Skip to main content
Log in

Exogenous menadione sodium bisulfite mitigates specific ion toxicity and oxidative damage in salinity-stressed okra (Abelmoschus esculentus Moench)

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Salinity, being a major environmental constraint, impedes plant growth and productivity worldwide. Menadione sodium bisulfite (MSB) was previously studied as activator of plant defense responses against pathogens. We further studied the potential of MSB in salt tolerance. MSB compound derived from vitamin K is soluble in water and possesses the potential to mediate plant defense responses to abiotic stress such as salinity. In the present experiment, foliar application of MSB (0, 50, 100, 150 and 200 µM) markedly mitigated salinity (100 mM) effects on two okra cultivars (Shabnam-786 and Arka Anamika). Salinity stress significantly decreased growth, chlorophyll and K+ content, but increased the tissue contents of Na+ and Ca2+ as well as the cellular levels of hydrogen peroxide (H2O2) and malondialdehyde (MDA). Plants with MSB treatment manifested minimal oxidative injury in the form of lower H2O2 and MDA accumulation. This decrease was ascribed to MSB-mediated improvement in the accumulation of antioxidant compounds (anthocyanins, ascorbate, flavonoids, and phenolics) alongside enhanced activities of catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD). MSB-treated plants exhibited a maximal improvement in the accretion of total free amino acids and proline under salinity. Foliar spray of MSB at 50 µM effectively protected plants from salinity-induced oxidative damage and specific ion toxicity. Higher salinity tolerance in cv. Shabnam-786 was ascribed to better antioxidant system, lower oxidative damage, and minimal tissue Na+ contents compared with cv. Arka Anamika.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

H2O2 :

Hydrogen peroxide

MDA:

Malondialdehyde

Na+ :

Sodium

K+ :

Potassium

Ca2+ :

Calcium

ROS:

Reactive oxygen species

References

  • Abd-Allah EF, Alqarawi AA, Hashem A, Wirth S, Egamberdieva D (2018) Regulatory roles of 24-epibrassinolide in tolerance of Acacia gerrardii Benth to salt stress. Bioengineered 9:61–71

    CAS  PubMed  Google Scholar 

  • Abid M, Malik SA, Bilal K, Wajid RA (2002) Response of okra (Abelmoschus esculentus L.) to EC and SAR of irrigation water. Intl J Agric Biol 4:311–314

    Google Scholar 

  • Abid M, Hakeem A, Shao Y, Liu Y, Zahoor R, Fan Y, Suyu J, Ata-Ul-Karim ST, Tian Z, Jiang D, Snider JL, Dai T (2018) Seed osmopriming invokes stress memory against post-germinative drought stress in wheat (Triticum aestivum L.). Environ Exper Bot 145:12–20

    CAS  Google Scholar 

  • Ahmad P, Nabi G, Ashraf M (2011) Cadmium-induced oxidative damage in mustard [Brassica juncea (L.) Czern. and Coss.] plants can be alleviated by salicylic acid. S Afr J Bot 77:36–44

    CAS  Google Scholar 

  • Akram NA, Iqbal M, Muhammad A, Ashraf M, Al-Qurainy F, Shafiq S (2018) Aminolevulinic acid and nitric oxide regulate oxidative defense and secondary metabolisms in canola (Brassica napus L.) under drought stress. Protoplasma 255:163–174

    CAS  PubMed  Google Scholar 

  • Ali E, Hussain N, Shamsi IH, Jabeen Z, Siddiqui MH, Jiang L-X (2018) Role of jasmonic acid in improving tolerance of rapeseed (Brassica napus L.) to Cd toxicity. J Zhejiang Univ Sci B 19:130–146

    CAS  PubMed  PubMed Central  Google Scholar 

  • Annunziata MG, Ciarmiello LF, Woodrow P, Maximova E, Fuggi A, Carillo P (2017) Durum wheat roots adapt to salinity remodeling the cellular content of nitrogen metabolites and sucrose. Front Plant Sci 7:2035

    PubMed  PubMed Central  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1

    CAS  PubMed  PubMed Central  Google Scholar 

  • Asare AT, Asare-Bediako E, Agyarko F, Taah K, Osei EO (2016) Phenotypic traits detect genetic variability in okra (Abelmoschus esculentus L. Moench). Afr J Agr Res 11:3169–3177

    CAS  Google Scholar 

  • Asensi-Fabado MA, Munné-Bosch S (2010) Vitamins in plants: occurrence, biosynthesis and antioxidant function. Trends Plant Sci 15:582–592

    CAS  PubMed  Google Scholar 

  • Ashraf MA, Ashraf M (2012) Salt-induced variation in some potential physiochemical attributes of two genetically diverse spring wheat (Triticum aestivum L.) cultivars: photosynthesis and photosystem II efficiency. Pak J Bot 44:53–64

