054

    Article  Google Scholar 

  • Rasheed R, Ashraf MA, Kamran S, Iqbal M, Hussain I (2018) Menadione sodium bisulphite mediated growth, secondary metabolism, nutrient uptake and oxidative defense in okra (Abelmoschus esculentus Moench) under cadmium stress. J Hazard Mater 360:604–614. https://doi.org/10.1016/j.jhazmat.2018.08.043

    Article  CAS  PubMed  Google Scholar 

  • Romero-Aranda R, Soria T, Cuartero J (2001) Tomato plant-water uptake and plant-water relationships under saline growth conditions. Plant Sci 160(2):265–272

    CAS  PubMed  Google Scholar 

  • Saqib M, Akhtar J, Abbas G, Nasim M (2013) Salinity and drought interaction in wheat (Triticum aestivum L.) is affected by the genotype and plant growth stage. Acta Physiol Plant 35(9):2761–2768

    CAS  Google Scholar 

  • Savvides A, Ali S, Tester M, Fotopoulos V (2016) Chemical priming of plants against multiple abiotic stresses: mission possible? Trends Plant Sci 21(4):329–340

    CAS  PubMed  Google Scholar 

  • Scholander PF, Bradstreet ED, Hemmingsen E, Hammel H (1965) Sap pressure in vascular plants: negative hydrostatic pressure can be measured in plants. Science 148(3668):339–346

    CAS  PubMed  Google Scholar 

  • Sharma A, Shahzad B, Kumar V, Kohli SK, Sidhu GPS, Bali AS, Handa N, Kapoor D, Bhardwaj R, Zheng B (2019) Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules 9(7):285. https://doi.org/10.3390/biom9070285

    Article  CAS  PubMed Central  Google Scholar 

  • Sidhom MB, El-Kommos ME (1982) Spectrophotometric determination of menadione and menadione sodium bisulfite. J Assoc off Anal Chem 65(1):141–143

    CAS  Google Scholar 

  • Sofy MR, Elhawat N, Tarek A (2020) Glycine betaine counters salinity stress by maintaining high K+/Na+ ratio and antioxidant defense via limiting Na+ uptake in common bean (Phaseolus vulgaris L.). Ecotoxicol Environ Saf 200:110732. https://doi.org/10.1016/j.ecoenv.2020.110732

    Article  CAS  PubMed  Google Scholar 

  • Sunita K, Mishra I, Mishra J, Prakash J, Arora NK (2020) Secondary metabolites from halotolerant plant growth promoting rhizobacteria for ameliorating salinity stress in plants. Front Microbiol 11:2619

    Google Scholar 

  • Thiem D, Gołębiewski M, Hulisz P, Piernik A, Hrynkiewicz K (2018) How does salinity shape bacterial and fungal microbiomes of alnus glutinosa roots? Front Microbiol 9:651. https://doi.org/10.3389/fmicb.2018.00651

    Article  PubMed  PubMed Central  Google Scholar 

  • Tunçtürk M, Tunçtürk R, Yildirim B, Çiftçi V (2011) Effect of salinity stress on plant fresh weight and nutrient composition of some canola (Brassica napus L.) cultivars. Afr J Biotechnol 10(10):1827–1832

    Google Scholar 

  • Vasantha S, Venkataramana S, Rao PG, Gomathi R (2010) Long term salinity effect on growth, photosynthesis and osmotic characteristics in sugarcane. Sugar Technol 12(1):5–8

    CAS  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci 151(1):59–66

    CAS  Google Scholar 

  • Wolfe K, Wu X, Liu RH (2003) Antioxidant activity of apple peels. J Agric Food Chem 51(3):609–614. https://doi.org/10.1021/jf020782a

    Article  CAS  PubMed  Google Scholar 

  • Yildiztugay E, Ozfidan-Konakci C, Kucukoduk M, Turkan I (2020) Flavonoid naringenin alleviates short-term osmotic and salinity stresses through regulating photosynthetic machinery and chloroplastic antioxidant metabolism in Phaseolus vulgaris. Front Plant Sci 11:682. https://doi.org/10.3389/fpls.2020.00682

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhishen J, Mengcheng T, Jianming W (1999) The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64(4):555–559

    CAS  Google Scholar 

  • Zörb C, Geilfus CM, Dietz KJ (2019) Salinity and crop yield. Plant Biol 21:31–38

    PubMed  Google Scholar 

Download references

Acknowledgements

Data presented in the manuscript is the part of PhD research work of Mr. Ali Akbar, a PhD student (2012-GCUF-06707) at the Department of Botany, Government College University Faisalabad, Pakistan. The data is taken from PhD thesis of Mr. Ali Akbar.

Funding

Higher Education Commission Islamabad, Pakistan (HEC) provided funds for the present research work under project No. 8345/Punjab/NRPU/R&D/HEC/2017.

Author information

Authors and Affiliations

Authors

Contributions

Ali Akbar conducted the experiment and lab analysis. Muhammad Arslan Ashraf conceived the idea and supervised the research work. Shafaqat Ali helped in ions analysis. Muhammad Rizwan performed the statistical analysis and correlation analysis. Rizwan Rasheed provided technical help during physiological analysis and manuscript write up.

Corresponding author

Correspondence to Muhammad Arslan Ashraf.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbar, A., Ashraf, M.A., Rasheed, R. et al. Menadione sodium bisulphite regulates physiological and biochemical responses to lessen salinity effects on wheat (Triticum aestivum L.). Physiol Mol Biol Plants 27, 1135–1152 (2021). https://doi.org/10.1007/s12298-021-01001-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-021-01001-6

Keywords

Navigation