Skip to main content
Log in

Genetic relationships and diversity among populations of Paris polyphylla assessed using SCoT and SRAP markers

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

The genetic diversity of 33 Paris polyphylla samples collected from the Dabie Mountains was analyzed using SCoT and SRAP molecular markers, revealing the genetic relationships among Paris polyphylla resources in the Dabie Mountains at the molecular level and providing a theoretical basis for genetic improvement and conservation. As a result, a total of 134 bands were amplified with 9 SCoT primers, the percentage of polymorphic bands was 100%, the average number of primers amplified was 14.89, the PIC value was 94.83% and the genetic similarity coefficient ranged from 0.463 to 0.896. Ten pairs of SRAP primer combinations amplified 135 bands, including 129 polymorphic bands, and the percentage of polymorphic bands was 95.56%. The average number of polymorphic bands obtained with each pair of SRAP primer combinations was 12.9, the PIC value was 93.91%, and the genetic similarity coefficient ranged from 0.533 to 0.904. This study showed that both SCoT and SRAP markers were suitable for the genetic diversity analysis of P. polyphylla, which belongs to a genus in which SRAP marker technology has not previously been applied, despite its application in a variety of other plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson JA, Churchill GA, Autrique JE, Tanksley SD, Sorrells ME (1993) Optimizing parental selection for genetic linkage maps. Genome 36(1):181–186

    Article  CAS  PubMed  Google Scholar 

  • Aneja B, Yadav NR, Chawla V, Yadav RC (2012) Sequence-related amplified polymorphism (SRAP) molecular marker system and its applications in crop improvement. Mol Breed 30(4):1635–1648

    Article  CAS  Google Scholar 

  • Bhattacharya P, Kumaria S, Kumar S, Tandon P (2013) Start codon targeted (SCoT) marker reveals genetic diversity of Dendrobium nobile Lindl., an endangered medicinal orchid species. Gene 529:21–26

    Article  CAS  Google Scholar 

  • Cai YB, Yang YY, Chen HJ, Zeng LM, Pang XH, Sun GM (2014) Genetic diversity analysis of papaya resources by SRAP and SCoT combination. J Plant Genet Resour 15(2):292–298

    Google Scholar 

  • Chen Z, Ye RC, Zhang R, Li WY, Wang L (2009) Analysis of genetic differentiation based on ISSR and morphological markers in Paris thibetica. Lishizhen Med Mater Med Res 20(10):2647–2650

    CAS  Google Scholar 

  • Chen ZSZ, Tian B, Cai CT (2017) Genetic diversity of Paris polyphylla var. yunnanensis by SSR marker. Chin Tradit Herbal Drugs 48(9):1834–1838

    Google Scholar 

  • Collard BCY, Mackill DJ (2009) Start codon targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating genetargeted markers in plants. Plant Mol Biol Rep 27:86–93

    Article  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12(1):13

    Google Scholar 

  • Ferriol M, Picó B, Nuez F (2003) Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers. Theor Appl Genet 107(2):271–282

    Article  CAS  PubMed  Google Scholar 

  • Guindon MF, Martin E, Cravero V, Gali KK, Warkentin TD, Cointry E (2019) Linkage map development by GBS, SSR, and SRAP techniques and yield-related QTLs in pea. Mol Breed 39(4):1–16

    Article  CAS  Google Scholar 

  • Gupta M, Chyi YS, Romero-Severson J, Owen JL (1994) Amplification of DNA markers from evolutionary diverse genomes using single primers of simple-sequence repeats. Theor Appl Genet 89:998–1006

    Article  CAS  PubMed  Google Scholar 

  • Hajibarat Z, Saidi A, Hajibarat Z, Talebi R (2015) Characterization of genetic diversity in chickpea using SSR markers, start codon targeted polymorphism (SCoT) and conserved DNA-derived polymorphism (CDDP). Physiol Mol Biol Plants 21(3):365–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He J, Zhang S, Wang H, Chen CX, Chen SF (2006) Advances in studies on the use of Paris polyphylla var. yunnanensis (Trilliaceae). Acta Bot Yunn 28:271–276

    CAS  Google Scholar 

  • Igwe DO, Afiukwa CA, Ubi BE, Ogbu KI, Ojuederie OB, Ude GN (2017) Assessment of genetic diversity in Vigna unguiculata L. (Walp) accessions using inter-simple sequence repeat (ISSR) and start codon targeted (SCoT) polymorphic markers. BMC Genet 18(1):98

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Institute of Botany, Chinese Academy of Sciences (1978) Flora of China. Beijing Science Press (15):86–96

  • Jiang QQ, Long GY, Li WW, Deng ZN (2011) Identification of genetic variation in Citrus sinensis from Hunan based on start codon targeted polymorphism. Agric Sci Technol 12(11):1594–1599

    CAS  Google Scholar 

  • Kalia RK, Rai MK, Kalia S, Singh R, Dhawan AK (2011) Microsatellite markers: an overview of the recent progress in plants. Euphytica 177:309–334

    Article  CAS  Google Scholar 

  • Kumar J, Agrawal V (2017) Analysis of genetic diversity and population genetic structure in, Simarouba glauca, DC. (an important bio-energy crop) employing ISSR and SRAP markers. Ind Crops Prod 100:198–207

    Article  CAS  Google Scholar 

  • Lewontin RC (1972) The apportionment of human diversity. Evol Biol 6:391–398

    Google Scholar 

  • Li H (1998) The Genus Paris (Trilliaceae). Science Press, Beijing, pp 23–65

    Google Scholar 

  • Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103(2–3):455–461

    Article  CAS  Google Scholar 

  • Li Z, Xin BH, Yang H, Liu C, Tian ML (2014) SCOT genetic diversity of plants in Paris. Guihaia 34(03):315–319