    CAS  Google Scholar 

  • Ashraf MA, Ashraf M (2016) Growth stage-based modulation in physiological and biochemical attributes of two genetically diverse wheat (Triticum aestivum L.) cultivars grown in salinized hydroponic culture. Environ Sci Pollut Res 23:6227–6243

    CAS  Google Scholar 

  • Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16

    CAS  Google Scholar 

  • Ashraf M, Harris P (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51:163–190

    CAS  Google Scholar 

  • Ashraf M, Iqbal M, Hussain I, Rasheed R (2015) Physiological and biochemical approaches for salinity tolerance. Managing salt tolerance in plants: molecular and genomic perspectives. CRC Press, London

    Google Scholar 

  • Ashraf MA, Akbar A, Parveen A, Rasheed R, Hussain I, Iqbal M (2018) Phenological application of selenium differentially improves growth, oxidative defense and ion homeostasis in maize under salinity stress. Plant Physiol Biochem 123:268–280

    CAS  PubMed  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    CAS  Google Scholar 

  • Borges AA, Jiménez-Arias D, Expósito-Rodríguez M, Sandalio LM, Pérez JA (2014) Priming crops against biotic and abiotic stresses: MSB as a tool for studying mechanisms. Front Plant Sci. https://doi.org/10.3389/fpls.2014.00642

    Article  PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  PubMed  Google Scholar 

  • Castro FA, Herdeiro RS, Panek AD, Eleutherio EC, Pereira MD (2007) Menadione stress in Saccharomyces cerevisiae strains deficient in the glutathione transferases. Biochim Biophys Acta 1770:213–220

    CAS  PubMed  Google Scholar 

  • Chance B, Maehly AC (1955) Assay of catalases and peroxidases. Methods in Enzymology, vol 2. Academic Press, Cambridge, pp 764–775

    Google Scholar 

  • Cheng S-J, Tang D-Q, Miller WB, Shi Y-M (2018) Evaluation of salinity tolerance in honeysuckle (Lonicera japonica) using growth, ion accumulation, lipid peroxidation, and non-enzymatic and enzymatic antioxidants system criteria. J Hortic Sci Biotechnol 93:185–195

    CAS  Google Scholar 

  • Elmore JM, Coaker G (2011) The Role of the Plasma Membrane H + -ATPase in Plant-Microbe Interactions. Mol Plant 4:416–427

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elsheery NI, Cao K-F (2008) Gas exchange, chlorophyll fluorescence, and osmotic adjustment in two mango cultivars under drought stress. Acta Physiol Plant 30:769–777

    CAS  Google Scholar 

  • Esan AM, Masisi K, Dada FA, Olaiya CO (2017) Comparative effects of indole acetic acid and salicylic acid on oxidative stress marker and antioxidant potential of okra (Abelmoschus esculentus) fruit under salinity stress. Sci Hort 216:278–283

    CAS  Google Scholar 

  • Ferchichi S, Hessini K, Dell’Aversana E, D’Amelia L, Woodrow P, Ciarmiello LF, Fuggi A, Carillo P (2018) Hordeum vulgare and Hordeum maritimum respond to extended salinity stress displaying different temporal accumulation pattern of metabolites. Funct Plant Biol. https://doi.org/10.1071/FP18046

    Article  PubMed  Google Scholar 

  • Gharbi E, Martínez J-P, Benahmed H, Hichri I, Dobrev PI, Motyka V, Quinet M, Lutts S (2017) Phytohormone profiling in relation to osmotic adjustment in NaCl-treated plants of the halophyte tomato wild relative species Solanum chilense comparatively to the cultivated glycophyte Solanum lycopersicum. Plant Sci 258:77–89

    CAS  PubMed  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases I. Occurrence in higher plants. Plant Physiol 59:309–314

    CAS  PubMed  PubMed Central  Google Scholar 

  • Greene R, Timms W, Rengasamy P, Arshad M, Cresswell R (2016) Soil and aquifer salinization: toward an integrated approach for salinity management of groundwater. In: Jakeman AJ, Barreteau O, Hunt RJ, Rinaudo JD (eds) In ‘integrated ground water management. Springer, Basel

    Google Scholar 

  • Habib N, Ashraf M, Ali Q, Perveen R (2012) Response of salt stressed okra (Abelmoschus esculentus Moench) plants to foliar-applied glycine betaine and glycine betaine containing sugarbeet extract. S Afr J Bot 83:151–158

    CAS  Google Scholar 

  • Habib N, Akram M, Javed M, Azeem M, Ali Q, Shaheen H, Ashraf M (2016) Nitric oxide regulated improvement in growth and yield of rice plants grown under salinity stress: antioxidant defense system. Appl Ecol Env Res 14:91–105

