Skip to main content
Log in

Effect of thermospermine on expression profiling of different gene using massive analysis of cDNA ends (MACE) and vascular maintenance in Arabidopsis

  • Research article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Arabidopsis thaliana polyamine oxidase 5 gene (AtPAO5) functions as a thermospermine (T-Spm) oxidase. Aerial growth of its knock-out mutant (Atpao5-2) was significantly repressed by low dose(s) of T-Spm but not by other polyamines. To figure out the underlying mechanism, massive analysis of 3′-cDNA ends was performed. Low dose of T-Spm treatment modulates more than two fold expression 1,398 genes in WT compared to 3186 genes in Atpao5-2. Cell wall, lipid and secondary metabolisms were dramatically affected in low dose T-Spm-treated Atpao5-2, in comparison to other pathways such as TCA cycle-, amino acid- metabolisms and photosynthesis. The cell wall pectin metabolism, cell wall proteins and degradation process were highly modulated. Intriguingly Fe-deficiency responsive genes and drought stress-induced genes were also up-regulated, suggesting the importance of thermospermi′ne flux on regulation of gene network. Histological observation showed that the vascular system of the joint part between stem and leaves was structurally dissociated, indicating its involvement in vascular maintenance. Endogenous increase in T-Spm and reduction in H2O2 contents were found in mutant grown in T-Spm containing media. The results indicate that T-Spm homeostasis by a fine tuned balance of its synthesis and catabolism is important for maintaining gene regulation network and the vascular system in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahou A, Martignago D, Alabdallah O, Tavazza R, Stano P, Macone A et al (2014) A plant spermine oxidase/dehydrogenase regulated by the proteasome and polyamines. J Exp Bot 65:1585–1603

    Article  CAS  PubMed  Google Scholar 

  • Alabdallah O, Ahou A, Mancuso N, Pompili V, Macone A, Pashkoulov D, Stano P, Cona A, Angelini R, Tavladoraki P (2017) The Arabidopsis polyamine oxidase/dehydrogenase 5 interferes with cytokinin and auxin signalling pathways to control xylem differentiation. J Exp Bot 68(5):997–1012

    Article  CAS  PubMed  Google Scholar 

  • Andriankaja ME, Danisman S, Mignolet-Spruyt LF, Claeys H, Kochanke I, Vermeersch M et al (2014) Transcriptional coordination between leaf cell differentiation and chloroplast development established by TCP20 and the subgroup Ib bHLH transcription factors. Plant Mol Biol 85:233–245

    Article  CAS  PubMed  Google Scholar 

  • Bordenave CD, Mendoza CG, Bremont JFJ, Garriz A, Rodriguez A (2019) Defining novel plant polyamine oxidase subfamilies through molecular modelling and sequence analysis. BMC Evolt Biol 19:28

    Article  Google Scholar 

  • Cervelli M, Polticelli F, Federico R, Mariottini P (2003) Heterologous expression and characterization of mouse spermine oxidase. J BiolChem 278:5271–5276

    CAS  Google Scholar 

  • Chae L, Lee I, Shin J, Rhee SY (2012) Towards understanding how molecular networks evolve in plants. Curr Opin Plant Biol 15(2):177–184

    Article  CAS  PubMed  Google Scholar 

  • Clay NK, Nelson T (2005) Arabidopsis thickvein mutation affects vein thickness and organ vascularization, and resides in a provascular cell-specific spermine synthase involved in vein definition and in polar auxin transport. Plant Physiol 138:767–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cona A, Rea G, Angelini R et al (2006) Functions of amine oxidases in plant development and defence. Trends Plant Sci 11:80–88

    Article  CAS  PubMed  Google Scholar 

  • Ellis EC, Goldewijk KK, Siebert S, Lightman D, Ramankutty N (2010) Anthropogenic transformation of the biomes, 1700 to 2000. Global Ecol Biogeogr 19(5):589–606

    Google Scholar 

  • Eveland AL, Satoh Nagasawa N, Goldshmidt A, Meyer S, Beatty M, Sakai H, Ware D, Jackson D (2010) Digital gene expression signatures for maize development. Plant Physiol 154:1024–1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferdousy NE, Arif MTU, Sagor GHM (2020) Polyamine oxidase (PAO5) mediated antioxidant response to promote salt tolerance in Arabidopsis thaliana. J of Bangladesh Agric Univ 18(2):165–173