    CAS  Google Scholar 

  • Li G, Wang YF, Tang L, Yang CY, Li RY, Ma XJ (2015a) Phenotypic trait variation, principal component, correlation and path analysis of Paris polyphylla var. yunnanensis. J Chin Med Mater 38(7):1339

    Google Scholar 

  • Li H, Su B, Zhang ZY, Yang YM (2015b) An assessment on the rarely medical paris plants in China with exploring the future development of its plantation. J West China For Sci 44(3):1–7

    Google Scholar 

  • Lin Y, Li SP, Yang B, Wang X, Dong ZY, Yan SW, Yang LY (2010) Morphological variations of paris polyphylla var. yunnansensis in different population. China J Chin Mater Med 35(22):2959–2962

    Google Scholar 

  • Liu LW, Zhao LP, Gong YQ, Wang MX, Chen LM, Yang JL (2008) DNA fingerprinting and genetic diversity analysis of late-bolting radish cultivars with RAPD ISSR and SRAP markers. Sci Horticult 116(3):1–247

    Article  CAS  Google Scholar 

  • Michener C, Sokal R (1957) A quantitative approach to a problem in classification. Evolution 11:130–162

    Article  PubMed Central  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323

    Article  CAS  PubMed  Google Scholar 

  • Ojuederie OB, Balogun MO, Fawole I, Igwe DO, Olowolafe MO (2014) Assessment of the genetic diversity of African yam bean (Sphenostylis stenocarpa Hochst ex. A. Rich harms) accessions using amplified fragment length polymorphism (AFLP) markers. Afr. J Biotech 13(18):1850–8

    Google Scholar 

  • Robarts DW, Wolfe AD (2014) Sequence-related amplified polymorphism (SRAP) markers: a potential resource for studies in plant molecular biology. Appl Plant Sci 2:1400017

    Article  Google Scholar 

  • Rohlf FJ (1997) NTSYS pc: numerical taxonomy and multivariate analysis system Version 2.02h. Exeter software, New York

  • Schaal BA, Hayworth DA, Olsen KM, Rauscher JT, Smith WA (1998) Phylogeographic studies in plants: problems and prospects. Mol Ecol (United Kingdom) 7(4):465–474

    Article  Google Scholar 

  • Smith JSC, Hin ECL, Shu H, Smith OS, Wall SJ, Senior ML, Mitchell SE, Kresovich S, Ziegle J (1997) An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.): comparisons with data from AFLPs and pedigree. Theor Appl Genet 95:163–173

    Article  CAS  Google Scholar 

  • Sneath PHA, Sokal RR (1973) Numerical taxonomy. W.H. Freeman & Co., San Francisco

    Google Scholar 

  • Tang RH, Wang L, Tang XW, Li YF (2003) Genetic diversity analysis of paris by rapd makers. J Sichuan Univ (Natural Science Edition) 04:778–782

    Google Scholar 

  • The Pharmacopoeia Commission of the PRC (2015) Pharmocopoeia of the Peopleʼs Republic of China. Chemical Industry Press, Beijing

    Google Scholar 

  • Uzun A, Yesiloglu T, Aka-Kacar Y, Tuzcu O, Gulsen O (2009) Genetic diversity and relationships within Citrus and related genera based on sequence related amplified polymorphism markers (SRAPs). Sci Hortic 121:306–312

    Article  CAS  Google Scholar 

  • Wang YH, Niu HM, Zhang ZY, Hu XY, Li H (2015) Medicinal values and their chemical bases of Paris. Zhongguo Zhong Yao Za Zhi 40(5):833–839

    CAS  PubMed  Google Scholar 

  • Williams J, Kubelik A, Livak K, Rafalski J, Tingey S (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xin BH, Tian ML, Wu BL, Wang Q, Yang H (2011) Genetic diversity analysis of Paris by RSAP makers. China J Chin Mater Med 36(24):3425–3427

    CAS  Google Scholar 

  • Zhang JY, Yu H, Zhang SG, Ding CC (2004) RAPD variation within and among four populations of Paris polyphylla. Biodiversity 12(5):517–522

    Google Scholar 

  • Zhang R, Tang MX, Weng Z, Wang L (2006) Application of aflp technique on the genetic diversity of Pparis. J Sichuan Univ (Natural Science Edition) 05:1105–1109

    Google Scholar 

  • Zhang R, Wang L, Tang MX, Weng Z (2008) The genetic and morphological evidence for sympatric speciation pattern of paris from emei mountain. Bull Bot Res 28(1):59–63

    Google Scholar 

Download references

Acknowledgements

Authors are thankful to the teachers and reviewers who give me valuable suggestions on this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinling He.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Corresponding Author: Jinling He.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (XLS 68 kb)

Supplementary file2 (XLS 59 kb)

Appendix

Appendix

See Figs. 5 and 6.

Fig. 5
figure 5

Amplification profiles of thirty-three P. polyphylla DNA samples using SCoT markers. Lanes: M = 5000 bp DNA Marker; 1–33:33 samples

Fig. 6
figure 6

Amplification profiles of thirty-three P. polyphylla DNA samples using SRAP markers. Lanes: M = 5000 bp DNA Marker; 1–33:33 samples

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Zou, G., Zhao, J. et al. Genetic relationships and diversity among populations of Paris polyphylla assessed using SCoT and SRAP markers. Physiol Mol Biol Plants 26, 1281–1293 (2020). https://doi.org/10.1007/s12298-020-00808-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-020-00808-z

Keywords

Navigation