    Google Scholar 

  • Hamilton P, Van Slyke D (1943) Amino acid determination and metal accumulation by Brassica juncea L. Int J Plant Prod 3:1735–8043

    Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    CAS  PubMed  Google Scholar 

  • Heuer B (2003) Influence of exogenous application of proline and glycinebetaine on growth of salt-stressed tomato plants. Plant Sci 165:693–699

    CAS  Google Scholar 

  • Hussain I, Siddique A, Ashraf MA, Rasheed R, Ibrahim M, Iqbal M, Akbar S, Imran M (2017) Does exogenous application of ascorbic acid modulate growth, photosynthetic pigments and oxidative defense in okra (Abelmoschus esculentus (L.) Moench) under lead stress? Acta Physiol Plant 39(6):144

    Google Scholar 

  • Ishikawa T, Shabala S (2018) Control of xylem Na+ loading and transport to the shoot in rice and barley as a determinant of differential salinity tolerance. Physiol Plant. https://doi.org/10.1111/ppl.12758

    Article  PubMed  Google Scholar 

  • Jeyapraba J, Mahendran S, Sujirtha N (2016) Growth physiology and membrane permeability of okra (Abelmoschus esculentus L.) seedlings as affected by salinity. Int J Plant Soil Sci 9(5):1–5

    Google Scholar 

  • Jiménez-Arias D, Pérez JA, Luis JC, Martín-Rodríguez V, Valdés-González F, Borges AA (2015) Treating seeds in menadione sodium bisulphite primes salt tolerance in Arabidopsis by inducing an earlier plant adaptation. Environ Expe Bot 109:23–30

    Google Scholar 

  • Julkunen-Tiitto R (1985) Phenolic constituents in the leaves of northern willows: methods for the analysis of certain phenolics. J Agric Food Chem 33:213–217

    CAS  Google Scholar 

  • Kaya C, Ashraf M, Sönmez O, Tuna AL, Aydemir S (2015) Exogenously applied nitric oxide confers tolerance to salinity-induced oxidative stress in two maize (Zea mays L.) cultivars differing in salinity tolerance. Turk J Agric For 39:909–919

    CAS  Google Scholar 

  • Kaya C, Akram N, Ashraf M, Sonmez O (2018a) Exogenous application of humic acid mitigates salinity stress in maize (Zea mays L.) plants by improving some key physico-biochemical attributes. Cereal Res Commun 46:67–78

    CAS  Google Scholar 

  • Kaya C, Ashraf M, Sonmez O (2018b) Combination of nitric oxide and thiamin regulates oxidative defense machinery and key physiological parameters in salt-stressed plants of two maize cultivars differing in salinity tolerance. Adv Agric Sci 6:34–44

    Google Scholar 

  • Kong D, Ju C, Parihar A, Kim S, Cho D, Kwak JM (2015) Arabidopsis glutamate receptor homolog3. 5 modulates cytosolic Ca2+ level to counteract effect of abscisic acid in seed germination. Plant Physiol 167:1630–1642

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kubo A, Aono M, Nakajima N, Saji H, Tanaka K, Kondo N (1999) Differential responses in activity of antioxidant enzymes to different environmental stresses in Arabidopsis thaliana. J Plant Res 112:279–290

    CAS  Google Scholar 

  • Li J, Hu L, Zhang L, Pan X, Hu X (2015) Exogenous spermidine is enhancing tomato tolerance to salinity–alkalinity stress by regulating chloroplast antioxidant system and chlorophyll metabolism. BMC Plant Biol 15:303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lüthje S, Van Gestelen P, Córdoba-Pedregosa MC, González-Reyes JA, Asard H, Villalba JM, Böttger M (1998) Quinones in plant plasma membranes: a missing link? Protoplasma 205:43–51

    Google Scholar 

  • Lüthje S, Möller B, Perrineau FC, Wöltje K (2013) Plasma membrane electron pathways and oxidative stress. Antioxid Redox Signal 18:2163–2183

    PubMed  Google Scholar 

  • Mandhania S, Madan S, Sawhney V (2006) Antioxidant defense mechanism under salt stress in wheat seedlings. Biol Plant 50:227–231

    CAS  Google Scholar 

  • Marinova D, Ribarova F, Atanassova M (2005) Total phenolics and total flavonoids in Bulgarian fruits and vegetables. J Univ Chem Technol Metallurgy 40:255–260

    CAS  Google Scholar 

  • Minhas PS, Gupta RK (1993) Using high salinity and SAR waters for crop production–Some Indian experiences. In: Leith H, Al–Masoom A (eds) Towards the rational use of high salinity tolerant plants. Kluwer Academic Publishers, Amsterdam