    Google Scholar 

  • Fuell C, Elliot KA, Hanfrey CC, Franceschetti M, Michael AJ (2010) Polyamine biosynthetic diversity in plants and algae. Plant Physiol Biochem 48:513–520

    Article  CAS  PubMed  Google Scholar 

  • Gentleman RC, Carey VJ, Bates DM et al (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanzawa Y, Takahashi T, Michael AJ, Burtin D, Long D, Pineiro M, Coupland G, Komeda Y (2000) ACAULIS5, an Arabidopsis gene required for stem elongation, encodes a spermine synthase. EMBO J 19:4248–4256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • James LR, Andrews S, Walker S, de Sousa PR, Ray A, Russell NA, Bellamy TC (2011) High-throughput analysis of calcium signalling kinetics in astrocytes stimulated with different neurotransmitters. PLoS ONE 6:e26889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kent WJ (2002) BLAT-the blast like alignment tool. Genome Res 12:656–664

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim DW, Watanabe K, Murayama C, Izawa S, Niitsu M, Michael AJ, Berberich T, Kusano T (2014) Polyamine oxidase5 regulates Arabidopsis thaliana growth through a thermospermine oxidase activity. Plant Physiol 165:1575–1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knott JM, Romer P, Sumper M (2007) Putative spermine synthases from Thalassiosira pseudonana and Arabidopsis thaliana synthesize thermospermine rather than spermine. FEBS Lett 581:3081–3086

    Article  CAS  PubMed  Google Scholar 

  • Kusano T, Kim DW, Liu T, Berberich T (2015) Polyamine catabolism in plants. In: Kusano T, Suzuki H (eds) Polyamine: a universal molecular nexus for growth, survival and specialised metabolism. Springer, NewYork, pp 77–88

    Chapter  Google Scholar 

  • Liu T, Dobashi H, Kim DW, Sagor GHM, Niitsu M, Berberich T, Kusano T (2014) Arabidopsis mutant plants with diverse defects in polyamine metabolism show unequal sensitivity to exogenous cadaverine probably based on their spermine content. Physiol Mol Biol Plants 20(2):151–159

    Article  PubMed  PubMed Central  Google Scholar 

  • Magwanga RO, Lu P, Kirungu JN et al (2018) Characterization of the late embryogenesis abundant (LEA) proteins family and their role in drought stress tolerance in upland cotton. BMC Genet 19:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyamoto M, Shimao S, Tong W, Motose H, Takahashi T (2020) Effect of thermospemine on the growth and expression of polyamine related genes in rice seedlings. Plants 8:269

    Article  Google Scholar 

  • Moschou PN, Sanmartin M, Andriopoulou AH, Rojo E, Sanchez-Serrano JJ, Roubelakis-Angelakis KA (2008) Bridging the gap between plant and mammalian polyamine catabolism: a novel peroxisomal polyamine oxidase responsible for a full back- conversion pathway in Arabidopsis. Plant Physiol 147:1845–1857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ning Z, Cox AJ, Mullikin JC (2001) SSAHA: a fast search method for large DNA databases. Genome Res 11(10):1725–1729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Celma J, Lin WD, Fu GM, Abadia J, López-Millán AF, Schmidt W (2013) Mutually exclusive alterations in secondary metabolism are critical for the uptake of insoluble iron compounds by Arabidopsis and Medicago truncatula. Plant Physiol 162:1473–1485

    Article  PubMed  PubMed Central  Google Scholar 

  • Saeed AI, Sharov V, White J, Li J, Liang W et al (2003) TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34:374–378

    Article  CAS  PubMed  Google Scholar 

  • Sagor GHM, Takahashi H, Niitsu M, Takahashi Y, Berberich T, Kusano T (2012) Exogenous thermospermine has an activity to induce a subset of the defense genes and restrict cucumber mosaic virus multiplication in Arabidopsis thaliana. Plant Cell Rep 31:1227–1232

    Article  CAS  PubMed  Google Scholar 

  • Sagor GHM, Kusano T, Berberich T (2019) A polyamine oxidase from Selaginella lepidophylla (SelPAO5) can replace AtPAO5 in Arabidopsis through converting thermospermine to norspermidine instead to spermidine. Plants 8(4):99

    Article  CAS  PubMed Central  Google Scholar 

  • Takahashi T (2020) Plant polyamines. Plants 9:511

    Article  CAS  PubMed Central  Google Scholar 

  • Takano A, Kakehi JI, Takahashi T (2012) Thermospermine is not a minor polyamine in the plant kingdom. Plant Cell Physiol 53:606–616

    Article  CAS  PubMed  Google Scholar 

  • Thimm O, Blaesing OE, Gibon Y, Nagel A, Meyer S, Krueger P, Selbig J, Mueller LA, Rhee SY, Stitt M (2004) Mapman: a user-driven tool to display genomics datasets onto diagrams of metabolic pathways and other biological processes. Plant J 37:914–939

    Article  CAS  PubMed  Google Scholar 

  • Tiburcio AF, Altabella T, Bitrian M, Alcazar R (2014) The roles of polyamines during the lifespan of plants: from development to stress. Planta 240:1–18

    Article  CAS  PubMed  Google Scholar 

  • Tisi A, Federico R, Moreno S, Lucretti S, Moschou PN, Roubelakis-Angelakis KA, Angelini R, Cona A (2011) Perturbation of polyamine catabolism can strongly affect root development and xylem differentiation. Plant Physiol 157:200–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torres TT, Metta M, Ottenwälder B, Schlötterer C (2008) Gene expression profiling by massively parallel sequencing. Genome Res 18(1):172–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas JW, Yang Wen-Dar Lin, Wolfgang S (2010) Transcriptional profiling of the Arabidopsis iron deficiency response reveals conserved transition metal homeostasis networks. Plant Physiol 152(4):2130–2141

  • Vujcic S, Diegelman P, Bacchi CJ et al (2002) Identification and characterization of a novel flavin-containing spermine oxidase of mammalian cell origin. Biochem J 367:665–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Devereux W, Woster PM et al (2001) Cloning and characterization of a human polyamine oxidase that is inducible by polyamine analogue exposure. Cancer Res 61:5370–5373

    CAS  PubMed  Google Scholar 

  • Wang HY, Klatte M, Jakoby M, Baumlein H, Weisshaar B, Bauer P (2007) Iron deficiency mediated stress regulation of four subgroup IRBHLH gene in Arabidopsis thaliana. Planta 226(4):897–908

    Article  CAS  PubMed  Google Scholar 

  • Yakovlev I, Lee Y, Rotter B, Olsen J, Skrøppa T, Johnsen Ø, Fossdal C (2014) Temperature-dependent differential transcriptomes during formation of an epigenetic memory in Norway spruce embryogenesis. Tree Genet Genomes 10:355–366

    Article  Google Scholar 

  • Yamaguchi K, Takahashi Y, Berberich T, Imai A, Miyazaki A, Takahashi T, Michael A, Kusano T (2006) The polyamine spermine protects against high salt stress in Arabidopsis thaliana. FEBS Lett 580:6783–6788

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi K, Takahashi Y, Berberich T, Imai A, Takahashi T, Michael A, Kusano T (2007) A protective role for the polyamine spermine against drought stress in Arabidopsis. Biochem Biophys Res Commun 352:486–490

    Article  CAS  PubMed  Google Scholar 

  • Zawada AM, Rogacev KS, Müller S, Rotter B, Winter P, Fliser D, Heine GH (2014) Massive analysis of cDNA Ends (MACE) and miRNA expression profiling identifies proatherogenic pathways in chronic kidney disease. Epigenetics 9:161–172

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Dr. Simit Patel is acknowledged for critically reading the manuscript. This work was supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT) to TK (26·04081, 15K14705) and Bangladesh Agricultural University Research System (BAURES) to GHMS (2017/262/BAU).

Author information

Authors and Affiliations

Authors

Contributions

GHMS, SS, KDW, Performing lab experiment, collection and analysis of data. MN synthesized uncommon chemicals, GHMS, TK, TB: Design, formulation, supervision of experiment and writing of manuscript.

Corresponding author

Correspondence to G. H. M. Sagor.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 581 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sagor, G.H.M., Simm, S., Kim, D.W. et al. Effect of thermospermine on expression profiling of different gene using massive analysis of cDNA ends (MACE) and vascular maintenance in Arabidopsis. Physiol Mol Biol Plants 27, 577–586 (2021). https://doi.org/10.1007/s12298-021-00967-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-021-00967-7

Keywords

Navigation