    Google Scholar 

  • Mukherjee S, Choudhuri M (1983) Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiol Plant 58:166–170

    CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanism of salinity tolerance. Annu Rev Plant Physiol 35:299–319

    Google Scholar 

  • Nguyen HT, Meir P, Sack L, Evans JR, Oliveira RS, Ball MC (2017) Leaf water storage increases with salinity and aridity in the mangrove Avicennia marina: integration of leaf structure, osmotic adjustment and access to multiple water sources. Plant Cell Environ 40:1576–1591

    CAS  PubMed  Google Scholar 

  • Pehlivan N (2018) Salt stress relief potency of whortleberry extract biopriming in maize. 3 Biotech 8:89

    PubMed  PubMed Central  Google Scholar 

  • Qadir M, Quillerou E, Nangia V, Murtaza G, Singh M, Thomas RJ, Drechsel P, Noble AD (2014) Economics of salt-induced land degradation and restoration. Nat Resour Forum 38:282–295

    Google Scholar 

  • Qureshi RH, Barrett-Lennard EG (1998) Saline agriculture for irrigated land in Pakistan: a handbook. Monographs, Australian Centre for International Agricultural Research (ACIAR), number 117728. https://doi.org/10.22004/ag.econ.117728

  • Rama Rao AV, Ravichandran K, David SB, Ranade S (1985) Menadione sodium bisulphite: a promising plant growth regulator. Plant Growth Regul 3:111–118

    Google Scholar 

  • Rengasmay P (2006) Wolrd salinization with emphasis on Australia. J Exp Bot 57:1017–1023

    Google Scholar 

  • Santos CV (2004) Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Sci Hortic 103:93–99

    CAS  Google Scholar 

  • Siddiqui MH, Alamri SA, Al-Khaishany MY, Al-Qutami MA, Ali HM, AL-Rabiah H, Kalaji HM (2017) Exogenous application of nitric oxide and spermidine reduces the negative effects of salt stress on tomato. Hortic Environ Biotechnol 58:537–547

    CAS  Google Scholar 

  • Surender Reddy P, Jogeswar G, Rasineni GK, Maheswari M, Reddy AR, Varshney RK, Kavi Kishor PB (2015) Proline over-accumulation alleviates salt stress and protects photosynthetic and antioxidant enzyme activities in transgenic sorghum [Sorghum bicolor (L.) Moench]. Plant Physiol Biochem 94:104–113

    CAS  PubMed  Google Scholar 

  • Taïbi K, Taïbi F, Ait Abderrahim L, Ennajah A, Belkhodja M, Mulet JM (2016) Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. S Afr J Bot 105:306–312

    Google Scholar 

  • Tanji KK, Neeltje CK (2002) Agricultural drainage water management in arid and semi-arid areas. FAO, Rome, pp 135–160

    Google Scholar 

  • Tuteja N, Mahajan S (2007) Calcium signaling network in plants. Plant Signal Behav 2:79–85

    PubMed  PubMed Central  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci 151:59–66

    CAS  Google Scholar 

  • Wang LY, Liu JL, Wang WX, Sun Y (2016) Exogenous melatonin improves growth and photosynthetic capacity of cucumber under salinity-induced stress. Photosynthetica 54:19–27

    Google Scholar 

  • Wang W, Tian F, Hao Q, Han Y, Li Q, Wang X, Wang W, Wang Y, Wang W (2018) Improved salt tolerance in a wheat stay-green mutant tasg1. Acta Physiol Plant 40:39

    Google Scholar 

  • Wolf B (1982) A comprehensive system of leaf analyses and its use for diagnosing crop nutrient status. Commun Soil Sci Plant Anal 13:1035–1059

    CAS  Google Scholar 

  • Yasmeen R, Siddiqui ZS (2017) Ameliorative effects of Trichoderma harzianum on monocot crops under hydroponic saline environment. Acta Physiol Plant 40:4

    Google Scholar 

  • Zhu M, Zhou M, Shabala L, Shabala S (2015) Linking osmotic adjustment and stomatal characteristics with salinity stress tolerance in contrasting barley accessions. Funct Plant Biol 42:252–263

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Funds were provided by GCUF project No. 52-Bot-11 and HEC project 21-188/SRGP/R&D/HEC/2014 for the execution of this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Arslan Ashraf.

Additional information

Communicated by S. Renault.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 36 kb)

Supplementary material 2 (DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashraf, M.A., Asma, H.F. & Iqbal, M. Exogenous menadione sodium bisulfite mitigates specific ion toxicity and oxidative damage in salinity-stressed okra (Abelmoschus esculentus Moench). Acta Physiol Plant 41, 187 (2019). https://doi.org/10.1007/s11738-019-2978-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-019-2978-7

Keywords

Navigation